How the Effect of Virtual Reality on Cognitive Functioning Is Modulated by Gender Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Materials
2.3.1. Digit Memory Span—WAIS-IV [40]
2.3.2. Arithmetic Reasoning Test
2.3.3. Visual–Spatial Intelligence Test
2.3.4. Immersivity Questionnaire
2.4. Procedure
2.5. Statistical Analysis
3. Results
ANOVAs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camara Lopez, M.; Deliens, G.; Cleeremans, A. Ecological Assessment of Divided Attention: What about the Current Tools and the Relevancy of Virtual Reality. Rev. Neurol. 2016, 172, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D.; Gaggioli, A.; Riva, G. Extended Reality for the Clinical, Affective, and Social Neurosciences. Brain Sci. 2020, 10, 922. [Google Scholar] [CrossRef] [PubMed]
- Madary, M.; Metzinger, T.K. Real Virtuality: A Code of Ethical Conduct. Recommendations for Good Scientific Practice and the Consumers of VR-Technology. Front. Robot. AI 2016, 3, 180932. [Google Scholar] [CrossRef]
- Thornton, B.; Faires, A.; Robbins, M.; Rollins, E. The Mere Presence of a Cell Phone May Be Distracting. Soc. Psychol. 2014, 45, 479–488. [Google Scholar] [CrossRef]
- Stothart, C.; Mitchum, A.; Yehnert, C. The Attentional Cost of Receiving a Cell Phone Notification. J. Exp. Psychol. Hum. Percept. Perform. 2015, 41, 893–897. [Google Scholar] [CrossRef]
- Lepp, A.; Barkley, J.E.; Karpinski, A.C. The Relationship between Cell Phone Use, Academic Performance, Anxiety, and Satisfaction with Life in College Students. Comput. Hum. Behav. 2014, 31, 343–350. [Google Scholar] [CrossRef]
- Barr, N.; Pennycook, G.; Stolz, J.A.; Fugelsang, J.A. The Brain in Your Pocket: Evidence That Smartphones Are Used to Supplant Thinking. Comput. Hum. Behav. 2015, 48, 473–480. [Google Scholar] [CrossRef]
- Ophir, E.; Nass, C.; Wagner, A.D. Cognitive Control in Media Multitaskers. Proc. Natl. Acad. Sci. USA 2009, 106, 15583–15587. [Google Scholar] [CrossRef] [PubMed]
- Cain, M.S.; Leonard, J.A.; Gabrieli, J.D.E.; Finn, A.S. Media Multitasking in Adolescence. Psychon. Bull. Rev. 2016, 23, 1932–1941. [Google Scholar] [CrossRef]
- Ralph, B.C.W.; Thomson, D.R.; Cheyne, J.A.; Smilek, D. Media Multitasking and Failures of Attention in Everyday Life. Psychol. Res. 2014, 78, 661–669. [Google Scholar] [CrossRef]
- Uncapher, M.R.; Lin, L.; Rosen, L.D.; Kirkorian, H.L.; Baron, N.S.; Bailey, K.; Cantor, J.; Strayer, D.L.; Parsons, T.D.; Wagner, A.D. Media Multitasking and Cognitive, Psychological, Neural, and Learning Differences. Pediatrics 2017, 140, S62–S66. [Google Scholar] [CrossRef] [PubMed]
- Sanbonmatsu, D.M.; Strayer, D.L.; Medeiros-Ward, N.; Watson, J.M. Who Multi-Tasks and Why? Multi-Tasking Ability, Perceived Multi-Tasking Ability, Impulsivity, and Sensation Seeking. PLoS ONE 2013, 8, e54402. [Google Scholar] [CrossRef] [PubMed]
- Wiradhany, W.; Nieuwenstein, M.R. Cognitive Control in Media Multitaskers: Two Replication Studies and a Meta-Analysis. Atten. Percept. Psychophys. 2017, 79, 2620–2641. [Google Scholar] [CrossRef] [PubMed]
- Cain, M.S.; Mitroff, S.R. Distractor Filtering in Media Multitaskers. Perception 2011, 40, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Leite, P.; Kludt, R.; Vignola, G.; Ma, W.J.; Green, C.S.; Bavelier, D. Technology Consumption and Cognitive Control: Contrasting Action Video Game Experience with Media Multitasking. Atten. Percept. Psychophys. 2016, 78, 218–241. [Google Scholar] [CrossRef] [PubMed]
