Applications of Large Language Models in Pathology
Abstract
:1. Introduction
2. Education
3. Information Extraction
4. Text Classification
5. Report and Content Generation
6. Prompt Engineering
7. Programming
8. Clinical Pathology
9. Multi-Modal Large Language Models
10. Challenges and Limitations
11. Conclusions
12. Future Directions
Funding
Conflicts of Interest
References
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Yenduri, G.; Srivastava, G.; Maddikunta, P.K.R.; Jhaveri, R.H.; Wang, W.; Vasilakos, A.V.; Gadekallu, T.R. Generative Pre-Trained Transformer: A Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions. arXiv 2023, arXiv:2305.10435. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2019, arXiv:1810.04805. [Google Scholar]
- Zeng, K.G.; Dutt, T.; Witowski, J.; Kranthi Kiran, G.V.; Yeung, F.; Kim, M.; Kim, J.; Pleasure, M.; Moczulski, C.; Lopez, L.J.L.; et al. Improving Information Extraction from Pathology Reports Using Named Entity Recognition. Res. Sq. 2023, rs.3.rs-3035772. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models Are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Castelvecchi, D. Are ChatGPT and AlphaCode Going to Replace Programmers? Nature 2022. [Google Scholar] [CrossRef] [PubMed]
- Baktash, J.A.; Dawodi, M. Gpt-4: A Review on Advancements and Opportunities in Natural Language Processing. arXiv 2023, arXiv:2305.03195. [Google Scholar]
- Geiping, J.; Goldstein, T. Cramming: Training a Language Model on a Single GPU in One Day. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Mitchell, J.R.; Szepietowski, P.; Howard, R.; Reisman, P.; Jones, J.D.; Lewis, P.; Fridley, B.L.; Rollison, D.E. A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study. J. Med. Internet Res. 2022, 24, e27210. [Google Scholar] [CrossRef] [PubMed]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv 2023, arXiv:2307.09288. [Google Scholar]
- Yang, H.S.; Wang, F.; Greenblatt, M.B.; Huang, S.X.; Zhang, Y. AI Chatbots in Clinical Laboratory Medicine: Foundations and Trends. Clin. Chem. 2023, 69, 1238–1246. [Google Scholar] [CrossRef]
- Owens, B. How Nature Readers Are Using ChatGPT. Nature 2023, 615, 20. [Google Scholar] [CrossRef] [PubMed]
- Peacock, J.; Austin, A.; Shapiro, M.; Battista, A.; Samuel, A. Accelerating Medical Education with ChatGPT: An Implementation Guide. MedEdPublish 2023, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-L.; Tsai, S.-J.; Bai, Y.-M.; Ko, C.-H.; Hsu, C.-W.; Yang, F.-C.; Tsai, C.-K.; Tu, Y.-K.; Yang, S.-N.; Tseng, P.-T.; et al. Comparisons of Quality, Correctness, and Similarity Between ChatGPT-Generated and Human-Written Abstracts for Basic Research: Cross-Sectional Study. J. Med. Internet Res. 2023, 25, e51229. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Lin, S.; Tran, C.; Homer, R.J.; Wilsdon, D.; Walsh, J.C.; Goebel, E.A.; Sansano, I.; Sonawane, S.; Cockenpot, V.; et al. Assessment of Pathology Domain-Specific Knowledge of ChatGPT and Comparison to Human Performance. Arch. Pathol. Lab. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Rueda, M.; Fernández-Cerero, J.; Fernández-Batanero, J.M.; López-Meneses, E. Impact of the Implementation of ChatGPT in Education: A Systematic Review. Computers 2023, 12, 153. [Google Scholar] [CrossRef]
- Safranek, C.W.; Sidamon-Eristoff, A.E.; Gilson, A.; Chartash, D. The Role of Large Language Models in Medical Education: Applications and Implications. JMIR Med. Educ. 2023, 9, e50945. [Google Scholar] [CrossRef] [PubMed]
