Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design and Protocol
2.3. Experimental Procedures
2.3.1. Pre-Test Block
2.3.2. TMS Measurements of M1 Excitability
2.3.3. Practice Blocks
2.3.4. Post-Test Block
2.4. tACS and SHAM Stimulation
2.5. Overhand Throwing Task
2.6. Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Endpoint Error
3.2. MEP Amplitude
3.3. Futility Analyses
4. Discussion
4.1. Influence of tACS on Motor Learning
4.2. Influence of tACS on M1 Excitability
4.3. Reasons for the Failure of tACS to Improve Motor Learning and Study Limitations
4.4. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luft, A.R.; Buitrago, M.M. Stages of Motor Skill Learning. Mol. Neurobiol. 2005, 32, 205–216. [Google Scholar] [CrossRef]
- Hardwick, R.M.; Rottschy, C.; Miall, R.C.; Eickhoff, S.B. A Quantitative Meta-Analysis and Review of Motor Learning in the Human Brain. NeuroImage 2013, 67, 283–297. [Google Scholar] [CrossRef]
- Wulf, G.; Shea, C.H. Principles Derived from the Study of Simple Skills do not Generalize to Complex Skill Learning. Psychon. Bull. Rev. 2002, 9, 185–211. [Google Scholar] [CrossRef]
- Cordo, P.J.; Gurfinkel, V.S. Motor Coordination Can Be Fully Understood only by Studying Complex Movements. Prog. Brain Res. 2004, 143, 29–38. [Google Scholar] [CrossRef]
- Lemon, R.N. Neural Control of Dexterity: What Has Been Achieved? Exp. Brain Res. 1999, 128, 6–12. [Google Scholar] [CrossRef]
- Hummel, F.C.; Heise, K.; Celnik, P.; Floel, A.; Gerloff, C.; Cohen, L.G. Facilitating Skilled Right Hand Motor Function in Older Subjects by Anodal Polarization over the Left Primary Motor Cortex. Neurobiol. Aging 2010, 31, 2160–2168. [Google Scholar] [CrossRef]
- Dumel, G.; Bourassa, M.E.; Charlebois-Plante, C.; Desjardins, M.; Doyon, J.; Saint-Amour, D.; De Beaumont, L. Motor Learning Improvement Remains 3 Months After a Multisession Anodal tDCS Intervention in an Aging Population. Front. Aging Neurosci. 2018, 10, 335. [Google Scholar] [CrossRef]
- Broeder, S.; Nackaerts, E.; Heremans, E.; Vervoort, G.; Meesen, R.; Verheyden, G.; Nieuwboer, A. Transcranial Direct Current Stimulation in Parkinson’s Disease: Neurophysiological Mechanisms and Behavioral Effects. Neurosci. Biobehav. Rev. 2015, 57, 105–117. [Google Scholar] [CrossRef]
- Simpson, M.W.; Mak, M. The Effect of Transcranial Direct Current Stimulation on Upper Limb Motor Performance in Parkinson’s Disease: A Systematic Review. J. Neurol. 2019, 267, 3479–3488. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, M.; Chen, J.; Cai, G.; Liu, Q.; Zhao, Y.; Huang, Z.; Lan, Y. Non-Invasive Brain Stimulation Effectively Improves Post-Stroke Sensory Impairment: A Systematic Review and Meta-Analysis. J. Neural Transm. 2023, 130, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Buch, E.R.; Santarnecchi, E.; Antal, A.; Born, J.; Celnik, P.A.; Classen, J.; Gerloff, C.; Hallett, M.; Hummel, F.C.; Nitsche, M.A.; et al. Effects of tDCS on Motor Learning and Memory Formation: A Consensus and Critical Position Paper. Clin. Neurophysiol. 2017, 128, 589–603. [Google Scholar] [CrossRef]
- Priori, A.; Hallett, M.; Rothwell, J.C. Repetitive Transcranial Magnetic Stimulation or Transcranial Direct Current Stimulation? Brain Stimul. 2009, 2, 241–245. [Google Scholar] [CrossRef]
- Stagg, C.J.; Nitsche, M.A. Physiological Basis of Transcranial Direct Current Stimulation. Neurosci. 2011, 17, 37–53. [Google Scholar] [CrossRef]
- Dissanayaka, T.; Zoghi, M.; Farrell, M.; Egan, G.F.; Jaberzadeh, S. Does Transcranial Electrical Stimulation Enhance Corticospinal Excitability of the Motor Cortex in Healthy Individuals? A Systematic Review and Meta-Analysis. Eur. J. Neurosci. 2017, 46, 1968–1990. [Google Scholar] [CrossRef]