- Gorman, T.E.; Green, C.S. Short-Term Mindfulness Intervention Reduces the Negative Attentional Effects Associated with Heavy Media Multitasking. Sci. Rep. 2016, 6, 24542. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; McLauchlan, S.; Lee, M. Is There a Link between Media-Multitasking and the Executive Functions of Filtering and Response Inhibition? Comput. Hum. Behav. 2017, 75, 667–677. [Google Scholar] [CrossRef]
- Minear, M.; Brasher, F.; McCurdy, M.; Lewis, J.; Younggren, A. Working Memory, Fluid Intelligence, and Impulsiveness in Heavy Media Multitaskers. Psychon. Bull. Rev. 2013, 20, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, S.E.; Weeda, W.D.; van der Heijden, L.L.; Huizinga, M. The Relationship between Media Multitasking and Executive Function in Early Adolescents. J. Early Adolesc. 2014, 34, 1120–1144. [Google Scholar] [CrossRef]
- Seddon, A.L.; Law, A.S.; Adams, A.-M.; Simmons, F.R. Exploring the Relationship between Executive Functions and Self-Reported Media-Multitasking in Young Adults. J. Cogn. Psychol. 2018, 30, 728–742. [Google Scholar] [CrossRef]
- Shin, M.; Linke, A.; Kemps, E. Moderate Amounts of Media Multitasking Are Associated with Optimal Task Performance and Minimal Mind Wandering. Comput. Hum. Behav. 2020, 111, 106422. [Google Scholar] [CrossRef]
- Moisala, M.; Salmela, V.; Hietajärvi, L.; Salo, E.; Carlson, S.; Salonen, O.; Lonka, K.; Hakkarainen, K.; Salmela-Aro, K.; Alho, K. Media Multitasking Is Associated with Distractibility and Increased Prefrontal Activity in Adolescents and Young Adults. NeuroImage 2016, 134, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Realtà Virtuali: Gli Aspetti Psicologici Delle Tecnologie Simulative e Il Loro Impatto Sull’esperienza Umana. Available online: https://publicatt.unicatt.it/handle/10807/147057 (accessed on 26 February 2024).
- Grassini, S.; Laumann, K. Are Modern Head-Mounted Displays Sexist? A Systematic Review on Gender Differences in HMD-Mediated Virtual Reality. Front. Psychol. 2020, 11, 545946. [Google Scholar] [CrossRef] [PubMed]
- Makransky, G.; Terkildsen, T.S.; Mayer, R.E. Adding Immersive Virtual Reality to a Science Lab Simulation Causes More Presence but Less Learning. Learn. Instr. 2019, 60, 225–236. [Google Scholar] [CrossRef]
- Kaplan, A.D.; Cruit, J.; Endsley, M.; Beers, S.M.; Sawyer, B.D.; Hancock, P.A. The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta-Analysis. Hum. Factors 2021, 63, 706–726. [Google Scholar] [CrossRef]
- Cryer, A.; Kapellmann-Zafra, G.; Abrego-Hernandez, S.; Marin-Reyes, H.; French, R. Advantages of Virtual Reality in the Teaching and Training of Radiation Protection during Interventions in Harsh Environments. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 784–789. [Google Scholar]
- Makransky, G.; Mayer, R.E. Benefits of Taking a Virtual Field Trip in Immersive Virtual Reality: Evidence for the Immersion Principle in Multimedia Learning. Educ. Psychol. Rev. 2022, 34, 1771–1798. [Google Scholar] [CrossRef]
- Makransky, G.; Andreasen, N.K.; Baceviciute, S.; Mayer, R.E. Immersive Virtual Reality Increases Liking but Not Learning with a Science Simulation and Generative Learning Strategies Promote Learning in Immersive Virtual Reality. J. Educ. Psychol. 2021, 113, 719–735. [Google Scholar] [CrossRef]
- Giguère, G.; Lacroix, G.L. Concepts Fondamentaux de l’attention, 1ere Partie: L’attention Sélective et Partagée. [Fundamental Concepts in Attention, Part One: Selective and Divided Attention.]. Rev. Québécoise Psychol. 2010, 31, 7–38. [Google Scholar]
- Kahneman, D. Attention and Effort; Prentice-Hall Series in Experimental Psychology; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973; ISBN 978-0-13-050518-7. [Google Scholar]