- Ngo, A.; Gupta, S.; Perrine, O.; Reddy, R.; Ershadi, S.; Remick, D. ChatGPT 3.5 Fails to Write Appropriate Multiple Choice Practice Exam Questions. Acad. Pathol. 2024, 11, 100099. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.K.; Deb Roy, A.; Kumar, N.; Mondal, H. Applicability of ChatGPT in Assisting to Solve Higher Order Problems in Pathology. Cureus 2023, 15, e35237. [Google Scholar] [CrossRef]
- Geetha, S.D.; Khan, A.; Khan, A.; Kannadath, B.S.; Vitkovski, T. Evaluation of ChatGPT Pathology Knowledge Using Board-Style Questions. Am. J. Clin. Pathol. 2023, aqad158. [Google Scholar] [CrossRef]
- Munoz-Zuluaga, C.; Zhao, Z.; Wang, F.; Greenblatt, M.B.; Yang, H.S. Assessing the Accuracy and Clinical Utility of ChatGPT in Laboratory Medicine. Clin. Chem. 2023, 69, 939–940. [Google Scholar] [CrossRef]
- Ibrahim, R.B.; Chokkalla, A.K.; Levett, K.; Gustafson, D.; Olayinka, L.; Kumar, S.; Devaraj, S. ChatGPT-Exploring Its Role in Clinical Chemistry. Ann. Clin. Lab. Sci. 2023, 53, 835–839. [Google Scholar] [PubMed]
- Blumenthal, W.; Alimi, T.O.; Jones, S.F.; Jones, D.E.; Rogers, J.D.; Benard, V.B.; Richardson, L.C. Using Informatics to Improve Cancer Surveillance. J. Am. Med. Inform. Assoc. 2020, 27, 1488–1495. [Google Scholar] [CrossRef]
- Choi, H.S.; Song, J.Y.; Shin, K.H.; Chang, J.H.; Jang, B.-S. Developing Prompts from Large Language Model for Extracting Clinical Information from Pathology and Ultrasound Reports in Breast Cancer. Radiat. Oncol. J. 2023, 41, 209–216. [Google Scholar] [CrossRef]
- Schadow, G.; McDonald, C.J. Extracting Structured Information from Free Text Pathology Reports. AMIA Annu. Symp. Proc. 2003, 2003, 584–588. [Google Scholar] [PubMed]
- Cheng, J. Neural Network Assisted Pathology Case Identification. J. Pathol. Inform. 2022, 13, 100008. [Google Scholar] [CrossRef]
- Levy, J.; Vattikonda, N.; Haudenschild, C.; Christensen, B.; Vaickus, L. Comparison of Machine-Learning Algorithms for the Prediction of Current Procedural Terminology (CPT) Codes from Pathology Reports. J. Pathol. Inform. 2022, 13, 3. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, Q.; Ren, Y.; Qiu, T.; Ma, J.; Sun, Q. Extracting Comprehensive Clinical Information for Breast Cancer Using Deep Learning Methods. Int. J. Med. Inform. 2019, 132, 103985. [Google Scholar] [CrossRef]
- Truhn, D.; Loeffler, C.M.; Müller-Franzes, G.; Nebelung, S.; Hewitt, K.J.; Brandner, S.; Bressem, K.K.; Foersch, S.; Kather, J.N. Extracting Structured Information from Unstructured Histopathology Reports Using Generative Pre-trained Transformer 4 (GPT-4). J. Pathol. 2024, 262, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Unlu, O.; Shin, J.; Mailly, C.J.; Oates, M.F.; Tucci, M.R.; Varugheese, M.; Wagholikar, K.; Wang, F.; Scirica, B.M.; Blood, A.J.; et al. Retrieval Augmented Generation Enabled Generative Pre-Trained Transformer 4 (GPT-4) Performance for Clinical Trial Screening. medRxiv 2024, 2024.02.08.24302376. [Google Scholar] [CrossRef]
- Yang, T.; Sucholutsky, I.; Jen, K.-Y.; Schonlau, M. exKidneyBERT: A Language Model for Kidney Transplant Pathology Reports and the Crucial Role of Extended Vocabularies. PeerJ Comput. Sci. 2024, 10, e1888. [Google Scholar] [CrossRef]
- Liu, J.; Gupta, S.; Chen, A.; Wang, C.-K.; Mishra, P.; Dai, H.-J.; Wong, Z.S.-Y.; Jonnagaddala, J. OpenDeID Pipeline for Unstructured Electronic Health Record Text Notes Based on Rules and Transformers: Deidentification Algorithm Development and Validation Study. J. Med. Internet Res. 2023, 25, e48145. [Google Scholar] [CrossRef]
