Investigation Methods for Vocal Onset—A Historical Perspective
Abstract
:1. Introduction
1.1. From Belief to Knowledge
1.2. General Technical Prerequisites
1.3. Laryngological Requirements
1.3.1. Basics
1.3.2. Advanced
1.4. Three-Dimensional Vocal Fold Oscillation
1.5. Dynamic MRI for Imaging Voice Physiological Processes
Author Contributions
Funding
Conflicts of Interest
References
- Lebacq, J.; DeJonckere, P.H. The dynamics of vocal onset. Biomed. Signal Process Control 2019, 49, 528–539. [Google Scholar] [CrossRef]
- DeJonckere, P.H.; Lebacq, J. The Physics of the Human Vocal Folds as a Biological Oscillator; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Garcia, M. Hints on Singing; Ascherberg & Co.: New York, NY, USA, 1894. [Google Scholar]
- Koike, Y. Experimental studies on vocal attack. Pract. Oto-Rhino-Laryngol. 1967, 60, 663–688. [Google Scholar] [CrossRef]
- Koster, O.; Marx, B.; Gemmar, P.; Hess, M.M.; Kunzel, H.J. Qualitative and quantitative analysis of voice onset by means of a multidimensional voice analysis system (MVAS) using high-speed imaging. J. Voice 1999, 13, 355–374. [Google Scholar] [CrossRef]
- Sundberg, J.; Bauer-Huppmann, J. When does a sung tone start? J. Voice 2007, 21, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Chacon, A.M.; Nguyen, D.D.; Holik, J.; Döllinger, M.; Arias-Vergara, T.; Madill, C.J. Vowel onset measures and their reliability, sensitivity and specificity: A systematic literature review. PLoS ONE 2024, 19, e0301786. [Google Scholar] [CrossRef]
- Peyligk, J. Compendium Philosophiae Naturalis; Melchior Lotter: Leipzig, Germany, 1499. [Google Scholar]
- von Leden, H. A Cultural History of the Larynx and Voice. In Professional Voice; Sataloff, R.T., Ed.; The Science and Art of Clinical Care; Plural Publishing Inc.: San Diego, CA, USA, 2005; pp. 9–88. [Google Scholar]
- Dodart, D. Meémoires sur les causes de la voix de l’homme et de ses diffeérens tons. In Histoire de l’Acadeémie Royale des Sciences; 1700; pp. 244–274. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k98115373.texteImage (accessed on 21 July 2024).
- Ferrein, A. De la formation de la voix de l’homme. In Histoire de l’Académie Royale des Sciences de l’Année; 1741; pp. 409–432. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k3539d/f649.item (accessed on 21 July 2024).
- Fordyce, G. An Attempt to improve the Evidence of Medicine. In Transactions of a Society for the Improvement of Medical and Chirurgical Knowledge; Johnson: London, UK, 1793; Available online: https://www.jameslindlibrary.org/fordyce-g-1793/ (accessed on 21 July 2024).
- Christiani Theophili Kratzenstein. Tentamen resolvendi problema ab Academia Scientiarum Imperiali Petropolitana ad annum 1780 publice propositum. In Typis Academia Scientarum: Petropoli; 1781; Available online: http://resolver.sub.uni-goettingen.de/purl?PPN59586435X (accessed on 21 July 2024).
- von Kempelen, W. Mechanismus der Menschlichen Sprache Nebst der Beschreibung Seiner Sprechenden Maschine; Degen: Vienna, Austria, 1791; Available online: https://www.deutschestextarchiv.de/book/view/kempelen_maschine_1791?p=11 (accessed on 21 July 2024).
- Wolf, R. Johann Nepomuk Mälzels Musikautomaten. In Die Musikmaschinen von Kaufmann, Mälzel und Robertson; Deutsches Museum: Munich, Germany, 2012; Available online: https://www.deutsches-museum.de/assets/Verlag/Download/Preprint/Preprint_005_2012.pdf (accessed on 21 July 2024).
