Co-ERA-Net: Co-Supervision and Enhanced Region Attention for Accurate Segmentation in COVID-19 Chest Infection Images
Abstract
:1. Introduction
- We present that lung infections occur only within the lung region. It offers valuable inspiration for developing segmentation methodologies about diverse infections, incorporating lung region information into deep learning algorithms and dataset construction.
- We propose the new Co-ERA-Net for infection segmentation in the chest images. Current deep learning algorithms primarily focus on whole images, but co-supervision with lung region information from our proposed Co-ERA-Net can help the network better concentrate on high-probability infection areas within the lung region.
- We also introduce Enhanced Region Attention Module (ERAM) to connect lung region and infection flows for more effective information utilization. Our enhanced region attention fuses information from both lung and infection regions to generate region attention as a hint for the infection area.
- We carefully conduct a series of experiments to evaluate our models from different perspectives, including comparisons with state-of-the-art models, ablation studies to validate the effects of co-supervision and enhanced region attention, and real volume predictions to verify our model’s robustness in actual medical scenarios.
2. Related Work
2.1. Deep Learning for COVID-19 Infection Segmentation: Progress and Challenges
2.2. Co-Supervision from Multiple Targets
2.3. Attention Mechanism
2.4. Addressing Limitations: An Analysis of Gaps in Current Works
3. Method
3.1. Proposed Co-ERA-Net: Co-Supervised Infection Segmentation Utilizing Enhanced Region Attention
Algorithm 1 Co-Supervision Scheme and Enhanced Region Attention Working Steps |
Input: Input Slice X, Ground-Truth Infection Mask , Ground-Truth Lung Mask Output: Predicted Infection Mask , Predicted Lung Mask
|
3.2. Enhanced Region Attention Module (ERAM): Refining Region Attention
3.3. Loss Function: Supervising Infection Segmentation in CT Scans
4. Experimental Results and Discussion
4.1. Dataset Description: Utilizing Publicly Available COVID-19 Segmentation Datasets in CT and Chest X-ray
4.2. Implementation Details: Network Training and Configuration
4.3. Evaluation Metrics: Assessing Infection Segmentation Performance
4.4. Quantitative Evaluation: Comparing with State-of-the-Art Models
4.5. Qualitative Evaluation: Visualizing Prediction Results
4.6. Ablation Study: Examining Key Components
4.7. Evaluating Model Performance on Diverse Volumes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karthik, R.; Menaka, R.; Hariharan, M.; Kathiresan, G.S. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing. Et Rech. Biomed. 2021, 43, 486–510. [Google Scholar]
- Jun, M.G.; Cheng, G.; Yixin, W.; Xingle, A.; Jiantao, G.; Ziqi, Y.; Minqing, Z.; Xin, L.; Xueyuan, D.; Shucheng, C.; et al. COVID-19 CT Lung and Infection Segmentation Dataset. 2020. Available online: https://zenodo.org/record/3757476 (accessed on 1 July 2023).
- MedSeg; Jenssen, H.B.; Sakinis, T. MedSeg Covid Dataset 2. 2021. Available online: https://figshare.com/articles/dataset/Covid_Dataset_2/13521509/2 (accessed on 1 July 2023).