- Santos, T.; Tariq, A.; Das, S.; Vayalpati, K.; Smith, G.H.; Trivedi, H.; Banerjee, I. PathologyBERT—Pre-Trained Vs. A New Transformer Language Model for Pathology Domain. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 5–9 November 2022. [Google Scholar]
- Lee, D.T.; Vaid, A.; Menon, K.M.; Freeman, R.; Matteson, D.S.; Marin, M.P.; Nadkarni, G.N. Development of a Privacy Preserving Large Language Model for Automated Data Extraction from Thyroid Cancer Pathology Reports. medRxiv 2023. [Google Scholar] [CrossRef]
- Sushil, M.; Zack, T.; Mandair, D.; Zheng, Z.; Wali, A.; Yu, Y.-N.; Quan, Y.; Butte, A.J. A Comparative Study of Zero-Shot Inference with Large Language Models and Supervised Modeling in Breast Cancer Pathology Classification. Res. Sq. 2024, rs.3.rs-3914899. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.-Y.; Chang, E.I.-C.; Lai, M.; Tu, Z. Weakly Supervised Histopathology Cancer Image Segmentation and Classification. Med. Image Anal. 2014, 18, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, D.; Yu, P.; Wang, L.; Deng, C. Contextual Word Embedding for Biomedical Knowledge Extraction: A Rapid Review and Case Study. J. Healthc. Inform. Res. 2024, 8, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks. arXiv 2019, arXiv:1908.10084. [Google Scholar]
- Ghinassi, I.; Wang, L.; Newell, C.; Purver, M. Comparing Neural Sentence Encoders for Topic Segmentation across Domains: Not Your Typical Text Similarity Task. PeerJ Comput. Sci. 2023, 9, e1593. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Alawad, M.; Young, M.T.; Gounley, J.; Schaefferkoetter, N.; Yoon, H.J.; Wu, X.-C.; Durbin, E.B.; Doherty, J.; Stroup, A.; et al. Limitations of Transformers on Clinical Text Classification. IEEE J. Biomed. Health Inform. 2021, 25, 3596–3607. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Tizhoosh, H.R.; Tayebi, R.M.; Ross, C.; Sur, M.; Leber, B.; Campbell, C.J.V. A BERT Model Generates Diagnostically Relevant Semantic Embeddings from Pathology Synopses with Active Learning. Commun. Med. 2021, 1, 11. [Google Scholar] [CrossRef]
- Fijačko, N.; Creber, R.M.; Abella, B.S.; Kocbek, P.; Metličar, Š.; Greif, R.; Štiglic, G. Using Generative Artificial Intelligence in Bibliometric Analysis: 10 Years of Research Trends from the European Resuscitation Congresses. Resusc. Plus 2024, 18, 100584. [Google Scholar] [CrossRef]
- Kefeli, J.; Tatonetti, N. Benchmark Pathology Report Text Corpus with Cancer Type Classification. medRxiv 2023, 2023.08.03.23293618. [Google Scholar] [CrossRef]
- Kefeli, J.; Tatonetti, N. Generalizable and Automated Classification of TNM Stage from Pathology Reports with External Validation. medRxiv 2023, 2023.06.26.23291912. [Google Scholar] [CrossRef]
- Fang, L.; Wang, K. Multi-Label Topic Classification for COVID-19 Literature with Bioformer. arXiv 2022, arXiv:2204.06758v1. [Google Scholar]
- Zhou, Z. Evaluation of ChatGPT’s Capabilities in Medical Report Generation. Cureus 2023, 15, e37589. [Google Scholar] [CrossRef]
- Shah, A.; Wahood, S.; Guermazi, D.; Brem, C.E.; Saliba, E. Skin and Syntax: Large Language Models in Dermatopathology. Dermatopathology 2024, 11, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Hart, S.N.; Hoffman, N.G.; Gershkovich, P.; Christenson, C.; McClintock, D.S.; Miller, L.J.; Jackups, R.; Azimi, V.; Spies, N.; Brodsky, V. Organizational Preparedness for the Use of Large Language Models in Pathology Informatics. J. Pathol. Inform. 2023, 14, 100338. [Google Scholar] [CrossRef]