- Meek, A.W.; Greenwell, D.; Poston, B.; Riley, Z.A. Anodal tDCS Accelerates On-Line Learning of Dart Throwing. Neurosci. Lett. 2021, 764, 136211. [Google Scholar] [CrossRef]
- Wilson, M.A.; Greenwell, D.; Meek, A.W.; Poston, B.; Riley, Z.A. Neuroenhancement of a Dexterous Motor Task with Anodal tDCS. Brain Res. 2022, 1790, 147993. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Schauenburg, A.; Lang, N.; Liebetanz, D.; Exner, C.; Paulus, W.; Tergau, F. Facilitation of Implicit Motor Learning by Weak Transcranial Direct Current Stimulation of the Primary Motor Cortex in the Human. J. Cogn. Neurosci. 2003, 15, 619–626. [Google Scholar] [CrossRef]
- Prichard, G.; Weiller, C.; Fritsch, B.; Reis, J. Effects of Different Electrical Brain Stimulation Protocols on Subcomponents of Motor Skill Learning. Brain Stimul. 2014, 7, 532–540. [Google Scholar] [CrossRef]
- Reis, J.; Fischer, J.T.; Prichard, G.; Weiller, C.; Cohen, L.G.; Fritsch, B. Time- but Not Sleep-Dependent Consolidation of tDCS-Enhanced Visuomotor Skills. Cereb. Cortex 2013, 25, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.; Schambra, H.M.; Cohen, L.G.; Buch, E.R.; Fritsch, B.; Zarahn, E.; Celnik, P.A.; Krakauer, J.W. Noninvasive Cortical Stimulation Enhances Motor Skill Acquisition over Multiple Days through an Effect on Consolidation. Proc. Natl. Acad. Sci. USA 2009, 106, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Pantovic, M.; Albuquerque, L.L.; Mastrantonio, S.; Pomerantz, A.S.; Wilkins, E.W.; Riley, Z.A.; Guadagnoli, M.A.; Poston, B. Transcranial Direct Current Stimulation of Primary Motor Cortex over Multiple Days Improves Motor Learning of a Complex Overhand Throwing Task. Brain Sci. 2023, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Liang, Z.; Wei, Z.; Liu, Y.; Wang, X. Effects of Transcranial Direct Current Stimulation on Motor Skills Learning in Healthy Adults through the Activation of Different Brain Regions: A Systematic Review. Front. Hum. Neurosci. 2022, 16, 1021375. [Google Scholar] [CrossRef] [PubMed]
- Moliadze, V.; Antal, A.; Paulus, W. Boosting Brain Excitability by Transcranial High Frequency Stimulation in the Ripple Range. J. Physiol. 2010, 588, 4891–4904. [Google Scholar] [CrossRef] [PubMed]
- Sugata, H.; Yagi, K.; Yazawa, S.; Nagase, Y.; Tsuruta, K.; Ikeda, T.; Matsushita, K.; Hara, M.; Kawakami, K.; Kawakami, K. Modulation of Motor Learning Capacity by Transcranial Alternating Current Stimulation. Neuroscience 2018, 391, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yi, Y.G.; Chang, M.C. The Effect of Transcranial Alternating Current Stimulation on Functional Recovery in Patients with Stroke: A Narrative Review. Front. Neurol. 2023, 14, 1327383. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Zhang, L.; Wu, Y.; Tang, L.; Chen, X.; Li, Y.; Shan, C. Exploring the Therapeutic Effects and Mechanisms of Transcranial Alternating Current Stimulation on Improving Walking Ability in Stroke Patients via Modulating Cerebellar Gamma Frequency Band–A Narrative Review. Cerebellum 2023. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Wan, R.; Liu, Y.; Niu, M.; Guo, J.; Guo, F. Effects of Transcranial Alternating Current Stimulation on Motor Performance and Motor Learning for Healthy Individuals: A Systematic Review and Meta-Analysis. Front. Physiol. 2022, 13, 1064584. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.J.; Draaisma, L.R.; Hummel, F.C. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum. Cerebellum 2023, 22, 120–128. [Google Scholar] [CrossRef]