- Allport, A. Attention and Control: Have We Been Asking the Wrong Questions? A Critical Review of Twenty-Five Years. In Attention and Performance 14: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience; The MIT Press: Cambridge, MA, USA, 1993; pp. 183–218. ISBN 978-0-262-13284-8. [Google Scholar]
- Stoet, G.; O’Connor, D.B.; Conner, M.; Laws, K.R. Are Women Better than Men at Multi-Tasking? BMC Psychol. 2013, 1, 18. [Google Scholar] [CrossRef]
- Ren, D.; Zhou, H.; Fu, X. A Deeper Look at Gender Difference in Multitasking: Gender-Specific Mechanism of Cognitive Control. In Proceedings of the 2009 Fifth International Conference on Natural Computation, Tianjian, China, 14–16 August 2009; Volume 5, pp. 13–17. [Google Scholar]
- Allen, B.; Hanley, T.; Rokers, B.; Green, C.S. Visual 3D Motion Acuity Predicts Discomfort in 3D Stereoscopic Environments. Entertain. Comput. 2016, 13, 1–9. [Google Scholar] [CrossRef]
- Liang, H.-N.; Lu, F.; Shi, Y.; Nanjappan, V.; Papangelis, K. Evaluating the Effects of Collaboration and Competition in Navigation Tasks and Spatial Knowledge Acquisition within Virtual Reality Environments. Future Gener. Comput. Syst. 2019, 95, 855–866. [Google Scholar] [CrossRef]
- Mousas, C.; Anastasiou, D.; Spantidi, O. The Effects of Appearance and Motion of Virtual Characters on Emotional Reactivity. Comput. Hum. Behav. 2018, 86, 99–108. [Google Scholar] [CrossRef]
- Scheibler, C.d.A.; Rodrigues, M.A.F. User Experience in Games with HMD Glasses through First and Third Person Viewpoints with Emphasis on Embodiment. In Proceedings of the 2018 20th Symposium on Virtual and Augmented Reality (SVR), Foz do Iguacu, Brazil, 28–30 October 2018; pp. 75–81. [Google Scholar]
- Lombard, M.; Ditton, T. At the Heart of It All: The Concept of Presence. J. Comput.-Mediat. Commun. 1997, 3, JCMC321. [Google Scholar] [CrossRef]
- Witmer, B.G.; Singer, M.J. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence Teleoper. Virtual Environ. 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Bracken, C.C. Presence and Image Quality: The Case of High-Definition Television. Media Psychol. 2005, 7, 191–205. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Adult Intelligence Scale, 3rd ed.; American Psychological Association: Washington, DC, USA, 2019. [Google Scholar]
- Kim, T.; Biocca, F. Telepresence via Television: Two Dimensions of Telepresence May Have Different Connections to Memory and Persuasion. J. Comput.-Mediat. Commun. 1997, 3, JCMC325. [Google Scholar] [CrossRef]
- Barfield, W.; Weghorst, S. The Sense of Presence within Virtual Environments: A Conceptual Framework. Adv. Hum. Factors Ergon. 1993, 19, 699. [Google Scholar]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Rousselet, G.A.; Pernet, C.R.; Wilcox, R.R. The percentile bootstrap: A primer with step-by-step instructions in R. Adv. Methods Pract. Psychol. Sci. 2021, 4, 2515245920911881. [Google Scholar] [CrossRef]
- Wilcox, R.R.; Rousselet, G.A.; Pernet, C.R. Improved methods for making inferences about multiple skipped correlations. J. Stat. Comput. Simulation 2018, 88, 3116–3131. [Google Scholar] [CrossRef]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing; Academic Press: Cambridge, MA, USA, 2011; ISBN 978-0-12-387015-5. [Google Scholar]
- Rousselet, G.; Pernet, C.R.; Wilcox, R.R. An Introduction to the Bootstrap: A Versatile Method to Make Inferences by Using Data-Driven Simulations. Meta-Psychology 2023, 7, MP.2019.2058. [Google Scholar] [CrossRef]
- Heyman, M. Lmboot: Bootstrap in Linear Models; R Package Version 0.0. 2019. Available online: https://cran.r-project.org/web/packages/lmboot/lmboot.pdf (accessed on 25 April 2023).