- Grewal, H.; Dhillon, G.; Monga, V.; Sharma, P.; Buddhavarapu, V.S.; Sidhu, G.; Kashyap, R. Radiology Gets Chatty: The ChatGPT Saga Unfolds. Cureus 2023, 15, e40135. [Google Scholar] [CrossRef] [PubMed]
- Russe, M.F.; Reisert, M.; Bamberg, F.; Rau, A. Improving the Use of LLMs in Radiology through Prompt Engineering: From Precision Prompts to Zero-Shot Learning. Rofo 2024. [Google Scholar] [CrossRef] [PubMed]
- Stokel-Walker, C. ChatGPT Listed as Author on Research Papers: Many Scientists Disapprove. Nature 2023, 613, 620–621. [Google Scholar] [CrossRef] [PubMed]
- Briganti, G. How ChatGPT Works: A Mini Review. Eur. Arch. Otorhinolaryngol. 2024, 281, 1565–1569. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, M.; Miller, V.M.; Bhattacharyya, D.; Miller, L.E. High Rates of Fabricated and Inaccurate References in ChatGPT-Generated Medical Content. Cureus 2023, 15, e39238. [Google Scholar] [CrossRef] [PubMed]
- Naik, H.R.; Prather, A.D.; Gurda, G.T. Synchronous Bilateral Breast Cancer: A Case Report Piloting and Evaluating the Implementation of the AI-Powered Large Language Model (LLM) ChatGPT. Cureus 2023, 15, e37587. [Google Scholar] [CrossRef]
- Gao, C.A.; Howard, F.M.; Markov, N.S.; Dyer, E.C.; Ramesh, S.; Luo, Y.; Pearson, A.T. Comparing Scientific Abstracts Generated by ChatGPT to Real Abstracts with Detectors and Blinded Human Reviewers. NPJ Digit. Med. 2023, 6, 75. [Google Scholar] [CrossRef]
- Mojadeddi, Z.M.; Rosenberg, J. The Impact of AI and ChatGPT on Research Reporting. N. Z. Med. J. 2023, 136, 60–64. [Google Scholar]
- Rashidi, H.H.; Fennell, B.D.; Albahra, S.; Hu, B.; Gorbett, T. The ChatGPT Conundrum: Human-Generated Scientific Manuscripts Misidentified as AI Creations by AI Text Detection Tool. J. Pathol. Inform. 2023, 14, 100342. [Google Scholar] [CrossRef] [PubMed]
- Else, H. Abstracts Written by ChatGPT Fool Scientists. Nature 2023, 613, 423. [Google Scholar] [CrossRef] [PubMed]
- Polak, M.P.; Morgan, D. Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering. Nat. Commun. 2024, 15, 1569. [Google Scholar] [CrossRef] [PubMed]
- Leypold, T.; Schäfer, B.; Boos, A.; Beier, J.P. Can AI Think Like a Plastic Surgeon? Evaluating GPT-4’s Clinical Judgment in Reconstructive Procedures of the Upper Extremity. Plast. Reconstr. Surg. Glob. Open 2023, 11, e5471. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, X.; Deng, X.; Wen, H.; You, M.; Liu, W.; Li, Q.; Li, J. Prompt Engineering in Consistency and Reliability with the Evidence-Based Guideline for LLMs. NPJ Digit. Med. 2024, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-W.; Chang, C.-W.; Chang, W.-J.; Wang, H.-W.; Liang, C.-S.; Kishimoto, T.; Chang, J.P.-C.; Kuo, J.S.; Su, K.-P. The Now and Future of ChatGPT and GPT in Psychiatry. Psychiatry Clin. Neurosci. 2023, 77, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Meskó, B. Prompt Engineering as an Important Emerging Skill for Medical Professionals: Tutorial. J. Med. Internet Res. 2023, 25, e50638. [Google Scholar] [CrossRef]