- Degerli, A.; Ahishali, M.; Yamaç, M.; Kiranyaz, S.; Chowdhury, M.E.H.; Hameed, K.; Hamid, T.; Mazhar, R.; Gabbouj, M. COVID-19 infection map generation and detection from chest X-ray images. Health Inf. Sci. Syst. 2020, 9, 15. [Google Scholar]
- Tahir, A.M.; Chowdhury, M.E.H.; Khandakar, A.; Rahman, T.; Qiblawey, Y.; Khurshid, U.; Kiranyaz, S.; Ibtehaz, N.; Rahman, M.S.; Al-Madeed, S.; et al. COVID-19 infection localization and severity grading from chest X-ray images. Comput. Biol. Med. 2021, 139, 105002. [Google Scholar] [PubMed]
- Ma, J.; Wang, Y.; An, X.; Ge, C.; Yu, Z.; Chen, J.; Zhu, Q.; Dong, G.; He, J.; He, Z.; et al. Towards Data-Efficient Learning: A Benchmark for COVID-19 CT Lung and Infection Segmentation. Med. Phys. 2020, 48, 1197–1210. [Google Scholar]
- Fan, D.P.; Zhou, T.; Ji, G.P.; Zhou, Y.; Chen, G.; Fu, H.; Shen, J.; Shao, L. Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE Trans. Med. Imaging 2020, 39, 2626–2637. [Google Scholar]
- Li, Z.; Zhao, S.; Chen, Y.; Luo, F.; Kang, Z.; Cai, S.J.; Zhao, W.; Liu, J.; Zhao, D.; Li, Y. A deep-learning-based framework for severity assessment of COVID-19 with CT images. Expert Syst. Appl. 2021, 185, 115616. [Google Scholar]
- Wang, G.; Liu, X.; Li, C.; Xu, Z.; Ruan, J.; Zhu, H.; Meng, T.; Li, K.; Huang, N.; Zhang, S. A Noise-Robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions From CT Images. IEEE Trans. Med. Imaging 2020, 39, 2653–2663. [Google Scholar]
- Qiu, Y.; Liu, Y.; Xu, J. MiniSeg: An Extremely Minimum Network for Efficient COVID-19 Segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Hu, H.; Shen, L.; Guan, Q.; Li, X.; Zhou, Q.; Ruan, S. Deep co-supervision and attention fusion strategy for automatic COVID-19 lung infection segmentation on CT images. Pattern Recognit. 2021, 124, 108452. [Google Scholar]
- Paluru, N.; Dayal, A.; Jenssen, H.B.; Sakinis, T.; Cenkeramaddi, L.R.; Prakash, J.; Yalavarthy, P.K. Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 932–946. [Google Scholar]
- Cong, R.; Yang, H.; Jiang, Q.; Gao, W.; Li, H.; Wang, C.C.; Zhao, Y.; Kwong, S.T.W. BCS-Net: Boundary, Context, and Semantic for Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar]
- Gao, K.; Su, J.; Jiang, Z.; Zeng, L.; Feng, Z.; Shen, H.; Rong, P.; Xu, X.; Qin, J.; Yang, Y.; et al. Dual-branch combination network (DCN): Towards accurate diagnosis and lesion segmentation of COVID-19 using CT images. Med. Image Anal. 2020, 67, 101836. [Google Scholar]
- Joshi, A.; Khan, M.S.; Soomro, S.; Niaz, A.; Han, B.S.; Choi, K.N. SRIS: Saliency-Based Region Detection and Image Segmentation of COVID-19 Infected Cases. IEEE Access 2020, 8, 190487–190503. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.C.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention; International Conference on Machine Learning: Honolulu, HI, USA, 2015. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Shen, D.; Ji, Y.; Li, P.; Wang, Y.; Lin, D. RANet: Region Attention Network for Semantic Segmentation. Adv. Neural Inf. Process. Syst. 2020, 33, 13927–13938. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.J.; Heinrich, M.P.; Misawa, K.; Mori, K.; McDonagh, S.G.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Granada, Spain, 20 September 2018; Volume 11045, pp. 3–11. [Google Scholar]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.; Wu, J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Álvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Jha, D.; Riegler, M.; Johansen, D.; Halvorsen, P.; Johansen, H.D. DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; pp. 558–564. [Google Scholar]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar]