- Stark, J.; Ericsdotter, C.; Lindblom, B.; Sundberg, J. The APEX model: From articulatory positions to sound. J. Acoust. Soc. Am. 1998, 104, 1820. [Google Scholar] [CrossRef]
- Sundberg, J. The KTH synthesis of singing. Adv. Cogn. Psychol. 2006, 2, 131–143. [Google Scholar] [CrossRef]
- Available online: https://www.guinnessworldrecords.com/world-records/79003-highest-vocal-note-by-a-male (accessed on 21 July 2024).
- Roget, P.M. Explanation of an optical desception in the appearance of the spokes of a wheel seen through vertical apertures. Phil Trans. R. Soc. Lond. 1825, 115, 131–140. [Google Scholar]
- Stampfer, S. Die Stroboscopischen Scheiben Oder Optischen Zauberscheiben: Deren Theorie und Wissenschaftliche Anwendung; Trenstsensky: Vienna, Austria; Leipzig, Germany, 1833. [Google Scholar]
- Volta, A. XVII. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P. R. S. Phil. Trans. R. Soc. 1800, 90, 403–431. [Google Scholar] [CrossRef]
- Available online: https://www.britannica.com/biography/Nicephore-Niepce (accessed on 21 July 2024).
- Lumière, L. The Lumière Cinematograph. J. Soc. Motion Pict. Eng. 1936, 27, 49. [Google Scholar]
- Martin, W.H. DeciBel—The New Name for the Transmission Unit. Bell Syst. Tech. J. 1929, 8, 1–2. [Google Scholar] [CrossRef]
- Röntgen, C.W. Ueber eine neue Art von Strahlen. (Vorläufige Mittheilung). In Aus den Sitzungsberichten der Würzburger Physik.-medic. Gesellschaft Würzburg; Stahel: Würzburg, Germany, 1895; pp. 137–147. Available online: http://posner.library.cmu.edu/Posner/books/pages.cgi?call=548_R77N_VOL._1&layout=vol0/part0/copy0&file=0004 (accessed on 21 July 2024).
- Lauterbur, P. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature 1973, 242, 190–191. [Google Scholar] [CrossRef]
- Garcia, M. Observations on the human voice. Proc. R. Soc. Lond. 1855, 7, 399–410. [Google Scholar] [CrossRef]
- Oertel, M.J. Über eine neue, laryngostroboscopische” Untersuchungsmethode des Kehlkopfs. Cent. Für. Die Med. Wiss. 1878, 16, 81–82. [Google Scholar]
- Musehold, A. Allgemeine Akustik und Mechanik des Menschlichen Stimmorgans; Springer: Berlin/Heidelberg, Germany, 1913. [Google Scholar]
- Beck, J.; Schönhärl, E. Die Bedeutung der Stroboskopie für die Diagnose der funktionellen Stimmstörungen. Arch. F. Ohren-Nasen-U. Kehlkopfheilkd. 1959, 175, 449–452. [Google Scholar] [CrossRef]
- Barth, V. Die Lupenstroboskopie. HNO 1977, 25, 35. [Google Scholar] [PubMed]
- Woo, P. Objective Measures of Stroboscopy and High-Speed Video. Adv. Otorhinolaryngol. 2020, 85, 25–44. [Google Scholar] [CrossRef] [PubMed]
- Orlikoff, R.F.; Deliyski, D.D.; Baken, R.J.; Watson, B.C. Validation of a glottographic measure of vocal attack. J. Voice 2009, 23, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Fransworth, D.M. High-Speed Motion pictures of human vocal cords. Bell Lab. Rec. 1940, 18, 203–208. [Google Scholar]
- Echternach, M.; Döllinger, M.; Sundberg, J.; Traser, L.; Richter, B. Vocal fold vibrations at high soprano fundamental frequencies. J. Acoust. Soc. Am. 2013, 133, EL82–EL187. [Google Scholar] [CrossRef]
- McDonnell, M.; Sundberg, J.; Westerlund, J.; Lindestad, P.Å.; Larsson, H. Vocal fold vibration and phonation start in aspirated, unaspirated, and staccato onset. J. Voice 2011, 25, 526–531. [Google Scholar] [CrossRef]