- Pollok, B.; Boysen, A.C.; Krause, V. The Effect of Transcranial Alternating Current Stimulation (tACS) at Alpha and Beta Frequency on Motor Learning. Behav. Brain Res. 2015, 293, 234–240. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Zhang, N.; Zhang, X.; Liu, S. A Scientometric Review of the Growing Trends in Transcranial Alternating Current Stimulation (tACS). Front. Hum. Neurosci. 2024, 18, 1362593. [Google Scholar] [CrossRef]
- Miyaguchi, S.; Inukai, Y.; Matsumoto, Y.; Miyashita, M.; Takahashi, R.; Otsuru, N.; Onishi, H. Effects on Motor Learning of Transcranial Alternating Current Stimulation Applied over the Primary Motor Cortex and Cerebellar Hemisphere. J. Clin. Neurosci. 2020, 78, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Miyaguchi, S.; Otsuru, N.; Kojima, S.; Saito, K.; Inukai, Y.; Masaki, M.; Onishi, H. Transcranial Alternating Current Stimulation With Gamma Oscillations over the Primary Motor Cortex and Cerebellar Hemisphere Improved Visuomotor Performance. Front. Behav. Neurosci. 2018, 12, 132. [Google Scholar] [CrossRef] [PubMed]
- Miyaguchi, S.; Otsuru, N.; Kojima, S.; Yokota, H.; Saito, K.; Inukai, Y.; Onishi, H. The Effect of Gamma tACS over the M1 Region and Cerebellar Hemisphere Does not Depend on Current Intensity. J. Clin. Neurosci. 2019, 65, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Miyaguchi, S.; Otsuru, N.; Kojima, S.; Yokota, H.; Saito, K.; Inukai, Y.; Onishi, H. Gamma tACS over M1 and Cerebellar Hemisphere Improves Motor Performance in a Phase-Specific Manner. Neurosci. Lett. 2019, 694, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Naro, A.; Bramanti, A.; Leo, A.; Manuli, A.; Sciarrone, F.; Russo, M.; Bramanti, P.; Calabro, R.S. Effects of Cerebellar Transcranial Alternating Current Stimulation on Motor Cortex Excitability and Motor Function. Brain Struct. Funct. 2017, 222, 2891–2906. [Google Scholar] [CrossRef] [PubMed]
- Fresnoza, S.; Christova, M.; Feil, T.; Gallasch, E.; Korner, C.; Zimmer, U.; Ischebeck, A. The Effects of Transcranial Alternating Current Stimulation (tACS) at Individual Alpha Peak Frequency (iAPF) on Motor Cortex Excitability in Young and Elderly adults. Exp. Brain Res. 2018, 236, 2573–2588. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, A.V.; Yun, K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Front. Cell Neurosci. 2017, 11, 214. [Google Scholar] [CrossRef]
- Wach, C.; Krause, V.; Moliadze, V.; Paulus, W.; Schnitzler, A.; Pollok, B. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation (tACS) on Motor Functions and Motor Cortical Excitability. Behav. Brain Res. 2013, 241, 1–6. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Santos, M.C.; Lima, M.; Vieira, A.L.; Rigonatti, S.P.; Silva, M.T.; Barbosa, E.R.; Nitsche, M.A.; Pascual-Leone, A. Noninvasive Cortical Stimulation with Transcranial Direct Current Stimulation in Parkinson’s Disease. Mov. Disord. 2006, 21, 1693–1702. [Google Scholar] [CrossRef]
- Hummel, F.; Celnik, P.; Giraux, P.; Floel, A.; Wu, W.H.; Gerloff, C.; Cohen, L.G. Effects of Non-Invasive Cortical Stimulation on Skilled Motor Function in Chronic Stroke. Brain 2005, 128, 490–499. [Google Scholar] [CrossRef]
- Oldfield, R.C. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Screening Questionnaire before TMS: An Update. Clin. Neurophysiol. 2011, 122, 1686. [Google Scholar] [CrossRef] [PubMed]
- Pantovic, M.; Lidstone, D.E.; de Albuquerque, L.L.; Wilkins, E.W.; Munoz, I.A.; Aynlender, D.G.; Morris, D.; Dufek, J.S.; Poston, B. Cerebellar Transcranial Direct Current Stimulation Applied over Multiple Days Does not Enhance Motor Learning of a Complex Overhand Throwing Task in Young Adults. Bioengineering 2023, 10, 1265. [Google Scholar] [CrossRef] [PubMed]
