Systematic Screening Study for the Selection of Proper Stabilizers to Produce Physically Stable Canagliflozin Nanosuspension by Wet Milling Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preformulation Studies with WSMM
2.2.1. Characterization of Nanosuspension during Formulation Development
Particle Size and Zeta Potential Measurement
Determination of Drug Content
2.3. Selection of Final Stabilizers by Statistical Design of Experiment (DoE)
2.3.1. Wettability of CFZ by Stabilizer Solutions
2.3.2. Saturation Solubility Measurements
2.3.3. Dynamic Viscosity Measurements
2.4. Statistical Data Analysis
2.5. Characterization of Optimized CFZ Nanosuspension
2.5.1. Particle Size, PDI and zeta Potential Measurements
2.5.2. Drug Content and Solubility of CFZ in Optimized Nanosuspension
2.5.3. In Vitro Dissolution Test Study
2.5.4. Differential Scanning Calorimetry (DSC) Analysis
2.5.5. X-ray Powder Diffraction (XRPD) Analysis
2.5.6. Stability Studies
3. Results and Discussion
3.1. Preformulation Studies
3.2. Selection of Final Stabilizers by Statistical Design of Experiment (DoE)
3.2.1. Wettability of CFZ by Stabilizer Solutions
3.2.2. Saturation Solubility
3.2.3. Dynamic Viscosity
3.3. Characterization of Optimized CFZ Nanosuspension
3.3.1. Drug Content and Solubility of CFZ in Optimized Nanosuspension
3.3.2. In Vitro Dissolution Study
3.3.3. Evaluation of the QbD Approach for Selecting Stabilizers in WSMM Process
3.3.4. DSC Studies
3.3.5. XRD Studies
3.3.6. Stability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Liu, M.; Zeng, Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int. J. Pharm. 2022, 626, 122043. [Google Scholar] [CrossRef]
- Anane-Adjei, A.B.; Jacobs, E.; Nash, S.C.; Askin, S.; Soundararajan, R.; Kyobula, M.; Booth, J.; Campbell, A. Amorphous solid dispersions: Utilization and challenges in preclinical drug development within AstraZeneca. Int. J. Pharm. 2022, 614, 121387. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jambhekar, S.S.; Breen, P.J. Drug dissolution: Significance of physicochemical properties and physiological conditions. Drug Discov. Today 2013, 18, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sun, G.; Guan, H.; Li, M.; Liu, Y.; Tian, B.; He, Z.; Fu, Q. Naringenin nanocrystals for improving anti- rheumatoid arthritis activity. Asian J. Pharm. Sci. 2021, 16, 816–825. [Google Scholar] [CrossRef]
- Mohammad, I.S.; Hu, H.; Yin, L.; He, W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int. J. Pharm. 2019, 562, 187–202. [Google Scholar] [CrossRef]
- Soisuwan, S.; Teeranachaideekul, V.; Wongrankpanich, A.; Langguth, P.; Junyaprasert, V.B. Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur. J. Pharm. Biopharm. 2019, 137, 68–76. [Google Scholar] [CrossRef]
- Junghanns, J.U.A.H.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008, 3, 295–309. [Google Scholar]
- Azad, M.; Moreno, J.; Bilgili, E.; Dave, R. Fast dissolution of poorly water soluble drugs from fluidized bed coated nano-composites: Impact of carrier size. Int. J. Pharm. 2016, 513, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Knieke, C.; Azad, M.A.; Dave, R.N.; Bilgili, E. A study of the physical stability of wet media-milled fenofibrate suspensions using dynamic equilibrium curves. Chem. Eng. Res. Des. 2013, 91, 1245–1258. [Google Scholar] [CrossRef]
- Li, M.; Ioannidis, N.; Gogos, C.; Bilgili, E. A comparative assessment of nanocomposites vs. amorphous solid dispersions prepared via nanoextrusion for drug dissolution enhancement. Eur. J. Pharm. Biopharm. 2017, 119, 68–80. [Google Scholar] [CrossRef]
- Liu, Q.; Mai, Y.; Gu, X.; Zhao, Y.; Di, X.; Ma, X.; Yang, J. A wet-milling method for the preparation of cilnidipine nanosuspension with enhanced dissolution and oral bioavailability. J. Drug Deliv. Sci. Technol. 2020, 55, 101371. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, S.; Gokhale, R.; Burgess, D.J. Physical stability of nanosuspensions: Investigation of the role of stabilizers on Ostwald ripening. Int. J. Pharm. 2011, 406, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.Y.; Park, C.H. Characteristics of polymers enabling nano-comminution of water-insoluble drugs. Int. J. Pharm. 2008, 355, 328–366. [Google Scholar] [CrossRef] [PubMed]