- Wei, W.I.; Leung, C.L.K.; Tang, A.; McNeil, E.B.; Wong, S.Y.S.; Kwok, K.O. Extracting Symptoms from Free-Text Responses Using ChatGPT among COVID-19 Cases in Hong Kong. Clin. Microbiol. Infect. 2024, 30, 142.e1–142.e3. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Li, M.; Delk, M.B.; Lai, J.C. A Comparison of Large Language Model versus Manual Chart Review for Extraction of Data Elements from the Electronic Health Record. medRxiv 2023, 2023.08.31.23294924. [Google Scholar] [CrossRef]
- Kojima, T.; Gu, S.S.; Reid, M.; Matsuo, Y.; Iwasawa, Y. Large Language Models Are Zero-Shot Reasoners. Adv. Neural Inf. Process. Syst. 2023, 35, 22199–22213. [Google Scholar]
- Zhang, X.; Talukdar, N.; Vemulapalli, S.; Ahn, S.; Wang, J.; Meng, H.; Murtaza, S.M.B.; Leshchiner, D.; Dave, A.A.; Joseph, D.F.; et al. Comparison of Prompt Engineering and Fine-Tuning Strategies in Large Language Models in the Classification of Clinical Notes. medRxiv 2024, 2024.02.07.24302444. [Google Scholar] [CrossRef]
- Abdullahi, T.; Singh, R.; Eickhoff, C. Learning to Make Rare and Complex Diagnoses With Generative AI Assistance: Qualitative Study of Popular Large Language Models. JMIR Med. Educ. 2024, 10, e51391. [Google Scholar] [CrossRef]
- Agarwal, A.; Chan, A.; Chandel, S.; Jang, J.; Miller, S.; Moghaddam, R.Z.; Mohylevskyy, Y.; Sundaresan, N.; Tufano, M. Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming. arXiv 2024, arXiv:2402.14261. [Google Scholar]
- Coello, C.E.A.; Alimam, M.N.; Kouatly, R. Effectiveness of ChatGPT in Coding: A Comparative Analysis of Popular Large Language Models. Digital 2024, 4, 114–125. [Google Scholar] [CrossRef]
- Hellas, A.; Leinonen, J.; Sarsa, S.; Koutcheme, C.; Kujanpää, L.; Sorva, J. Exploring the Responses of Large Language Models to Beginner Programmers’ Help Requests. In Proceedings of the 2023 ACM Conference on International Computing Education Research V.1, Chicago, IL, USA, 7–11 August 2023; pp. 93–105. [Google Scholar]
- King, M.R.; Abdulrahman, A.M.; Petrovic, M.I.; Poley, P.L.; Hall, S.P.; Kulapatana, S.; Lamantia, Z.E. Incorporation of ChatGPT and Other Large Language Models into a Graduate Level Computational Bioengineering Course. Cell. Mol. Bioeng. 2024, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Poldrack, R.A.; Lu, T.; Beguš, G. AI-Assisted Coding: Experiments with GPT-4. arXiv 2023, arXiv:2304.13187. [Google Scholar]
- Yan, W.; Tian, Y.; Li, Y.; Chen, Q.; Wang, W. CodeTransOcean: A Comprehensive Multilingual Benchmark for Code Translation. arXiv 2023, arXiv:2310.04951. [Google Scholar]
- Rao, D. The Urgent Need for Healthcare Workforce Upskilling and Ethical Considerations in the Era of AI-Assisted Medicine. Indian J. Otolaryngol. Head Neck Surg. 2023, 75, 2638–2639. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; Casas, D.d.l.; Bressand, F.; Lengyel, G.; Lample, G.; Saulnier, L.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825. [Google Scholar]
- Yang, W.-H.; Yang, Y.-J.; Chen, T.-J. ChatGPT’s Innovative Application in Blood Morphology Recognition. J. Chin. Med. Assoc. 2024. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Al-Salahat, K.; Al-Ajlouni, E. ChatGPT Performance in Diagnostic Clinical Microbiology Laboratory-Oriented Case Scenarios. Cureus 2023, 15, e50629. [Google Scholar] [CrossRef]
- Spies, N.C.; Hubler, Z.; Roper, S.M.; Omosule, C.L.; Senter-Zapata, M.; Roemmich, B.L.; Brown, H.M.; Gimple, R.; Farnsworth, C.W. GPT-4 Underperforms Experts in Detecting IV Fluid Contamination. J. Appl. Lab. Med. 2023, 8, 1092–1100. [Google Scholar] [CrossRef]