- de Albuquerque, L.L.; Pantovic, M.; Clingo, M.G.; Fischer, K.M.; Jalene, S.; Landers, M.R.; Mari, Z.; Poston, B. Long-Term Application of Cerebellar Transcranial Direct Current Stimulation Does not Improve Motor Learning in Parkinson’s Disease. Cerebellum 2022, 21, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Lima de Albuquerque, L.; Pantovic, M.; Clingo, M.; Fischer, K.; Jalene, S.; Landers, M.; Mari, Z.; Poston, B. An Acute Application of Cerebellar Transcranial Direct Current Stimulation Does Not Improve Motor Performance in Parkinson’s Disease. Brain Sci. 2020, 10, 735. [Google Scholar] [CrossRef]
- Jackson, A.K.; de Albuquerque, L.L.; Pantovic, M.; Fischer, K.M.; Guadagnoli, M.A.; Riley, Z.A.; Poston, B. Cerebellar Transcranial Direct Current Stimulation Enhances Motor Learning in a Complex Overhand Throwing Task. Cerebellum 2019, 18, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Ginanneschi, F.; Del Santo, F.; Dominici, F.; Gelli, F.; Mazzocchio, R.; Rossi, A. Changes in Corticomotor Excitability of Hand Muscles in Relation to Static Shoulder Positions. Exp. Brain Res. 2005, 161, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Eckert, N.R.; Poston, B.; Riley, Z.A. Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability. PLoS ONE 2016, 11, e0151520. [Google Scholar] [CrossRef]
- Albuquerque, L.L.; Fischer, K.M.; Pauls, A.L.; Pantovic, M.; Guadagnoli, M.A.; Riley, Z.A.; Poston, B. An Acute Application of Transcranial Random Noise Stimulation Does Not Enhance Motor Skill Acquisition or Retention in a Golf Putting Task. Hum. Mov. Sci. 2019, 66, 241–248. [Google Scholar] [CrossRef]
- Fricke, K.; Seeber, A.A.; Thirugnanasambandam, N.; Paulus, W.; Nitsche, M.A.; Rothwell, J.C. Time Course of the Induction of Homeostatic Plasticity Generated by Repeated Transcranial Direct Current Stimulation of the Human Motor Cortex. J. Neurophysiol. 2011, 105, 1141–1149. [Google Scholar] [CrossRef]
- Monte-Silva, K.; Kuo, M.F.; Hessenthaler, S.; Fresnoza, S.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Induction of late LTP-like Plasticity in the Human Motor Cortex by Repeated Non-Invasive Brain Stimulation. Brain Stimul. 2012, 6, 424–432. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability Changes Induced in the Human Motor Cortex by Weak Transcranial Direct Current Stimulation. J. Physiol. 2000, 527 Pt 3, 633–639. [Google Scholar] [CrossRef]
- Horvath, J.C.; Carter, O.; Forte, J.D. Transcranial Direct Current Stimulation: Five Important Issues We Aren’t Discussing (but Probably Should Be). Front. Syst. Neurosci. 2014, 8, 2. [Google Scholar] [CrossRef]
- Horvath, J.C.; Forte, J.D.; Carter, O. Evidence That Transcranial Direct Current Stimulation (tDCS) Generates Little-to-no Reliable Neurophysiologic Effect Beyond MEP Amplitude Modulation in Healthy Human Subjects: A Systematic Review. Neuropsychologia 2015, 66, 213–236. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanasambandam, N.; Sparing, R.; Dafotakis, M.; Meister, I.G.; Paulus, W.; Nitsche, M.A.; Fink, G.R. Isometric Contraction Interferes with Transcranial Direct Current Stimulation (tDCS) Induced Plasticity: Evidence of State-Dependent Neuromodulation in Human Motor Cortex. Restor. Neurol. Neurosci. 2011, 29, 311–320. [Google Scholar] [CrossRef]
- Quartarone, A.; Morgante, F.; Bagnato, S.; Rizzo, V.; Sant’Angelo, A.; Aiello, E.; Reggio, E.; Battaglia, F.; Messina, C.; Girlanda, P. Long Lasting Effects of Transcranial Direct Current Stimulation on Motor Imagery. Neuroreport 2004, 15, 1287–1291. [Google Scholar] [CrossRef]