- Lynn, R.; Kanazawa, S. A Longitudinal Study of Sex Differences in Intelligence at Ages 7, 11 and 16 Years. Personal. Individ. Differ. 2011, 51, 321–324. [Google Scholar] [CrossRef]
- Gronchi, G.; Righi, S.; Pierguidi, L.; Giovannelli, F.; Murasecco, I.; Viggiano, M.P. Automatic and Controlled Attentional Orienting in the Elderly: A Dual-Process View of the Positivity Effect. Acta Psychol. 2018, 185, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Olivers, C.N. Interactions between Visual Working Memory and Visual Attention. Front. Biosci.-Landmark 2008, 13, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.K.; McCollough, A.W.; Machizawa, M.G. Neural Measures Reveal Individual Differences in Controlling Access to Working Memory. Nature 2005, 438, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Hakim, N.; Adam, K.C.S.; Gunseli, E.; Awh, E.; Vogel, E.K. Dissecting the Neural Focus of Attention Reveals Distinct Processes for Spatial Attention and Object-Based Storage in Visual Working Memory. Psychol. Sci. 2019, 30, 526–540. [Google Scholar] [CrossRef] [PubMed]
- Hautekiet, C.; Verschooren, S.; Langerock, N.; Vergauwe, E. Attentional Switching between Perception and Memory: Examining Asymmetrical Switch Costs. Atten. Percept. Psychophys. 2023, 85, 1398–1408. [Google Scholar] [CrossRef] [PubMed]
- Verschooren, S.; Liefooghe, B.; Brass, M.; Pourtois, G. Attentional Flexibility Is Imbalanced: Asymmetric Cost for Switches between External and Internal Attention. J. Exp. Psychol. Hum. Percept. Perform. 2019, 45, 1399–1414. [Google Scholar] [CrossRef] [PubMed]
- Parong, J.; Mayer, R.E. Learning Science in Immersive Virtual Reality. J. Educ. Psychol. 2018, 110, 785–797. [Google Scholar] [CrossRef]
- Richards, D.; Taylor, M. A Comparison of Learning Gains When Using a 2D Simulation Tool versus a 3D Virtual World: An Experiment to Find the Right Representation Involving the Marginal Value Theorem. Comput. Educ. 2015, 86, 157–171. [Google Scholar] [CrossRef]
- Kimura, D. Sex and Cognition; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Rilea, S.L. A Lateralization of Function Approach to Sex Differences in Spatial Ability: A Reexamination. Brain Cogn. 2008, 67, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Zilles, D.; Lewandowski, M.; Vieker, H.; Henseler, I.; Diekhof, E.; Melcher, T.; Keil, M.; Gruber, O. Gender Differences in Verbal and Visuospatial Working Memory Performance and Networks. Neuropsychobiology 2016, 73, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Benenson, J.F. Books and Arts-Essential Difference: Men, Women and the Extreme Male Brain/Essential Difference: The Truth about the Male and Female Brain. Nature 2003, 424, 132. [Google Scholar]