- Feng, S.; Zhao, H.; Shi, F.; Cheng, X.; Wang, M.; Ma, Y.; Xiang, D.; Zhu, W.; Chen, X. CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation. IEEE Trans. Med. Imaging 2020, 39, 3008–3018. [Google Scholar] [PubMed]
- Valanarasu, J.M.J.; Oza, P.; Hacihaliloglu, I.; Patel, V.M. Medical Transformer: Gated Axial-Attention for Medical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 18–22 September 2021. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to Attend: Convolutional Triplet Attention Module. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 3138–3147. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
- Fan, D.P.; Ji, G.P.; Zhou, T.; Chen, G.; Fu, H.; Shen, J.; Shao, L. PraNet: Parallel Reverse Attention Network for Polyp Segmentation. arXiv 2020, arXiv:2006.11392. [Google Scholar]
- Sinha, A.; Dolz, J. Multi-Scale Self-Guided Attention for Medical Image Segmentation. IEEE J. Biomed. Health Inform. 2019, 25, 121–130. [Google Scholar]
- Ying, X.; Guo, H.; Ma, K.; Wu, J.; Weng, Z.; Zheng, Y. X2CT-GAN: Reconstructing CT From Biplanar X-rays With Generative Adversarial Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 10611–10620. [Google Scholar]
Author | Network | Features | Pros | Cons |
---|---|---|---|---|
Fan et al. [7] | Inf-Net | • Aggregating features from high-level layers using a parallel partial decoder (PPD) • Recurrent reverse attention (RA) modules • Edge-attention guidance • Semi-supervised learning strategy. | • Boundary identification based on reverse attention and edge constraint guidance. • Semi-supervised learning to overcome the shortage of labeled data. | • Accuracy drop for non-infected slices. • Two-step strategy for multi-class labeling resulted in sub-optimal learning performance. |
Wang et al. [9] | COPLE-Net | • Noise-robust loss • Adaptive self-ensembling framework with exponential moving average (EMA) | • Noise-robust dice loss Function to handle noisy annotations during the training process. • Exponential moving average (EMA) teacher model to guide a standard student model, enhancing the model’s robustness against noisy labels. | • The performance under a wider range of noise levels have not been explored yet. • It lacks an investigation into the network’s performance under various noise levels |
Qiu et al. [10] | MiniSeg | • Attentive hierarchical spatial pyramid • Extremely minimum network | • Attentive hierarchical spatial pyramid improves the representation capabilities in lightweight multi-scale learning. • Extremely minimum network complexity makes it suitable for practical implementation in resource-constrained scenarios. | • Extremely low complexity of the network limited the generalizability through different datasets. |
