The Nitrogen Content in the Fruiting Body and Mycelium of Pleurotus Ostreatus and Its Utilization as a Medium Component in Thraustochytrid Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Nitrogen and Protein Content Determination
2.3. Generation and Preparation of P. ostreatus Components
2.4. Fungal Component Extraction and Hydrolysis
2.5. Cultivation of Schizochytrium sp. S31
2.6. Determination of Dry Matter
2.7. Quantification of d-Glucose
2.8. Quantification of Free Amino Groups
2.9. Peptidase Activity Determination
2.10. Squalene Extraction
2.11. Squalene Quantification
2.12. Statistical Analysis
3. Results
3.1. Nitrogen and Protein Contents of P. ostreatus Fruiting Body and Mycelium
3.2. Hydrolysis and Extraction of Complex Nitrogen Sources from the Fruiting Body and Mycelium of P. ostreatus
3.3. Utilization of P. ostreatus Mycelium Extract as a Complex Nitrogen Source
3.4. Cultivation of Schizochytrium sp. S31 on Mycelium Extract
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Raman, J.; Jang, K.-Y.; Oh, Y.-L.; Oh, M.; Im, J.-H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology 2021, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bano, Z.; Rajarathnam, S.; Steinkraus, K.H. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit. Rev. Food Sci. Nutr. 1988, 27, 87–158. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.G.; Bordewick, S.; Krahe, N.-K.; Ersoy, F. Mycelium vs. Fruiting Bodies of Edible Fungi-; A Comparison of Metabolites. Microorganisms 2022, 10, 1379. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C. Cultivation of Pleurotus. ostreatus. and other edible mushrooms. Appl. Microbiol. Biotechnol. 2010, 85, 1321–1337. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.A.; Ashraf, M.; Ishtiaq, M. Comparative Study on Cultivation and Yield Performance of Oyster Mushroom (Pleurotus ostreatus) on Different Substrates (Wheat Straw, Leaves, Saw Dust). Pak. J. Nutr. 2004, 3, 158–160. [Google Scholar] [CrossRef]
- Domingos, M.; Souza-Cruz, P.B.d.; Ferraz, A.; Prata, A.M.R. A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chem. Eng. Sci. 2017, 170, 670–676. [Google Scholar] [CrossRef]
- Tinoco-Valencia, R.; Gómez-Cruz, C.; Galindo, E.; Serrano-Carreón, L. Toward an understanding of the effects of agitation and aeration on growth and laccases production by Pleurotus ostreatus. J. Biotechnol. 2014, 177, 67–73. [Google Scholar] [CrossRef]
- Bergmann, P.; Takenberg, M.; Frank, C.; Zschätzsch, M.; Werner, A.; Berger, R.G.; Ersoy, F. Cultivation of Inonotus hispidus in Stirred Tank and Wave Bag Bioreactors to Produce the Natural Colorant Hispidin. Fermentation 2022, 8, 541. [Google Scholar] [CrossRef]
- Manzoor, M.; Jabeen, F.; Thomas-Hall, S.R.; Altaf, J.; Younis, T.; Schenk, P.M.; Qazi, J.I. Sugarcane bagasse as a novel low/no cost organic carbon source for growth of Chlorella sp. BR2. Biofuels 2021, 12, 1067–1073. [Google Scholar] [CrossRef]
- Park, W.-K.; Moon, M.; Shin, S.-E.; Cho, J.M.; Suh, W.I.; Chang, Y.K.; Lee, B. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 2018, 29, 71–79. [Google Scholar] [CrossRef]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J. Microbiol. Biotechnol. 2023, 33, 151–166. [Google Scholar] [CrossRef]
- Patel, A.; Liefeldt, S.; Rova, U.; Christakopoulos, P.; Matsakas, L. Co-production of DHA and squalene by thraustochytrid from forest biomass. Sci. Rep. 2020, 10, 1992. [Google Scholar] [CrossRef]
- Piwowarek, K.; Lipińska, E.; Kieliszek, M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl. Microbiol. Biotechnol. 2023, 107, 2169–2208. [Google Scholar] [CrossRef]
- Morabito, C.; Bournaud, C.; Maës, C.; Schuler, M.; Aiese Cigliano, R.; Dellero, Y.; Maréchal, E.; Amato, A.; Rébeillé, F. The lipid metabolism in thraustochytrids. Prog. Lipid Res. 2019, 76. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.W.; Chen, F. Chapter 11—Production of High-Value Products by Marine Microalgae Thraustochytrids. In Bioprocessing for Value-Added Products from Renewable Resources; Yang, S.-T., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 293–323. [Google Scholar]