- Lestari, M.L.A.D.; Müller, R.H.; Möschwitzer, J.P. Systematic screening of different surface modifiers for the production of physically stable nanosuspensions. J. Pharm. Sci. 2015, 104, 1128–1140. [Google Scholar] [CrossRef]
- Bilgili, E.; Afolabi, A. A combined microhydrodynamics–polymer adsorption analysis for elucidation of the roles of stabi-lizers in wet stirred media milling. Int. J. Pharm. 2012, 439, 193–206. [Google Scholar] [CrossRef]
- Singhal, M.; Baumgartner, A.; Turunen, E.; van Been, B.; Hirvonen, J.; Peltonen, L. Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration. Int. J. Pharm. 2020, 587, 119636. [Google Scholar] [CrossRef]
- Shekhawat, P.; Pokharhar, V. Risk assessment and QbD based optimization of an Eprosartan mesylate nanosuspension: In-vitro characterization, PAMPA and in-vivo assessment. Int. J. Pharm. 2019, 567, 118415. [Google Scholar] [CrossRef]
- Mesut, B.; Pirincci-Tok, Y.; Alkan, B.; Vefai, M.K.; Al-Mohaya, M.; Özsoy, Y. Effect of mannitol particle size on melatonin dissolution and tablet properties using a quality by design framework. Dissolution Technol. 2023, 2, 12–21. [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline, Pharmaceutical Development Q8(R2); ICH: Geneva, Switzerland, 2009.
- Davidson, J.A.; Sloan, L. Fixed-Dose combination of canagliflozin and metformin for the treatment of type 2 diabetes: An overview. Adv. Ther. 2017, 34, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Elkinson, S.; Scott, L.J. Canagliflozin: First Global Approval. Drugs 2013, 73, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Francke, S.; Mamidi, R.N.V.S.; Solanki, B.; Scheers, E.; Jadwin, A.; Favis, R.; Devineni, D. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of ugt enzymes on the pharmacokinetics of canagliflozin in humans. J. Clin. Pharmacol. 2015, 55, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Devineni, D.; Polidori, D. Clinical pharmacokinetic, pharmacodynamic, and drug–drug interaction profile of canagliflozin, a sodium-glucose co-transporter 2 inhibitor. Clin. Pharmacokinet. 2015, 54, 1027–1041. [Google Scholar] [CrossRef]
- Assessment Report, Canagliflozin; EMA/718531/2013; Committee for Medicinal Products for Human Use (CHMP): Amsterdam, The Netherlands, 2013.
- Kaur, I.; Wakode, S.; Singh, H.P.; Manachanda, S. Development and validation of a stability-indicating reverse phase HPLC-PDA method for determination of canagliflozin in bulk and pharmaceutical dosage form. Pharm. Methods 2016, 7, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Praveen, K.M.; Pious, C.V.; Thomas, S.; Grohens, Y. Relevance of plasma processing on polymeric materials and interfaces. In Non-Thermal Plasma Technology for Polymeric Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–19. [Google Scholar]
- Yue, P.F.; Li, Y.; Wan, J.; Yang, M.; Zhu, W.F.; Wang, C.H. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int. J. Pharm. 2013, 454, 269–277. [Google Scholar] [CrossRef]
- Pardeike, J.; Müller, R.H. Nanosuspensions: A promising formulation for the new phospholipase A2 inhibitor PX-18. Int. J. Pharm. 2010, 391, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Nazlı, H.; Mesut, B.; Özsoy, Y. In vitro evaluation of a solid supersaturated self nanoemulsifying drug delivery system (Su-per-SNEDDS) of aprepitant for enhanced solubility. Pharmaceuticals 2021, 14, 1089. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Konnerth, C.; Schmidt, J.; Peukert, W. Effect of polymer species and concentration on the production of mefenamic acid nanoparticles by media milling. Eur. J. Pharm. Biopharm. 2016, 98, 98–107. [Google Scholar] [CrossRef]
- Verma, S.; Gokhale, R.; Burgess, D.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm. 2009, 380, 216–222. [Google Scholar] [CrossRef]
- FDA. Dissolution Methods Database. Available online: https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults.cfm (accessed on 29 May 2023).
