Adaptive Network Model for Assisting People with Disabilities through Crowd Monitoring and Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diffusion Adaptation Modeling
2.1.1. Diffusion Adaptation
2.1.2. Motion Model
2.1.3. Motion Model with Variable Speed and Distance between Nodes
Algorithm 1 Adaptive Cooperative Crowd Modeling using ATC |
Require: , , |
for to do |
for to do |
Adaptation step: |
if then |
else |
end if |
Given , we obtain the next location vector of node k |
Combination step: |
end for |
end for |
2.2. Crowd Monitoring System
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pouw, C.A.S.; Toschi, F.; Schadewijk, F.; Corbetta, A. Monitoring physical distancing for crowd management: Real-time trajectory and group analysis. PLoS ONE 2020, 15, e0240963. [Google Scholar] [CrossRef]
- Bendali-Braham, M.; Weber, J.; Forestier, G.; Idoumghar, L.; Muller, P.A. Recent trends in crowd analysis: A review. Mach. Learn. Appl. 2021, 4, 100023. [Google Scholar]
- Ebrahimpour, Z.; Wan, W.; Cervantes, O.; Luo, T.; Ullah, H. Comparison of Main Approaches for Extracting Behavior Features from Crowd Flow Analysis. Isprs Int. J. Geo-Inf. 2019, 8, 440. [Google Scholar] [CrossRef]
- Elmannai, W.; Elleithy, K. Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 2017, 17, 565. [Google Scholar] [CrossRef]
- Shrestha, S.; Lu, D.; Tian, H.; Cao, Q.; Liu, J.; Rizzo, J.R.; Seiple, W.H.; Porfiri, M.; Fang, Y. Active crowd analysis for pandemic risk mitigation for blind or visually impaired persons. In Proceedings of the Computer Vision–ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; pp. 422–439. [Google Scholar]
- Mendoza-Silva, G.M.; Torres-Sospedra, J.; Huerta, J. A meta-review of indoor positioning systems. Sensors 2019, 19, 4507. [Google Scholar] [CrossRef]
- Obeidat, H.; Shuaieb, W.; Obeidat, O.; Abd-Alhameed, R. A review of indoor localization techniques and wireless technologies. Wirel. Pers. Commun. 2021, 119, 289–327. [Google Scholar]
- Kumar, S.A.; Vanualailai, J.; Prasad, A. Assistive technology: Autonomous wheelchair in obstacle-ridden environment. PeerJ Comput. Sci. 2021, 7, e725. [Google Scholar] [CrossRef]
- Ryu, H.Y.; Kwon, J.S.; Lim, J.H.; Kim, A.H.; Baek, S.J.; Kim, J.W. Development of an autonomous driving smart wheelchair for the physically weak. Appl. Sci. 2021, 12, 377. [Google Scholar] [CrossRef]
- Falcon-Caro, A.; Sanei, S. Cooperative Networking Approach to Assisting Blinds in a Crowd Using Air Trackers. In Proceedings of the 2022 4th International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM), Balaclava, Mauritius, 22–24 November 2022; pp. 1–5. [Google Scholar]
- Lopes, C.G.; Sayed, A.H. Incremental Adaptive Strategies Over Distributed Networks. IEEE Trans. Signal Process. 2007, 55, 4064–4077. [Google Scholar]
- Sayed, A.H. Chapter 9 - Diffusion Adaptation Over Networks. Acad. Press Libr. Signal Process. 2014, 3, 323–453. [Google Scholar]
- Cattivelli, F.S.; Sayed, A.H. Modeling bird flight formations using diffusion adaptation. IEEE Trans. Signal Process. 2011, 59, 2038–2051. [Google Scholar] [CrossRef]
- Tu, S.; Sayed, A.H. Cooperative prey herding based on diffusion adaptation. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 3752–3755. [Google Scholar]
- Falcon-Caro, A.; Sanei, S. Diffusion adaptation for crowd analysis. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18–19 November 2021; pp. 1–4. [Google Scholar]