- Antal, A.; Terney, D.; Poreisz, C.; Paulus, W. Towards Unravelling Task-Related Modulations of Neuroplastic Changes Induced in the Human Motor Cortex. Eur. J. Neurosci. 2007, 26, 2687–2691. [Google Scholar] [CrossRef]
- Lopez-Alonso, V.; Cheeran, B.; Fernandez-del-Olmo, M. Relationship between Non-Invasive Brain Stimulation-Induced Plasticity and Capacity for Motor Learning. Brain Stimul. 2015, 8, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, R.; Jesunathadas, M.; Poston, B.; Santello, M.; Ye, J.; Panchanathan, S. A Subject-Independent Method for Automatically Grading Electromyographic Features during a Fatiguing Contraction. IEEE Trans. Biomed. Eng. 2012, 59, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Branscheidt, M.; Kassavetis, P.; Anaya, M.; Rogers, D.; Huang, H.D.; Lindquist, M.A.; Celnik, P. Fatigue Induces Long-Lasting Detrimental Changes In Motor-Skill Learning. eLife 2019, 8, e40578. [Google Scholar] [CrossRef]
- Dissanayaka, T.D.; Zoghi, M.; Farrell, M.; Egan, G.F.; Jaberzadeh, S. Sham Transcranial Electrical Stimulation and Its Effects on Corticospinal Excitability: A Systematic Review and Meta-Analysis. Rev. Neurosci. 2018, 29, 223–232. [Google Scholar] [CrossRef] [PubMed]
- De Guzman, K.A.; Young, R.J.; Contini, V.; Clinton, E.; Hitchcock, A.; Riley, Z.A.; Poston, B. The Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance. Brain Sci. 2023, 13, 1225. [Google Scholar] [CrossRef]
- de Albuquerque, L.L.; Pantovic, M.; Clingo, M.; Fischer, K.; Jalene, S.; Landers, M.; Mari, Z.; Poston, B. A Single Application of Cerebellar Transcranial Direct Current Stimulation Fails to Enhance Motor Skill Acquisition in Parkinson’s Disease: A Pilot Study. Biomedicines 2023, 11, 2219. [Google Scholar] [CrossRef] [PubMed]
- Urbin, M.A. Sensorimotor control in overarm throwing. Mot. Control 2012, 16, 560–578. [Google Scholar] [CrossRef]
- Fleisig, G.S.; Barrentine, S.W.; Escamilla, R.F.; Andrews, J.R. Biomechanics of Overhand Throwing with Implications for Injuries. Sports Med. 1996, 21, 421–437. [Google Scholar] [CrossRef] [PubMed]
- Hirashima, M.; Kudo, K.; Ohtsuki, T. Utilization and Compensation of Interaction Torques during Ball-Throwing Movements. J. Neurophysiol. 2003, 89, 1784–1796. [Google Scholar] [CrossRef]
- Hirashima, M.; Kudo, K.; Watarai, K.; Ohtsuki, T. Control of 3D Limb Dynamics in Unconstrained Overarm Throws of Different Speeds Performed by Skilled Baseball Players. J. Neurophysiol. 2007, 97, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Hirashima, M.; Ohtsuki, T. Exploring the Mechanism of Skilled Overarm Throwing. Exerc. Sport. Sci. Rev. 2008, 36, 205–211. [Google Scholar] [CrossRef]
- Timmann, D.; Lee, P.; Watts, S.; Hore, J. Kinematics of Arm Joint Rotations in Cerebellar and Unskilled Subjects Associated with the Inability to Throw Fast. Cerebellum 2008, 7, 366–378. [Google Scholar] [CrossRef]
- Flament, D.; Hore, J. Movement and Electromyographic Disorders Associated with Cerebellar Dysmetria. J. Neurophysiol. 1986, 55, 1221–1233. [Google Scholar] [CrossRef]
- Hore, J.; Timmann, D.; Watts, S. Disorders in Timing and Force of Finger Opening in Overarm Throws Made by Cerebellar Subjects. Ann. N. Y. Acad. Sci. 2002, 978, 1–15. [Google Scholar] [CrossRef]
- Hore, J.; Watts, S. Skilled Throwers Use Physics to Time Ball Release to the Nearest Millisecond. J. Neurophysiol. 2011, 106, 2024–2033. [Google Scholar] [CrossRef]
- Timmann, D.; Citron, R.; Watts, S.; Hore, J. Increased Variability in Finger Position Occurs Throughout Overarm Throws Made by Cerebellar and Unskilled Subjects. J. Neurophysiol. 2001, 86, 2690–2702. [Google Scholar] [CrossRef]