- Shah, D.A.; Patel, M.; Murdande, S.B.; Dave, R.H. Influence of spray drying and dispersing agent on surface and dissolution properties of griseofulvin micro and nanocrystals. Drug Dev. Ind. Pharm. 2016, 42, 1842–1850. [Google Scholar] [CrossRef]
- Junno, J.I.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G.G.; Higaki, K.; Kimura, T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release 2006, 111, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Gajera, B.Y.; Shah, D.A.; Dave, R.H. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Int. J. Pharm. 2019, 559, 348–359. [Google Scholar] [CrossRef]
- Ahuja, B.K.; Jena, S.K.; Paidi, S.K.; Bagri, S.; Suresh, S. Formulation, optimization and in vitro–in vivo evaluation of febuxostat nanosuspension. Int. J. Pharm. 2015, 478, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Iwai, T.; Sunazuka, Y.; Chen, Z.; Kato, N.; Higashi, K.; Moribe, K. Effect of molecular weight of hypromellose on mucin diffusion and oral absorption behavior of fenofibrate nanocrystal. Int. J. Pharm. 2019, 564, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Y.; Cheng, M.; Liu, Q.; Liu, W.; Gao, C.; Feng, J.; Jin, Y.; Tu, L. Improving oral bioavailability of luteolin nanocrystals by surface modification of sodium dodecyl sulfate. AAPS PharmSciTech 2021, 22, 133. [Google Scholar] [CrossRef]
- Li, C.L.; Martini, L.G.; Ford, J.L.; Roberts, M. The use of hypromellose in oral drug delivery. J. Pharm. Pharmacol. 2005, 57, 533–546. [Google Scholar] [CrossRef]
- Maskova, E.; Kubova, K.; Raimi-Abraham, B.T.R.; Vllasliu, D.; Vohlidalova, E.; Turanek, J.; Masek, J. Hypromellose—A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release 2020, 324, 695–727. [Google Scholar] [CrossRef]
- Bahr, M.N.; Modi, D.; Patel, S.; Campbell, G.; Stockdale, G. Understanding the role of sodium lauryl sulfate on the biorelevant solubility of a combination of poorly water-soluble drugs using high throughput experimentation and mechanistic absorption modeling. J. Pharm. Pharm. Sci. 2019, 22, 221–246. [Google Scholar] [CrossRef] [Green Version]
- Aghrbi, I.; Fülop, V.; Jakab, G.; Kallai-Szabo, N.; Balogh, E.; Antal, I. Nanosuspension with improved saturated solubility and dissolution rate of cilostazol and effect of solidification on stability. J. Drug Deliv. Sci. Technol. 2021, 61, 102165. [Google Scholar] [CrossRef]
- Karakucuk, A.; Celebi, N.; Teksin, Z.S. Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A design of experiment approach. Eur. J. Pharm. Sci. 2016, 95, 111–121. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Zhang, H.; Gao, J.; Zheng, A. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv. 2021, 28, 19–36. [Google Scholar] [CrossRef]
- Cerderia, A.M.; Mazzotti, M.; Gander, B. Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. Int. J. Pharm. 2010, 396, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, I.; Bose, S.; Vippagunta, V.; Harmon, F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int. J. Pharm. 2011, 409, 260–268. [Google Scholar] [CrossRef]