- Leon, E.D.; Nabi, M. An Experimental Performance Evaluation of Bluetooth Mesh Technology for Monitoring Applications. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Zhuang, Y.; Zhang, C.; Huai, J.; Li, Y.; Chen, L.; Chen, R. Bluetooth Localization Technology: Principles, Applications, and Future Trends. IEEE Internet Things J. 2022, 9, 23506–23524. [Google Scholar] [CrossRef]
- Kiarashi, Y.; Saghafi, S.; Das, B.; Hegde, C.; Madala, V.S.K.; Nakum, A.; Singh, R.; Tweedy, R.; Doiron, M.; Rodriguez, A.D.; et al. Graph Trilateration for Indoor Localization in Sparsely Distributed Edge Computing Devices in Complex Environments Using Bluetooth Technology. Sensors 2023, 23, 9517. [Google Scholar] [CrossRef]
- Poulose, A.; Han, D.S. UWB Indoor Localization Using Deep Learning LSTM Networks. Appl. Sci. 2020, 10, 6290. [Google Scholar] [CrossRef]
- Monajemi, S.; Sanei, S.; Ong, S.H.; Sayed, A.H. Adaptive regularized diffusion adaptation over multitask networks. In Proceedings of the 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, USA, 17–20 September 2015; pp. 1–5. [Google Scholar]
- Monajemi, S.; Sanei, S.; Ong, S.H. Advances in bacteria motility modelling via diffusion adaptation. In Proceedings of the 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014; pp. 2335–2339. [Google Scholar]
- Zhao, X.; Sayed, A.H. Learning over social networks via diffusion adaptation. In Proceedings of the 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 4–7 November 2012; pp. 709–713. [Google Scholar]
- Monajemi, S.; Sanei, S.; Ong, S.H. Information reliability in complex multitask networks. Future Gener. Comput. Syst. 2018, 83, 485–495. [Google Scholar] [CrossRef]
- Monajemi, S.; Ensafi, S.; Lu, S.; Kassim, A.A.; Tan, C.L.; Sanei, S.; Ong, S.H. Classification of HEp-2 cells using distributed dictionary learning. In Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 8 August–2 September 2016; pp. 1163–1167. [Google Scholar]
- Monajemi, S.; Eftaxias, K.; Sanei, S.; Ong, S. An Informed Multitask Diffusion Adaptation Approach to Study Tremor in Parkinson’s Disease. IEEE J. Sel. Top. Signal Process. 2016, 10, 1306–1314. [Google Scholar] [CrossRef]
- Falcon-Caro, A.; Frincu, M.; Sanei, S. A Diffusion Adaptation Approach to model Brain Responses in an EEG-based Hyperscanning Study. In Proceedings of the 2023 IEEE Statistical Signal Processing Workshop (SSP), Hanoi, Vietnam, 2–5 July 2023; pp. 393–397. [Google Scholar]
- Cattivelli, F.S.; Sayed, A.H. Diffusion LMS Strategies for Distributed Estimation. IEEE Trans. Signal Process. 2010, 58, 1035–1048. [Google Scholar] [CrossRef]
- Tu, S.Y.; Sayed, A.H. Tracking behavior of mobile adaptive networks. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 698–702. [Google Scholar]
- Sayed, A.H. Adaptation, learning, and optimization over networks. In Foundations and Trends® in Machine Learning; Now Publishers Inc.: Hanover, MA, USA, 2014; Volume 7, pp. 311–801. [Google Scholar]
- Apple Inc. AirTag. Available online: https://www.apple.com/uk/airtag/ (accessed on 15 January 2024).
- Haskell-Dowland, P. Remember, Apple AirTags and ‘Find My’ App Only Work Because of a Vast, Largely Covert Tracking Network. The Conversation. 2021. Available online: https://theconversation.com/remember-apple-airtags-and-find-my-app-only-work-because-of-a-vast-largely-covert-tracking-network-160781/ (accessed on 15 January 2024).