- Clements-Stephens, A.M.; Rimrodt, S.L.; Cutting, L.E. Developmental Sex Differences in Basic Visuospatial Processing: Differences in Strategy Use? Neurosci. Lett. 2009, 449, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Burke, S.M.; Kreukels, B.P.C.; Cohen-Kettenis, P.T.; Veltman, D.J.; Klink, D.T.; Bakker, J. Male-Typical Visuospatial Functioning in Gynephilic Girls with Gender Dysphoria—Organizational and Activational Effects of Testosterone. J. Psychiatry Neurosci. 2016, 41, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.J.; Cox, S.R.; Shen, X.; Lombardo, M.V.; Reus, L.M.; Alloza, C.; Harris, M.A.; Alderson, H.L.; Hunter, S.; Neilson, E.; et al. Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants. Cereb. Cortex 2018, 28, 2959–2975. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Fisher, A.D.; Orsolini, S.; Bianchi, A.; Romani, A.; Giganti, F.; Giovannelli, F.; Ristori, J.; Mazzoli, F.; Maggi, M.; et al. The fMRI Correlates of Visuo-Spatial Abilities: Sex Differences and Gender Dysphoria. Brain Imaging Behav. 2022, 16, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Giovannelli, F.; Noferini, C.; Cincotta, M.; Cavaliere, C.; Salvatore, M.; Mascalchi, M.; Viggiano, M.P. Subregional Prefrontal Cortex Recruitment as a Function of Inhibitory Demand: An fMRI Metanalysis. Neurosci. Biobehav. Rev. 2023, 152, 105285. [Google Scholar] [CrossRef] [PubMed]
- Badia, S.B.i.; Silva, P.A.; Branco, D.; Pinto, A.; Carvalho, C.; Menezes, P.; Almeida, J.; Pilacinski, A. Virtual Reality for Safe Testing and Development in Collaborative Robotics: Challenges and Perspectives. Electronics 2022, 11, 1726. [Google Scholar] [CrossRef]
- Heidari, A.; Navimipour, N.J.; Dag, H.; Talebi, S.; Unal, M. A Novel Blockchain-Based Deepfake Detection Method Using Federated and Deep Learning Models. Cogn. Comput. 2024, 1–19. [Google Scholar] [CrossRef]
- Heidari, A.; Jafari Navimipour, N.; Dag, H.; Unal, M. Deepfake Detection Using Deep Learning Methods: A Systematic and Comprehensive Review. WIREs Data Min. Knowl. Discov. 2024, 14, e1520. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Righi, S.; Gavazzi, G.; Benedetti, V.; Raineri, G.; Viggiano, M.P. How the Effect of Virtual Reality on Cognitive Functioning Is Modulated by Gender Differences. Bioengineering 2024, 11, 408. https://doi.org/10.3390/bioengineering11040408
Righi S, Gavazzi G, Benedetti V, Raineri G, Viggiano MP. How the Effect of Virtual Reality on Cognitive Functioning Is Modulated by Gender Differences. Bioengineering. 2024; 11(4):408. https://doi.org/10.3390/bioengineering11040408
Chicago/Turabian StyleRighi, Stefania, Gioele Gavazzi, Viola Benedetti, Giulia Raineri, and Maria Pia Viggiano. 2024. "How the Effect of Virtual Reality on Cognitive Functioning Is Modulated by Gender Differences" Bioengineering 11, no. 4: 408. https://doi.org/10.3390/bioengineering11040408
APA StyleRighi, S., Gavazzi, G., Benedetti, V., Raineri, G., & Viggiano, M. P. (2024). How the Effect of Virtual Reality on Cognitive Functioning Is Modulated by Gender Differences. Bioengineering, 11(4), 408. https://doi.org/10.3390/bioengineering11040408