- Kumari, A.; Kumari, A.; Singh, A.; Singh, S.K.; Juhi, A.; Dhanvijay, A.K.D.; Pinjar, M.J.; Mondal, H. Large Language Models in Hematology Case Solving: A Comparative Study of ChatGPT-3.5, Google Bard, and Microsoft Bing. Cureus 2023, 15, e43861. [Google Scholar] [CrossRef] [PubMed]
- Stephens, L.D. ChatGPT in Transfusion Medicine: A New Frontier for Patients? Transfusion 2023, 63, 1110–1112. [Google Scholar] [CrossRef] [PubMed]
- Hurley, N.C.; Schroeder, K.M.; Hess, A.S. Would Doctors Dream of Electric Blood Bankers? Large Language Model-Based Artificial Intelligence Performs Well in Many Aspects of Transfusion Medicine. Transfusion 2023, 63, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gan, W.; Chen, Z.; Wan, S.; Yu, P.S. Multimodal Large Language Models: A Survey. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023. [Google Scholar]
- Zang, Y.; Li, W.; Han, J.; Zhou, K.; Loy, C.C. Contextual Object Detection with Multimodal Large Language Models. arXiv 2023, arXiv:2305.18279. [Google Scholar]
- Laohawetwanit, T.; Namboonlue, C.; Apornvirat, S. Accuracy of GPT-4 in Histopathological Image Detection and Classification of Colorectal Adenomas. J. Clin. Pathol. 2024, jcp-2023-209304. [Google Scholar] [CrossRef]
- Sievert, M.; Aubreville, M.; Mueller, S.K.; Eckstein, M.; Breininger, K.; Iro, H.; Goncalves, M. Diagnosis of Malignancy in Oropharyngeal Confocal Laser Endomicroscopy Using GPT 4.0 with Vision. Eur. Arch. Otorhinolaryngol. 2024, 281, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Tsuneki, M.; Kanavati, F. Inference of Captions from Histopathological Patches. In Proceedings of the International Conference on Medical Imaging with Deep Learning, Zurich, Switzerland, 6–8 July 2022. [Google Scholar]
- Sengupta, S.; Brown, D.E. Automatic Report Generation for Histopathology Images Using Pre-Trained Vision Transformers and BERT. arXiv 2023, arXiv:2312.01435. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning Transferable Visual Models From Natural Language Supervision. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021. [Google Scholar]
- Sun, Y.; Zhu, C.; Zheng, S.; Zhang, K.; Sun, L.; Shui, Z.; Zhang, Y.; Li, H.; Yang, L. PathAsst: A Generative Foundation AI Assistant Towards Artificial General Intelligence of Pathology. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024. [Google Scholar]
- Lu, M.Y.; Chen, B.; Williamson, D.F.K.; Chen, R.J.; Ikamura, K.; Gerber, G.; Liang, I.; Le, L.P.; Ding, T.; Parwani, A.V.; et al. A Foundational Multimodal Vision Language AI Assistant for Human Pathology. arXiv 2023, arXiv:2312.07814. [Google Scholar]
- Zhang, Y.; Gao, J.; Tan, Z.; Zhou, L.; Ding, K.; Zhou, M.; Zhang, S.; Wang, D. Data-Centric Foundation Models in Computational Healthcare: A Survey. arXiv 2024, arXiv:2401.02458. [Google Scholar]
- Shafi, S.; Parwani, A.V. Artificial Intelligence in Diagnostic Pathology. Diagn. Pathol. 2023, 18, 109. [Google Scholar] [CrossRef]
- Berbís, M.A.; McClintock, D.S.; Bychkov, A.; Van Der Laak, J.; Pantanowitz, L.; Lennerz, J.K.; Cheng, J.Y.; Delahunt, B.; Egevad, L.; Eloy, C.; et al. Computational Pathology in 2030: A Delphi Study Forecasting the Role of AI in Pathology within the next Decade. eBioMedicine 2023, 88, 104427. [Google Scholar] [CrossRef]
- Yu, H. The Application and Challenges of ChatGPT in Educational Transformation: New Demands for Teachers’ Roles. Heliyon 2024, 10, e24289. [Google Scholar] [CrossRef] [PubMed]