- Gómez, P.; Kist, A.M.; Schlegel, P.; Berry, D.A.; Chhetri, D.K.; Dürr, S.; Echternach, M.; Johnson, A.M.; Kniesburges, S.; Kunduk, M.; et al. BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation. Sci. Data 2020, 7, 186. [Google Scholar] [CrossRef]
- Kist, A.M.; Gomez, P.; Dubrovskiy, D.; Schlegel, P.; Kunduk, M.; Echternach, M.; Patel, R.; Semmler, M.; Bohr, C.; Durr, S.; et al. A Deep Learning Enhanced Novel Software Tool for Laryngeal Dynamics Analysis. J. Speech Lang. Hear. Res. 2021, 64, 1889–1903. [Google Scholar] [CrossRef]
- Lohscheller, J.; Eysholdt, U.; Toy, H.; Döllinger, M. Phonovibrography: Mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans. Med. Imaging 2008, 27, 300–309. [Google Scholar] [CrossRef]
- Lohscheller, J.; Eysholdt, U. Phonovibrogram visualization of entire vocal fold dynamics. Laryngoscope 2008, 118, 753–758. [Google Scholar] [CrossRef]
- Echternach, M.; Burk, F.; Köberlein, M.; Selamtzis, A.; Dollinger, M.; Burdumy, M.; Richter, B.; Herbst, C.T. Laryngeal evidence for the first and second passaggio in professionally trained sopranos. PLoS ONE 2017, 12, e0175865. [Google Scholar] [CrossRef] [PubMed]
- Echternach, M.; Burk, F.; Köberlein, M.; Döllinger, M.; Burdumy, M.; Richter, B.; Titze, I.R.; Elemans, C.P.H.; Herbst, C.T. Biomechanics of sound production in high-pitched classical singing. Sci. Rep. 2024, 14, 13132. [Google Scholar] [CrossRef]
- Kunduk, M.; Yan, Y.; McWhorter, A.J.; Bless, D. Investigation of voice initiation and voice offset characteristics with high-speed digital imaging. Logop. Phoniatr. Vocol 2006, 31, 139–144. [Google Scholar] [CrossRef]
- Woo, P. High-speed Imaging of Vocal Fold Vibration Onset Delay: Normal Versus Abnormal. J. Voice 2017, 31, 307–312. [Google Scholar] [CrossRef]
- Naghibolhosseini, M.; Zacharias, S.R.C.; Zenas, S.; Levesque, F.; Deliyski, D.D. Laryngeal Imaging Study of Glottal Attack/Offset Time in Adductor Spasmodic Dysphonia during Connected Speech. Appl. Sci. 2023, 13, 2979. [Google Scholar] [CrossRef] [PubMed]
- Woo, P. Simultaneous High-Speed Video Laryngoscopy and Acoustic Aerodynamic Recordings during Vocal Onset of Variable Sound Pressure Level: A Preliminary Study. Bioengineering 2024, 11, 334. [Google Scholar] [CrossRef]
- Darvish, M.; Kist, A.M. A Generative Method for a Laryngeal Biosignal. J. Voice 2024. online ahead of print. Available online: https://www.jvoice.org/article/S0892-1997(24)00019-5/fulltext (accessed on 21 July 2024). [CrossRef]
- Yousef, A.M.; Deliyski, D.D.; Zayernouri, M.; Zacharias, S.R.C.; Naghibolhosseini, M. Deep Learning-Based Analysis of Glottal Attack and Offset Times in Adductor Laryngeal Dystonia. J. Voice 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr. 1974, 26, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Semmler, M.; Kniesburges, S.; Parchent, J.; Jakubaß, B.; Zimmermann, M.; Bohr, C.; Schützenberger, A.; Döllinger, M. Endoscopic Laser-Based 3D Imaging for Functional Voice Diagnostics. Appl. Sci. 2017, 7, 600. [Google Scholar] [CrossRef]
- Titze, I.R. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 1988, 83, 1536–1552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Neubauer, J.; Berry, D.A. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. J. Acoust. Soc. Am. 2006, 120 Pt 1, 2841–2849. [Google Scholar] [CrossRef]