Hu et al. [11] | Deep collaborative supervision network | • Deep collaborative supervision scheme • Auxiliary semantic supervised module • Attention fusion module • Edge supervised module | • Deep collaborative supervision scheme enhances supervised information of different levels and fuses different scale features maps. • Edge spervised module allows the model to capture rich spatial information at various scales. | • Limited severity estimation. It is not sufficient for estimating the severity of infected COVID-19. • Simultaneously applying the co-supervision scheme in both the down-sampling and up-sampling paths leads to decreased segmentation performance. |
Paluru et al. [12] | AnamNet | • Apply lung extraction before infection segmentation • Fully convolutional anamorphic depth block • Adapted label weighting scheme | • Apply lung extraction before infection segmentation enhances the efficiency to find out infection. • Fully convolutional anamorphic depth block enabled efficient gradient flow in the network. | • The network’s limitation lies in its restriction to 2D chest CT images. • It shows inherent bias towards the peripheral part of the lung in its segmentation. |
Cong et al. [13] | BSNet | • End-to-end boundary guided semantic learning • Dual-branch semantic enhancement • Mirror-symmetric boundary guidance | • Boundary-guided semantic learning leverages boundary guidance and semantic relations to capture infection areas. • Dual-branch semantic enhancement model semantic relations, enhancing the feature learning process. • Mirror-symmetric boundary guidance ensuring complementary and sufficiency of feature learning. | • It faces difficulty in segmenting COVID-19 infections due to the scattered nature of infected regions over the chest slice. |
Author | Dataset | Imaging Modality | Image Bits | Number of Total Slices | Number of Slices with Infection | Data Split |
---|---|---|---|---|---|---|
Ma et al. [2] | Zenodo 20P | CT | 8 bit | 3520 | 1844 | Train: 1844 |
MedSeg et al. [3] | Radiopaedia 9P | CT | 8 bit | 829 | 373 | Test: 373 |
Train: 1864 | ||||||
Tahir et al. [5] | COVID-QU-Ex Dataset | X-ray | 8 bit | 5826 | 2913 | Test: 583 |
Validation: 466 |
Network | Network Parameters | FLOPs | Training Time (Hours) | Inference Time (Seconds) |
---|---|---|---|---|
UNet Family | ||||
Attention UNet [21] | 9.16 M | 34.86 G | 17.81 | 0.1628 |
UNet [22] | 39.39 M | 80.45 G | 22.99 | 0.2118 |
UNet++ [23] | 47.17 M | 199.69 G | 43.11 | 0.5949 |
UNet+++ [24] | 26.97 M | 199.67 G | 44.12 | 0.7044 |
General Segmentation Network in Natural | ||||
FCN [25] | 18.64 M | 25.51 G | 9.54 | 0.0880 |
Deeplab V3 [26] | 59.33 M | 22.18 G | 8.74 | 0.0798 |
PSPNet [27] | 49.06 M | 48.56 G | 16.64 | 0.1528 |
SegFormer [28] | 7.71 M | 20.15 G | 20.48 | 0.1863 |
Medical Segmentation Network | ||||
Double UNet [29] | 97.58 M | 211.78 G | 35.94 | 0.4263 |
CE-Net [30] | 29.00 M | 8.89 G | 5.51 | 0.0503 |
CPFNet [31] | 30.65 M | 8.03 G | 7.85 | 0.0727 |
Medical-Transformer [32] | 1.37 M | 2.40 G | 56.50 | 0.7166 |
State-of-the-Art Infection Segmentation Network | ||||
Inf-Net [7] | 31.07 M | 7.36 G | 9.40 | 0.0853 |
COPLE-Net [9] | 10.52 M | 11.18 G | 6.80 | 0.0626 |
MiniSeg [10] | 0.08 M | 0.12 G | 3.00 | 0.0274 |
Deep Collaborative Supervision Network [11] | 29.18 M | 48.94 G | 2.82 | 0.0261 |