- Yarkent, Ç.; Oncel, S.S. Recent Progress in Microalgal Squalene Production and Its Cosmetic Application. Biotechnol. Bioprocess Eng. 2022, 27, 295–305. [Google Scholar] [CrossRef]
- Patel, A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. Sci. Total Environ. 2020, 736, 139691. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-K.; Wang, X.; Tian, Y.-T.; Cui, Y.-H. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31. Sci. Total Environ. 2020, 710, 136448. [Google Scholar] [CrossRef] [PubMed]
- Oliver, L.; Fernández-de-Castro, L.; Dietrich, T.; Villaran, M.C.; Barrio, R.J. Production of Docosahexaenoic Acid and Odd-Chain Fatty Acids by Microalgae Schizochytrium limacinum Grown on Waste-Derived Volatile Fatty Acids. Appl. Sci. 2022, 12, 3976. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Sprecher, E. Über die Guttation bei Pilzen. Planta 1959, 53, 565–574. [Google Scholar] [CrossRef]
- Merz, M.; Ewert, J.; Baur, C.; Appel, D.; Blank, I.; Stressler, T.; Fischer, L. Wheat gluten hydrolysis using isolated Flavourzyme peptidases: Product inhibition and determination of synergistic effects using response surface methodology. J. Mol. Catal. B Enzym. 2015, 122, 218–226. [Google Scholar] [CrossRef]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Iversen, S.L.; Jørgensen, M.H. Azocasein assay for alkaline protease in complex fermentation broth. Biotechnol. Tech. 1995, 9, 573–576. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Verordnung (EU) 2015/2283 des Europäischen Parlaments und des Rates vom 25. November 2015 über Neuartige Lebensmittel. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32015R2283 (accessed on 1 February 2024).
- Hadar, Y.; Cohen-Arazi, E. Chemical Composition of the Edible Mushroom Pleurotus ostreatus Produced by Fermentation. Appl. Environ. Microbiol. 1986, 51, 1352–1354. [Google Scholar] [CrossRef] [PubMed]
- Tom-Quinn, R.A.; Okoroh, P.N.; Onuoha, S.C. Proximate Composition, Essential Heavy Metal Concentrations and Nutrient Density of the Mycelium and Fruiting Bodies of Organically Cultivated Pleurotus ostreatus. J. Appl. Life Sci. Int. 2021, 24, 44–52. [Google Scholar] [CrossRef]
- Mattila, P.; Salo-Väänänen, P.; Könkö, K.; Aro, H.; Jalava, T. Basic Composition and Amino Acid Contents of Mushrooms Cultivated in Finland. J. Agric. Food Chem. 2002, 50, 6419–6422. [Google Scholar] [CrossRef]
- Valenzuela-Cobos, J.D.; Guevara-Viejó, F.; Grijalva-Endara, A.; Vicente-Galindo, P.; Galindo-Villardón, P. Production and Evaluation of Pleurotus spp. Hybrids Cultivated on Ecuadorian Agro-Industrial Wastes: Using Multivariate Statistical Methods. Sustainability 2023, 15, 15546. [Google Scholar] [CrossRef]
- Manu-Tawiah, W.; Martin, A.M. Chemical composition of Pleurotus ostreatus mycelial biomass. Food Microbiol. 1987, 4, 303–310. [Google Scholar] [CrossRef]
- Vetter, J.; Rimóczi, I. Crude, digestible and indigestible fruit body proteins in oyster mushroom Pleurotus ostreatus. Z. Lebensm. Unters Forsch. 1993, 197, 427–428. [Google Scholar] [CrossRef]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, F.; Zhang, X.; Zhang, J. Carbohydrate changes during growth and fruiting in Pleurotus ostreatus. Fungal Biol. 2016, 120, 852–861. [Google Scholar] [CrossRef]
- Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Watkinson, S.C.; Burton, K.S.; Wood, D.A. Characteristics of intracellular peptidase and proteinase activities from the mycelium of a cord-forming wood decay fungus, Serpula lacrymans. Mycol. Res. 2001, 105, 698–704. [Google Scholar] [CrossRef]
- Palmieri, G.; Bianco, C.; Cennamo, G.; Giardina, P.; Marino, G.; Monti, M.; Sannia, G. Purification, Characterization, and Functional Role of a Novel Extracellular Protease from Pleurotus ostreatus. Appl. Environ. Microbiol. 2001, 67, 2754–2759. [Google Scholar] [CrossRef] [PubMed]