- Wurzbacher, T.; Schwarz, R.; Döllinger, M.; Hoppe, U.; Eysholdt, U.; Lohscheller, J. Model-based classification of nonstationary vocal fold vibrations. J. Acoust. Soc. Am. 2006, 120, 1012–1027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. J. Acoust. Soc. Am. 2016, 139, 1493. [Google Scholar] [CrossRef]
- Döllinger, M.; Berry, D.A. Computation of the three-dimensional medial surface dynamics of the vocal folds. J. Biomech. 2006, 39, 369–374. [Google Scholar] [CrossRef]
- Zhang, Z. Vocal Fold Vertical Thickness in Human Voice Production and Control: A Review. J. Voice 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production. J. Acoust. Soc. Am. 2023, 154, 2462–2475. [Google Scholar] [CrossRef] [PubMed]
- Echternach, M.; Markl, M.; Richter, B. Dynamic real-time magnetic resonance imaging for the analysis of voice physiology. Curr. Opin. Otolaryngol. Head. Neck Surg. 2012, 20, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Traser, L.; Özen, A.C.; Burk, F.; Burdumy, M.; Bock, M.; Richter, B.; Echternach, M. Respiratory dynamics in phonation and breathing—A real-time MRI study. Respir. Physiol. Neurobiol. 2017, 236, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Echternach, M.; Traser, L.; Richter, B. Vocal tract configurations in tenors’ passaggio in different vowel conditions—A real-time magnetic resonance imaging study. J. Voice 2014, 28, e1–e262. [Google Scholar] [CrossRef] [PubMed]
- Burdumy, M.; Traser, L.; Richter, B.; Echternach, M.; Korvink, J.G.; Hennig, J.; Zaitsev, M. Acceleration of MRI of the vocal tract provides additional insight into articulator modifications. J. Magn. Reson. Imaging 2015, 42, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Traser, L.; Birkholz, P.; Flügge, T.V.; Kamberger, R.; Burdumy, M.; Richter, B.; Korvink, J.G.; Echternach, M. Relevance of the Implementation of Teeth in Three-Dimensional Vocal Tract Models. J. Speech Lang. Hear. Res. 2017, 60, 2379–2393. [Google Scholar] [CrossRef]
- Birkholz, P.; Kürbis, S.; Stone, S.; Häsner, P.; Blandin, R.; Fleischer, M. Printable 3D vocal tract shapes from MRI data and their acoustic and aerodynamic properties. Sci. Data 2020, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Özen, A.C.; Ilbey, S.; Traser, L.; Echternach, M.; Richter, B.; Bock, M. Sub-millisecond 2D MRI of the vocal fold oscillation using single-point imaging with rapid encoding. MAGMA 2022, 35, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.S.; Jovanovic, N.; Sung, C.K.; Doyle, P.C. A Scoping Review of Artificial Intelligence Detection of Voice Pathology: Challenges and Opportunities. Otolaryngol. Head. Neck Surg. 2024, 171, 658–666. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, B.; Echternach, M.; Traser, L. Investigation Methods for Vocal Onset—A Historical Perspective. Bioengineering 2024, 11, 989. https://doi.org/10.3390/bioengineering11100989
Richter B, Echternach M, Traser L. Investigation Methods for Vocal Onset—A Historical Perspective. Bioengineering. 2024; 11(10):989. https://doi.org/10.3390/bioengineering11100989
Chicago/Turabian StyleRichter, Bernhard, Matthias Echternach, and Louisa Traser. 2024. "Investigation Methods for Vocal Onset—A Historical Perspective" Bioengineering 11, no. 10: 989. https://doi.org/10.3390/bioengineering11100989
APA StyleRichter, B., Echternach, M., & Traser, L. (2024). Investigation Methods for Vocal Onset—A Historical Perspective. Bioengineering, 11(10), 989. https://doi.org/10.3390/bioengineering11100989