- Timmann, D.; Watts, S.; Hore, J. Failure of Cerebellar Patients to Time Finger Opening Precisely Causes Ball High-Low Inaccuracy in Overarm Throws. J. Neurophysiol. 1999, 82, 103–114. [Google Scholar] [CrossRef]
- Poston, B.; Christou, E.A.; Enoka, J.A.; Enoka, R.M. Timing Variability and Not Force Variability Predicts the Endpoint Accuracy of Fast and Slow Isometric Contractions. Exp. Brain Res. 2010, 202, 189–202. [Google Scholar] [CrossRef]
- Poston, B.; Van Gemmert, A.W.; Sharma, S.; Chakrabarti, S.; Zavaremi, S.H.; Stelmach, G. Movement Trajectory Smoothness Is not Associated with the Endpoint Accuracy of Rapid Multi-Joint Arm Movements in Young and Older Adults. Acta Psychol. 2013, 143, 157–167. [Google Scholar] [CrossRef]
- Ammann, C.; Guida, P.; Caballero-Insaurriaga, J.; Pineda-Pardo, J.A.; Oliviero, A.; Foffani, G. A Framework to Assess the Impact of Number of Trials on the Amplitude of Motor Evoked Potentials. Sci. Rep. 2020, 10, 21422. [Google Scholar] [CrossRef]
- Cantarero, G.; Spampinato, D.; Reis, J.; Ajagbe, L.; Thompson, T.; Kulkarni, K.; Celnik, P. Cerebellar Direct Current Stimulation Enhances On-Line Motor Skill Acquisition through an Effect on Accuracy. J. Neurosci. 2015, 35, 3285–3290. [Google Scholar] [CrossRef]
- Chang, Y.; Song, T.; Monaco, J.; Ivanova, A. Futility Stopping in Clinical Trials, Optimality and Practical Considerations. J. Biopharm. Stat. 2020, 30, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.; Rocchi, L.; Paparella, G.; Nardella, A.; Li Voti, P.; Conte, A.; Kojovic, M.; Rothwell, J.C.; Berardelli, A. Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome. Brain Stimul. 2015, 8, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Doyon, J.; Penhune, V.; Ungerleider, L.G. Distinct Contribution of the Cortico-Striatal and Cortico-Cerebellar Systems to Motor Skill Learning. Neuropsychologia 2003, 41, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Cammarota, A.; Wassermann, E.M.; Brasil-Neto, J.P.; Cohen, L.G.; Hallett, M. Modulation of Motor Cortical Outputs to the Reading Hand of Braille Readers. Ann. Neurol. 1993, 34, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Nguyet, D.; Cohen, L.G.; Brasil-Neto, J.P.; Cammarota, A.; Hallett, M. Modulation of Muscle Responses Evoked by Transcranial Magnetic Stimulation during the Acquisition of New Fine Motor Skills. J. Neurophysiol. 1995, 74, 1037–1045. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Wassermann, E.M.; Sadato, N.; Hallett, M. The Role of Reading Activity on the Modulation of Motor Cortical Outputs to the Reading Hand in Braille Readers. Ann. Neurol. 1995, 38, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Sustained Excitability Elevations Induced by Transcranial DC Motor Cortex Stimulation in Humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Klees-Themens, G.; Theoret, H. The Effects of Transcranial Direct Current Stimulation on Corticospinal Excitability: A Systematic Review of Nonsignificant Findings. Eur. J. Neurosci. 2023, 58, 3074–3097. [Google Scholar] [CrossRef]
- Bestmann, S.; Krakauer, J.W. The Uses and Interpretations of the Motor-Evoked Potential for Understanding Behaviour. Exp. Brain Res. 2015, 233, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Asamoah, B.; Khatoun, A.; Mc Laughlin, M. tACS Motor System Effects Can Be Caused by Transcutaneous Stimulation of Peripheral Nerves. Nat. Commun. 2019, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Li, L.M.; Uehara, K.; Hanakawa, T. The Contribution of Interindividual Factors to Variability of Response in Transcranial Direct Current Stimulation Studies. Front. Cell Neurosci. 2015, 9, 181. [Google Scholar] [CrossRef]