- Schukow, C.; Smith, S.C.; Landgrebe, E.; Parasuraman, S.; Folaranmi, O.O.; Paner, G.P.; Amin, M.B. Application of ChatGPT in Routine Diagnostic Pathology: Promises, Pitfalls, and Potential Future Directions. Adv. Anat. Pathol. 2024, 31, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Cirlos, C.; Carrillo-Pérez, D.L.; Bermúdez-González, J.L.; Hidrogo-Montemayor, I.; Carrillo-Esper, R.; Sánchez-Mendiola, M. ChatGPT: Opportunities and Risks in the Fields of Medical Care, Teaching, and Research. Gac. Med. Mex. 2023, 159, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Sun, S.; Owens, J.; Galvez, V.; Gologorskaya, O.; Lai, J.C.; Pletcher, M.J.; Lai, K. Development of a Liver Disease-Specific Large Language Model Chat Interface Using Retrieval Augmented Generation. medRxiv 2023, 2023.11.10.23298364. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y.; Sun, J.; Guo, Q.; Wang, M.; et al. Retrieval-Augmented Generation for Large Language Models: A Survey. arXiv 2024, arXiv:2312.10997. [Google Scholar]
- Wang, Y.; Singh, L. Adding Guardrails to Advanced Chatbots. arXiv 2023, arXiv:2306.07500. [Google Scholar]
- Fogo, A.B.; Kronbichler, A.; Bajema, I.M. AI’s Threat to the Medical Profession. JAMA 2024, 331, 471. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.Y.; Abel, J.T.; Balis, U.G.J.; McClintock, D.S.; Pantanowitz, L. Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology. Am. J. Pathol. 2021, 191, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Moukheiber, L.; Celi, L.A.; Patel, M.; Mahmood, F.; Gondim, D.; Hogarth, M.; Levenson, R. AI in Pathology: What Could Possibly Go Wrong? Semin. Diagn. Pathol. 2023, 40, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T. ChatGPT in Medical Education: A Precursor for Automation Bias? JMIR Med. Educ. 2024, 10, e50174. [Google Scholar] [CrossRef]
- Evans, H.; Snead, D. Why Do Errors Arise in Artificial Intelligence Diagnostic Tools in Histopathology and How Can We Minimize Them? Histopathology 2024, 84, 279–287. [Google Scholar] [CrossRef]
- Emmert-Streib, F.; Yli-Harja, O.; Dehmer, M. Artificial Intelligence: A Clarification of Misconceptions, Myths and Desired Status. Front. Artif. Intell. 2020, 3, 524339. [Google Scholar] [CrossRef] [PubMed]
- Gordon, E.R.; Trager, M.H.; Kontos, D.; Weng, C.; Geskin, L.J.; Dugdale, L.S.; Samie, F.H. Ethical Considerations for Artificial Intelligence in Dermatology: A Scoping Review. Br. J. Dermatol. 2024, ljae040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zeng, G.; Wang, T.; Lu, W. TinyLlama: An Open-Source Small Language Model. arXiv 2024, arXiv:2401.02385. [Google Scholar]
- Ullah, E.; Parwani, A.; Baig, M.M.; Singh, R. Challenges and Barriers of Using Large Language Models (LLM) Such as ChatGPT for Diagnostic Medicine with a Focus on Digital Pathology—A Recent Scoping Review. Diagn. Pathol. 2024, 19, 43. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J. Applications of Large Language Models in Pathology. Bioengineering 2024, 11, 342. https://doi.org/10.3390/bioengineering11040342
Cheng J. Applications of Large Language Models in Pathology. Bioengineering. 2024; 11(4):342. https://doi.org/10.3390/bioengineering11040342
Chicago/Turabian StyleCheng, Jerome. 2024. "Applications of Large Language Models in Pathology" Bioengineering 11, no. 4: 342. https://doi.org/10.3390/bioengineering11040342
APA StyleCheng, J. (2024). Applications of Large Language Models in Pathology. Bioengineering, 11(4), 342. https://doi.org/10.3390/bioengineering11040342