- Tapu, R.; Mocanu, B.; Zaharia, T. Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognit. Lett. 2020, 137, 37–52. [Google Scholar]
- Patel, K.; Parmar, B. Assistive device using computer vision and image processing for visually impaired; review and current status. Disabil. Rehabil. Assist. Technol. 2022, 17, 290–297. [Google Scholar] [CrossRef]
- Khan, K.; Albattah, W.; Khan, R.U.; Qamar, A.M.; Nayab, D. Advances and Trends in Real Time Visual Crowd Analysis. Sensors 2020, 20, 5073. [Google Scholar] [CrossRef] [PubMed]
- Gebru, K.; Rapelli, M.; Rusca, R.; Casetti, C.; Chiasserini, C.F.; Giaccone, P. Edge-based passive crowd monitoring through WiFi Beacons. Comput. Commun. 2022, 192, 163–170. [Google Scholar] [CrossRef]
- Kim, S.; Guy, S.J.; Manocha, D.; Lin, M.C. Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Costa Mesa, CA, USA, 9–11 March 2012; pp. 55–62. [Google Scholar]
- Liu, Y.; Sun, C.; Bie, Y. Modeling unidirectional pedestrian movement: An investigation of diffusion behavior in the built environment. Math. Probl. Eng. 2015, 2015, 308261. [Google Scholar] [CrossRef]
- Yang, S.; Li, T.; Gong, X.; Peng, B.; Hu, J. A review on crowd simulation and modeling. Graph. Model. 2020, 111, 101081. [Google Scholar]
- Mobile Operating System Market Share in United States of America. StatCounter Global Stats. Available online: https://gs.statcounter.com/os-market-share/mobile/united-states-of-america (accessed on 1 March 2024).
- Coppens, D.; Shahid, A.; Lemey, S.; Van Herbruggen, B.; Marshall, C.; De Poorter, E. An Overview of UWB Standards and Organizations (IEEE 802.15.4, FiRa, Apple): Interoperability Aspects and Future Research Directions. IEEE Access 2022, 10, 70219–70241. [Google Scholar] [CrossRef]
- Dinh, T.M.T.; Duong, N.S.; Sandrasegaran, K. Smartphone-Based Indoor Positioning Using BLE iBeacon and Reliable Lightweight Fingerprint Map. IEEE Sens. J. 2020, 20, 10283–10294. [Google Scholar] [CrossRef]
i = 2 | i = 40 | i = 80 | i = 100 | i = 150 | i = 200 | |
---|---|---|---|---|---|---|
(m) | 5.47 | 3.31 | 2.36 | 2.03 | 3.32 | 5.75 |
(m/s) | 2.11 | 2.83 | 3.15 | 3.26 | 2.83 | 2.02 |
(m) | 4.57 | 4.63 | 3.99 | 3.68 | 2.13 | 2.53 |
(m/s) | 1.2 | 1.2 | 1.30 | 1.35 | 1.61 | 1.54 |
i = 2 | i = 12 | i = 20 | |
---|---|---|---|
(m) | 1.64 | 1.36 | 1.48 |
(m/s) | 2.88 | 3.26 | 2.02 |
(m) | 5.37 | 4.14 | 4.89 |
(m/s) | 2.70 | 0.98 | 1.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcon-Caro, A.; Peytchev, E.; Sanei, S. Adaptive Network Model for Assisting People with Disabilities through Crowd Monitoring and Control. Bioengineering 2024, 11, 283. https://doi.org/10.3390/bioengineering11030283
Falcon-Caro A, Peytchev E, Sanei S. Adaptive Network Model for Assisting People with Disabilities through Crowd Monitoring and Control. Bioengineering. 2024; 11(3):283. https://doi.org/10.3390/bioengineering11030283
Chicago/Turabian StyleFalcon-Caro, Alicia, Evtim Peytchev, and Saeid Sanei. 2024. "Adaptive Network Model for Assisting People with Disabilities through Crowd Monitoring and Control" Bioengineering 11, no. 3: 283. https://doi.org/10.3390/bioengineering11030283
APA StyleFalcon-Caro, A., Peytchev, E., & Sanei, S. (2024). Adaptive Network Model for Assisting People with Disabilities through Crowd Monitoring and Control. Bioengineering, 11(3), 283. https://doi.org/10.3390/bioengineering11030283