- Pellegrini, M.; Zoghi, M.; Jaberzadeh, S. Biological and Anatomical Factors Influencing Interindividual Variability to Noninvasive Brain Stimulation of the Primary Motor Cortex: A Systematic Review and Meta-Analysis. Rev. Neurosci. 2018, 29, 199–222. [Google Scholar] [CrossRef]
- Hamilton, K.; Smith, K.; Winn, K.; Oliver, B.; Newland, P.; Hendricks-Ferguson, V. Quantifying Fatigue Using Electrophysiological Techniques and Non-invasive Brain Stimulation in People with Multiple Sclerosis- A Review and Discussion. Biol. Res. Nurs. 2023, 26, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Proessl, F.; Poston, B.; Rudroff, T. Does a Single Application of Anodal tDCS Improve Knee Extensor Fatigability in People with Multiple Sclerosis? Brain Stimul. 2018, 11, 1388–1390. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Fan, S.; Xu, Y.; Cui, L. Non-Invasive Brain Stimulation for Fatigue in Multiple Sclerosis Patients: A Systematic Review and Meta-Analysis. Mult. Scler. Relat. Disord. 2019, 36, 101375. [Google Scholar] [CrossRef] [PubMed]
- Udupa, K.; Bhattacharya, A.; Bhardwaj, S.; Pal, P.K.; Chen, R. Parkinson’s Disease: Alterations of Motor Plasticity and Motor Learning. Handb. Clin. Neurol. 2022, 184, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Izumi, S.I. Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sci. 2021, 11, 1095. [Google Scholar] [CrossRef] [PubMed]
- Charvet, L.E.; Dobbs, B.; Shaw, M.T.; Bikson, M.; Datta, A.; Krupp, L.B. Remotely Supervised Transcranial Direct Current Stimulation for the Treatment of Fatigue in Multiple Sclerosis: Results from a Randomized, Sham-Controlled Trial. Mult. Scler. 2017, 24, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, B.; Pawlak, N.; Biagioni, M.; Agarwal, S.; Shaw, M.; Pilloni, G.; Bikson, M.; Datta, A.; Charvet, L. Generalizing Remotely Supervised Transcranial Direct Current Stimulation (tDCS): Feasibility and Benefit in Parkinson’s Disease. J. Neuroeng. Rehabil. 2018, 15, 114. [Google Scholar] [CrossRef] [PubMed]
- Kasschau, M.; Reisner, J.; Sherman, K.; Bikson, M.; Datta, A.; Charvet, L.E. Transcranial Direct Current Stimulation Is Feasible for Remotely Supervised Home Delivery in Multiple Sclerosis. Neuromodulation 2016, 19, 824–831. [Google Scholar] [CrossRef]
- Shaw, M.T.; Kasschau, M.; Dobbs, B.; Pawlak, N.; Pau, W.; Sherman, K.; Bikson, M.; Datta, A.; Charvet, L.E. Remotely Supervised Transcranial Direct Current Stimulation: An Update on Safety and Tolerability. J. Vis. Exp. 2017, 7, 56211. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkins, E.W.; Pantovic, M.; Noorda, K.J.; Premyanov, M.I.; Boss, R.; Davidson, R.; Hagans, T.A.; Riley, Z.A.; Poston, B. Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation. Bioengineering 2024, 11, 744. https://doi.org/10.3390/bioengineering11080744
Wilkins EW, Pantovic M, Noorda KJ, Premyanov MI, Boss R, Davidson R, Hagans TA, Riley ZA, Poston B. Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation. Bioengineering. 2024; 11(8):744. https://doi.org/10.3390/bioengineering11080744
Chicago/Turabian StyleWilkins, Erik W., Milan Pantovic, Kevin J. Noorda, Mario I. Premyanov, Rhett Boss, Ryder Davidson, Taylor A. Hagans, Zachary A. Riley, and Brach Poston. 2024. "Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation" Bioengineering 11, no. 8: 744. https://doi.org/10.3390/bioengineering11080744
APA StyleWilkins, E. W., Pantovic, M., Noorda, K. J., Premyanov, M. I., Boss, R., Davidson, R., Hagans, T. A., Riley, Z. A., & Poston, B. (2024). Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation. Bioengineering, 11(8), 744. https://doi.org/10.3390/bioengineering11080744