AnamNet [12] | 4.63 M | 25.402 G | 2.54 | 0.0232 |
BSNet [13] | 43.98 M | 45.75 G | 1.69 | 0.0156 |
Co-ERA-Net (Ours) | 70.37 M | 20.49 G | 1.35 | 0.0125 |
Network | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | |
UNet Family | |||||||||
Attention UNet [21] | 0.5598 | 0.1794 | 0.7456 | 0.1628 | 0.0071 | 0.0076 | 0.7653 | 0.7059 | 0.1640 |
UNet [22] | 0.5634 | 0.1712 | 0.7401 | 0.1608 | 0.0074 | 0.0080 | 0.7601 | 0.7023 | 0.1644 |
UNet++ [23] | 0.5455 | 0.1744 | 0.7334 | 0.1663 | 0.0074 | 0.0072 | 0.7578 | 0.6837 | 0.1692 |
UNet+++ [24] | 0.5612 | 0.1755 | 0.7407 | 0.1638 | 0.0072 | 0.0073 | 0.7712 | 0.6939 | 0.1592 |
General Segmentation Network in Natural | |||||||||
FCN [25] | 0.5457 | 0.1740 | 0.7358 | 0.1582 | 0.0075 | 0.0076 | 0.7581 | 0.6832 | 0.1532 |
Deeplab V3 [26] | 0.5425 | 0.1726 | 0.7364 | 0.1668 | 0.0073 | 0.0076 | 0.7688 | 0.6903 | 0.1680 |
PSPNet [27] | 0.5418 | 0.1711 | 0.7330 | 0.1650 | 0.0076 | 0.0078 | 0.7488 | 0.6858 | 0.1720 |
SegFormer [28] | 0.5568 | 0.1739 | 0.7380 | 0.1636 | 0.0074 | 0.0074 | 0.7447 | 0.6860 | 0.1711 |
Medical Segmentation Network | |||||||||
Double UNet [29] | 0.5464 | 0.1839 | 0.7200 | 0.1842 | 0.0075 | 0.0070 | 0.7137 | 0.6655 | 0.1915 |
CE-Net [30] | 0.5581 | 0.1769 | 0.7379 | 0.1665 | 0.0072 | 0.0072 | 0.7422 | 0.6870 | 0.1737 |
CPFNet [31] | 0.5656 | 0.1743 | 0.7420 | 0.1655 | 0.0071 | 0.0073 | 0.7658 | 0.6951 | 0.1606 |
Medical-Transformer [32] | 0.5807 | 0.1702 | 0.7348 | 0.1529 | 0.0076 | 0.0081 | 0.7613 | 0.7030 | 0.1719 |
State-of-the-Art Infection Segmentation Network | |||||||||
Inf-Net [7] | 0.5201 | 0.1754 | 0.7244 | 0.1740 | 0.0079 | 0.0078 | 0.7339 | 0.6662 | 0.1790 |
COPLE-Net [9] | 0.5630 | 0.1636 | 0.7522 | 0.1554 | 0.0067 | 0.0066 | 0.7724 | 0.7077 | 0.1545 |
MiniSeg [10] | 0.5240 | 0.1919 | 0.6967 | 0.1699 | 0.0080 | 0.0079 | 0.7568 | 0.6862 | 0.1570 |
Deep Collaborative Supervision Network [11] | 0.5992 | 0.1809 | 0.6759 | 0.1546 | 0.0079 | 0.0080 | 0.7725 | 0.6872 | 0.1545 |
AnamNet [12] | 0.5668 | 0.1723 | 0.7506 | 0.1605 | 0.0068 | 0.0069 | 0.7706 | 0.7082 | 0.1738 |
BSNet [13] | 0.5391 | 0.1726 | 0.7302 | 0.1681 | 0.0076 | 0.0077 | 0.7497 | 0.6766 | 0.1792 |
Co-ERA-Net (Ours) | 0.6553 | 0.1517 | 0.7945 | 0.1435 | 0.0050 | 0.0054 | 0.8373 | 0.7984 | 0.1325 |
Network | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | |
UNet Family | |||||||||
Attention UNet [21] | 0.6192 | 0.2307 | 0.7453 | 0.2309 | 0.0499 | 0.0341 | 0.7737 | 0.7299 | 0.2193 |
UNet [22] | 0.5758 | 0.2183 | 0.7004 | 0.1989 | 0.0588 | 0.0364 | 0.7424 | 0.7078 | 0.2157 |
UNet++ [23] | 0.6276 | 0.2229 | 0.7377 | 0.1997 | 0.0489 | 0.0344 | 0.7684 | 0.7437 | 0.2115 |
UNet+++ [24] | 0.6299 | 0.2235 | 0.7377 | 0.1932 | 0.0496 | 0.0333 | 0.7738 | 0.7419 | 0.2092 |
General Segmentation Network in Natural | |||||||||
FCN [25] | 0.6515 | 0.2328 | 0.7541 | 0.2082 | 0.0461 | 0.0368 | 0.7851 | 0.7611 | 0.2181 |
Deeplab V3 [26] | 0.6144 | 0.2335 | 0.7260 | 0.2057 | 0.0529 | 0.0362 | 0.7719 | 0.7248 | 0.2230 |
PSPNet [27] | 0.6338 | 0.2294 | 0.7440 | 0.1988 | 0.0487 | 0.0370 | 0.7902 | 0.7453 | 0.2136 |
SegFormer [28] | 0.5962 | 0.2243 | 0.7046 | 0.2033 | 0.0586 | 0.0430 | 0.7621 | 0.7216 | 0.2167 |