- Doré, J.; Perraud, M.; Dieryckx, C.; Kohler, A.; Morin, E.; Henrissat, B.; Lindquist, E.; Zimmermann, S.D.; Girard, V.; Kuo, A.; et al. Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis. New Phytol. 2015, 208, 1169–1187. [Google Scholar] [CrossRef] [PubMed]
- Krahe, N.-K.; Berger, R.G.; Kahlert, L.; Ersoy, F. Co-Oxidative Transformation of Piperine to Piperonal and 3,4-Methylenedioxycinnamaldehyde by a Lipoxygenase from Pleurotus sapidus. ChemBioChem 2021, 22, 2857–2861. [Google Scholar] [CrossRef]
- Hoang, L.A.T.; Nguyen, H.C.; Le, T.T.; Hoang, T.H.Q.; Pham, V.N.; Hoang, M.H.T.; Ngo, H.T.T.; Hong, D.D. Different fermentation strategies by Schizochytrium mangrovei strain pq6 to produce feedstock for exploitation of squalene and omega-3 fatty acids. J. Phycol. 2018, 54, 550–556. [Google Scholar] [CrossRef]
- Fan, K.W.; Aki, T.; Chen, F.; Jiang, Y. Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J. Microbiol. Biotechnol. 2010, 26, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, J.; Zhao, J.; Gao, Z.; Zhang, C.; Chen, M. Regulation of lipid accumulation in Schizochytrium. sp. ATCC 20888 in response to different nitrogen sources. Eur. J. Lipid Sci. Technol. 2017, 119, 1700025. [Google Scholar] [CrossRef]
- Nagano, N.; Taoka, Y.; Honda, D.; Hayashi, M. Optimization of culture conditions for growth and docosahexaenoic acid production by a marine thraustochytrid, Aurantiochytrium. limacinum. mh0186. J. Oleo. Sci. 2009, 58, 623–628. [Google Scholar] [CrossRef]
- Zhang, A.; Xie, Y.; He, Y.; Wang, W.; Sen, B.; Wang, G. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes. Bioresour. Technol. 2019, 287, 121415. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, Y.; Mbifile, M.D.; Li, C.; Yang, H.; Wang, W. Improvement of docosahexaenoic acid fermentation from Schizochytrium. sp. AB-610 by staged pH control based on cell morphological changes. Eng. Life Sci. 2017, 17, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Yokochi, T.; Higashihara, T.; Tanaka, S.; Yaguchi, T.; Honda, D. Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap Islands. J. Am. Oil Chem. Soc. 1996, 73, 1421–1426. [Google Scholar] [CrossRef]
- Chen, G.; Fan, K.-W.; Lu, F.-P.; Li, Q.; Aki, T.; Chen, F.; Jiang, Y. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. New Biotechnol. 2010, 27, 382–389. [Google Scholar] [CrossRef]
- Yen, S.-W.; Nagarajan, D.; Chen, W.-H.; Chang, J.-S. Enhanced astaxanthin production by Aurantiochytrium sp. CJ6 using sorghum distillery residue (SDR)-based growth medium and SDR-derived biochar carrier. Biochem. Eng. J. 2024, 203, 109185. [Google Scholar] [CrossRef]
Sample | Total Nitrogen (%) | Total Protein (%) (N × 4.38) | Free Amino Groups (mM) after Acid Hydrolysis |
---|---|---|---|
Fruiting body | 3.76 ± 0.01 | 16.47 ± 0.06 | 96.56 ± 1.63 |
Mycelium | 4.24 ± 0.04 *** | 18.57 ± 0.18 *** | 107.84 ± 0.44 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schütte, L.; Hausmann, K.; Schwarz, C.; Ersoy, F.; Berger, R.G. The Nitrogen Content in the Fruiting Body and Mycelium of Pleurotus Ostreatus and Its Utilization as a Medium Component in Thraustochytrid Fermentation. Bioengineering 2024, 11, 284. https://doi.org/10.3390/bioengineering11030284
Schütte L, Hausmann K, Schwarz C, Ersoy F, Berger RG. The Nitrogen Content in the Fruiting Body and Mycelium of Pleurotus Ostreatus and Its Utilization as a Medium Component in Thraustochytrid Fermentation. Bioengineering. 2024; 11(3):284. https://doi.org/10.3390/bioengineering11030284
Chicago/Turabian StyleSchütte, Lina, Katharina Hausmann, Christoph Schwarz, Franziska Ersoy, and Ralf G. Berger. 2024. "The Nitrogen Content in the Fruiting Body and Mycelium of Pleurotus Ostreatus and Its Utilization as a Medium Component in Thraustochytrid Fermentation" Bioengineering 11, no. 3: 284. https://doi.org/10.3390/bioengineering11030284
APA StyleSchütte, L., Hausmann, K., Schwarz, C., Ersoy, F., & Berger, R. G. (2024). The Nitrogen Content in the Fruiting Body and Mycelium of Pleurotus Ostreatus and Its Utilization as a Medium Component in Thraustochytrid Fermentation. Bioengineering, 11(3), 284. https://doi.org/10.3390/bioengineering11030284