- Elmowafy, M.; Shalaby, K.; Al-Sanea, M.M.; Hendawy, O.M.; Salama, A.; Ibrahim, M.F.; Ghoneim, M.M. Influence of stabilizer on the development of luteolin nanosuspension for cutaneous delivery: An in vitro and in vivo evaluation. Pharmaceutics 2021, 13, 1812. [Google Scholar] [CrossRef]
- Bilgili, E.; Rahman, M.; Palacios, D.; Arevalo, F. Impact of polymers on the aggregation of wet-milled itraconazole particles and their dissolution from spray-dried nanocomposites. Adv. Powder Technol. 2018, 29, 2941–2956. [Google Scholar] [CrossRef]
- Knieke, C.; Steinborn, C.; Romeis, S.; Peukert, W.; Breitung-Faes, S.; Kwade, A. Nanoparticle production with stirred-media mills: Opportunities and limits. Chem. Eng. Technol. 2010, 33, 1401–1411. [Google Scholar] [CrossRef]
- Kwade, A.; Schwedes, J. Wet Grinding in Stirred Media Mills. In Handbook of PowderTechnology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 12, ISSN 0167-3785. [Google Scholar]
- El Amri, N.; Roger, K. Polyvinylpyrrolidone (PVP) impurities drastically impact the outcome of nanoparticle syntheses. J. Colloid Interface Sci. 2020, 576, 435–443. [Google Scholar] [CrossRef]
- Wu, Y.; Levons, J.; Narang, A.S.; Raghavan, K.; Rao, V.M. Reactive impurities in excipients: Profiling, identification and mitigation of drug–excipient incompatibility. AAPS PharmSciTech 2011, 12, 1248–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, A.S.; Hegde, R.; Gadad, A.P.; Dandagi, P.M.; Masareddy, R.; Bolmal, U. Exploring the solvent-anti-solvent method of nanosuspension for enhanced oral bioavailability of lovastatin. Turk. J. Pharm. Sci. 2021, 18, 541–549. [Google Scholar] [CrossRef]
- Medarevic, D.; Djuris, J.; Ibric, S.; Mitric, M.; Kachrimanis, K. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int. J. Pharm. 2018, 540, 150–161. [Google Scholar] [CrossRef]
- Ahire, E.; Thakkar, S.; Darshanwad, M.; Misra, M. Parenteral nanosuspensions: A brief review from solubility enhancement to more novel and specific applications. Acta Pharm. Sin. B 2018, 8, 733–755. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Rong, X.; Laru, J.; Van Veen, B.; Kiesvaara, J.; Hirvonen, J.; Laaksonen, T.; Peltonen, L. Nanosuspensions of poorly soluble drugs: Preparation and development by wet milling. Int. J. Pharm. 2011, 411, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wulf, O.D.; Laru, J.; Heikkila, T.; Van Veen, B.; Kiesvaara, J.; Hirvonen, J.; Peltonen, L.; Laaksonen, T. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech 2013, 14, 748–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatta, R.G.; Rudragangaiah, S.; Kotappa, S.B.B. Formulation, optimization and evaluation of in-situ gelling liquid oral formulation of a novel antidiabetic drug: Canagliflozin. Indian J. Pharm. Educ. Res. 2019, 53, 121–128. [Google Scholar] [CrossRef] [Green Version]
Factors | Symbols | Range | |
---|---|---|---|
Low (−1) | High (+1) | ||
The concentration of primary Stabilizer (w/w%) | X1 | 1.25 | 5 |
Secondary/primary ratio | X2 | 0.16 | 4 |
Experiment Name | Variables | The Concentration of Primary Stabilizers (w/w%) | Secondary/Primary Ratio | ||