Medical Segmentation Network | |||||||||
Double UNet [29] | 0.6581 | 0.2352 | 0.7673 | 0.2093 | 0.0439 | 0.0350 | 0.7771 | 0.7571 | 0.2246 |
CE-Net [30] | 0.6538 | 0.2372 | 0.7566 | 0.2111 | 0.0455 | 0.0352 | 0.7743 | 0.7526 | 0.2245 |
CPFNet [31] | 0.6579 | 0.2398 | 0.7547 | 0.2159 | 0.0424 | 0.0331 | 0.7913 | 0.7617 | 0.2215 |
Medical Transformer [32] | 0.5828 | 0.2506 | 0.6994 | 0.2377 | 0.0565 | 0.0431 | 0.7049 | 0.7021 | 0.2426 |
State-of-the-Art Infection Segmentation Network | |||||||||
Inf-Net [7] | 0.6451 | 0.2365 | 0.7516 | 0.2399 | 0.0418 | 0.0386 | 0.7942 | 0.7630 | 0.2368 |
COPLE-Net [9] | 0.6544 | 0.2308 | 0.7628 | 0.2123 | 0.0423 | 0.0354 | 0.7935 | 0.7632 | 0.2148 |
MiniSeg [10] | 0.5841 | 0.2344 | 0.7092 | 0.2231 | 0.0568 | 0.0386 | 0.7592 | 0.7079 | 0.2353 |
Deep Collaborative Supervision Network [11] | 0.6329 | 0.2368 | 0.6456 | 0.1984 | 0.0656 | 0.0434 | 0.7809 | 0.6692 | 0.1967 |
AnamNet [12] | 0.6282 | 0.2311 | 0.7358 | 0.2109 | 0.0495 | 0.0348 | 0.7637 | 0.7386 | 0.2230 |
BSNet [13] | 0.6683 | 0.2370 | 0.7652 | 0.2163 | 0.0421 | 0.0363 | 0.7879 | 0.7680 | 0.2219 |
Co-ERA-Net (Ours) | 0.6736 | 0.2317 | 0.7711 | 0.2094 | 0.0411 | 0.0336 | 0.7989 | 0.7683 | 0.2144 |
Network | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | |
UNet Family | |||||||||
Attention UNet [21] | 0.6436 | 0.2212 | 0.7687 | 0.1876 | 0.0457 | 0.0334 | 0.7940 | 0.7530 | 0.2040 |
UNet [22] | 0.5948 | 0.2089 | 0.7153 | 0.1863 | 0.0557 | 0.0321 | 0.7583 | 0.7250 | 0.2013 |
UNet++ [23] | 0.6499 | 0.2149 | 0.7570 | 0.1852 | 0.0451 | 0.0304 | 0.7863 | 0.7636 | 0.1920 |
UNet+++ [24] | 0.6528 | 0.2099 | 0.7583 | 0.1740 | 0.0472 | 0.0305 | 0.7918 | 0.7617 | 0.1902 |
General Segmentation Network in Natural | |||||||||
FCN [25] | 0.6665 | 0.2323 | 0.7650 | 0.2108 | 0.0427 | 0.0335 | 0.7910 | 0.7696 | 0.2039 |
Deeplab V3 [26] | 0.6234 | 0.2291 | 0.7388 | 0.1937 | 0.0517 | 0.0349 | 0.7817 | 0.7324 | 0.2122 |
PSPNet [27] | 0.6549 | 0.2200 | 0.7656 | 0.1859 | 0.0455 | 0.0339 | 0.8027 | 0.7633 | 0.1997 |
SegFormer [28] | 0.6160 | 0.2205 | 0.7200 | 0.2020 | 0.0547 | 0.0390 | 0.7706 | 0.7341 | 0.2128 |
Medical Segmentation Network | |||||||||
Double UNet [29] | 0.6713 | 0.2276 | 0.7808 | 0.2014 | 0.0416 | 0.0354 | 0.7891 | 0.7686 | 0.2143 |
CE-Net [30] | 0.6694 | 0.2281 | 0.7701 | 0.2021 | 0.0425 | 0.0334 | 0.7888 | 0.7652 | 0.2125 |
CPFNet [31] | 0.6719 | 0.2352 | 0.7635 | 0.2137 | 0.0406 | 0.0317 | 0.8025 | 0.7755 | 0.2095 |
Medical Transformer [32] | 0.5925 | 0.2466 | 0.7090 | 0.2303 | 0.0563 | 0.0472 | 0.7128 | 0.7100 | 0.2298 |
State-of-the-Art Infection Segmentation Network | |||||||||
Inf-Net [7] | 0.6574 | 0.2368 | 0.7595 | 0.2462 | 0.0401 | 0.0301 | 0.8060 | 0.7676 | 0.2400 |
COPLE-Net [9] | 0.6662 | 0.2233 | 0.7711 | 0.2066 | 0.0404 | 0.0294 | 0.8015 | 0.7723 | 0.1902 |
MiniSeg [10] | 0.5960 | 0.2226 | 0.7195 | 0.2032 | 0.0554 | 0.0369 | 0.7712 | 0.7197 | 0.2154 |
Deep Collaborative Supervision Network [11] | 0.6472 | 0.2389 | 0.7162 | 0.2238 | 0.0501 | 0.0348 | 0.7903 | 0.7439 | 0.2018 |
AnamNet [12] | 0.6420 | 0.2230 | 0.7484 | 0.1995 | 0.0475 | 0.0319 | 0.7760 | 0.7511 | 0.2093 |
BSNet [13] | 0.6710 | 0.2304 | 0.7779 | 0.2073 | 0.0404 | 0.0277 | 0.8050 | 0.7602 | 0.1868 |