---|---|---|---|---|---|
1.25 | 5 | 0.16 | 0.4 | ||
N1 */N2 ** | HPMC E15 | * | ** | - | |
N3 */N4 ** | PVP K30 | * | ** | - | |
N5 */N6 ** | PVP/VA | * | ** | - | |
N7 */N8 * | SDS: HPMC | - | * | ** | |
N9 */N10 ** | Soluplus: HPMC | - | * | ** | |
N11 */N12 ** | P188: HPMC | - | * | ** | |
N13 */N14 ** | P407: HPMC | - | * | ** | |
N15 */N16 ** | T20: HPMC | - | * | ** | |
N17 */N18 ** | T80: HPMC | - | * | ** | |
N19 */N20 ** | SDS: PVP K30 | - | * | ** | |
N21 */N22* | Soluplus: PVP K30 | - | * | ** | |
N23 */N24 ** | P188: PVP K30 | - | * | ** | |
N25 */N26 ** | P407: PVP K30 | - | * | ** | |
N27 */N28 ** | T20: PVP K30 | - | * | ** | |
N29 */N30 ** | T80: PVP K30 | - | * | ** | |
N311 */N32 ** | SDS: PVP/VA | - | * | ** | |
N33 */N34 ** | Soluplus: PVP/VA | - | * | ** | |
N35 */N36 ** | P188: PVP/VA | - | * | ** | |
N37 */N38 ** | P407: PVP/VA | - | * | ** | |
N39 */N40 ** | T20: PVP/VA | - | * | ** | |
N41 */N42 ** | T80: PVP/VA | - | * | ** |
Sample Name | Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
Fresh sample | 204.6 ± 5.22 | 0.147 ± 0.50 | −16.4 ± 0.1 |
After 7 days at 22 °C | 226.1 ± 5.17 | 0.177 ± 0.26 | −18.4 ± 0.2 |
After 7 days at 4 °C | 231.6 ± 5.14 | 0.148 ± 0.40 | −19.3 ± 0.0 |
After 14 days at 22 °C | 235.8 ± 2.60 | 0.154 ± 0.21 | −16.7 ± 0.1 |
After 14 days at 4 °C | 225.8 ± 5.22 | 0.171 ± 0.49 | −17.9 ± 0.2 |
After 1 month at 22 °C | 248.7 ± 1.62 | 0.188 ± 0.26 | −16.9 ± 0.2 |
After 1 month at 4 °C | 241.4 ± 1.94 | 0.216 ± 0.13 | −17.9 ± 0.3 |
After 3 months at 22 °C | 261.3 ± 1.95 | 0.163 ± 0.29 | −14.1 ± 0.2 |
After 3 months at 4 °C | 261.5 ± 6.28 | 0.216 ± 0.35 | −17.8 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirincci Tok, Y.; Mesut, B.; Güngör, S.; Sarıkaya, A.O.; Aldeniz, E.E.; Dude, U.; Özsoy, Y. Systematic Screening Study for the Selection of Proper Stabilizers to Produce Physically Stable Canagliflozin Nanosuspension by Wet Milling Method. Bioengineering 2023, 10, 927. https://doi.org/10.3390/bioengineering10080927
Pirincci Tok Y, Mesut B, Güngör S, Sarıkaya AO, Aldeniz EE, Dude U, Özsoy Y. Systematic Screening Study for the Selection of Proper Stabilizers to Produce Physically Stable Canagliflozin Nanosuspension by Wet Milling Method. Bioengineering. 2023; 10(8):927. https://doi.org/10.3390/bioengineering10080927
Chicago/Turabian StylePirincci Tok, Yagmur, Burcu Mesut, Sevgi Güngör, Ali Osman Sarıkaya, Emre Erol Aldeniz, Udaya Dude, and Yıldız Özsoy. 2023. "Systematic Screening Study for the Selection of Proper Stabilizers to Produce Physically Stable Canagliflozin Nanosuspension by Wet Milling Method" Bioengineering 10, no. 8: 927. https://doi.org/10.3390/bioengineering10080927
APA StylePirincci Tok, Y., Mesut, B., Güngör, S., Sarıkaya, A. O., Aldeniz, E. E., Dude, U., & Özsoy, Y. (2023). Systematic Screening Study for the Selection of Proper Stabilizers to Produce Physically Stable Canagliflozin Nanosuspension by Wet Milling Method. Bioengineering, 10(8), 927. https://doi.org/10.3390/bioengineering10080927