Co-ERA-Net (Ours) | 0.6893 | 0.2329 | 0.7823 | 0.2170 | 0.0389 | 0.0308 | 0.8085 | 0.7756 | 0.2186 |
Network | Lung Region | Enhanced Region Attention | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Baseline | 0.5094 | 0.1686 | 0.6521 | 0.1815 | 0.0099 | 0.0117 | 0.6866 | 0.6500 | 0.1796 | |||
Baseline | ✔ | 0.5512 | 0.1783 | 0.7262 | 0.1751 | 0.0077 | 0.0080 | 0.7485 | 0.6862 | 0.7485 | ||
Co-ERA-Net | ✔ | ✔ | 0.6553 | 0.1517 | 0.7945 | 0.1435 | 0.0050 | 0.0054 | 0.8373 | 0.7984 | 0.1325 | |
Network | Multi-Scale | BCE Loss | Hybird Loss | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Co-ERA-Net | ✔ | 0.5096 | 0.1728 | 0.7211 | 0.1696 | 0.0078 | 0.0077 | 0.7589 | 0.6732 | 0.1797 | ||
Co-ERA-Net | ✔ | 0.5665 | 0.1729 | 0.7471 | 0.1622 | 0.0071 | 0.0073 | 0.7650 | 0.7020 | 0.1748 | ||
Co-ERA-Net | ✔ | ✔ | 0.6011 | 0.1794 | 0.7481 | 0.1723 | 0.0073 | 0.0086 | 0.7708 | 0.7196 | 0.1794 | |
Co-ERA-Net | ✔ | ✔ | 0.6553 | 0.1517 | 0.7945 | 0.1435 | 0.0050 | 0.0054 | 0.8373 | 0.7984 | 0.1325 | |
Network | Lung Region | Attention Type | Work Type | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Baseline | ✔ | Convolution Block Attention Module [19] | With Blocks | 0.5550 | 0.1745 | 0.7401 | 0.1673 | 0.0070 | 0.0070 | 0.7643 | 0.6959 | 0.1699 |
Baseline | ✔ | Squeeze-Excitation Attention [33] | With Blocks | 0.5615 | 0.1765 | 0.7400 | 0.1670 | 0.0070 | 0.0070 | 0.7615 | 0.6974 | 0.1708 |
Baseline | ✔ | Triplet Attention [34] | With Blocks | 0.5618 | 0.1768 | 0.7417 | 0.1651 | 0.0070 | 0.0069 | 0.7641 | 0.7004 | 0.1697 |
Baseline | ✔ | Pyramid Attention [35] | Independent | 0.4768 | 0.1588 | 0.7045 | 0.1645 | 0.0085 | 0.0086 | 0.7429 | 0.6556 | 0.1653 |
Baseline | ✔ | Parallel Reverse Attention [36] | Independent | 0.4901 | 0.1681 | 0.7178 | 0.1682 | 0.0082 | 0.0082 | 0.7547 | 0.6638 | 0.1664 |
Baseline | ✔ | Multi-scale Self-Guided Attention [37] | Independent | 0.5583 | 0.1788 | 0.7395 | 0.1668 | 0.0069 | 0.0072 | 0.7749 | 0.7097 | 0.1617 |
Co-ERA-Net | ✔ | Enhanced Region Attention | Independent | 0.6553 | 0.1517 | 0.7945 | 0.1435 | 0.0050 | 0.0054 | 0.8373 | 0.7984 | 0.1325 |
Network | Lung Region | Enhanced Region Attention | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Baseline | 0.6446 | 0.2431 | 0.7488 | 0.2267 | 0.0428 | 0.0358 | 0.7833 | 0.7594 | 0.2297 | |||
Baseline | ✔ | 0.6640 | 0.2417 | 0.7660 | 0.2095 | 0.0412 | 0.0336 | 0.7890 | 0.7643 | 0.2143 | ||
Co-ERA-Net | ✔ | ✔ | 0.6736 | 0.2317 | 0.7711 | 0.2094 | 0.0411 | 0.0336 | 0.7989 | 0.7683 | 0.2144 | |
Network | Multi-Scale | BCE Loss | Hybird Loss | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Co-ERA-Net | ✔ | 0.6442 | 0.2317 | 0.7519 | 0.2045 | 0.0440 | 0.0362 | 0.7941 | 0.7532 | 0.2149 | ||
Co-ERA-Net | ✔ | 0.6680 | 0.2360 | 0.7676 | 0.2119 | 0.0413 | 0.0375 | 0.7973 | 0.7590 | 0.2078 | ||
Co-ERA-Net | ✔ | ✔ | 0.6695 | 0.2330 | 0.7661 | 0.2034 | 0.0415 | 0.0353 | 0.7952 | 0.7514 | 0.2115 | |
Co-ERA-Net | ✔ | ✔ | 0.6736 | 0.2317 | 0.7711 | 0.2094 | 0.0411 | 0.0336 | 0.7989 | 0.7683 | 0.2144 | |
Network | Lung Region | Attention Type | Work Type | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Baseline | ✔ | Convolution Block Attention Module [19] | With Blocks | 0.6479 | 0.2512 | 0.7431 | 0.2366 | 0.0434 | 0.0383 | 0.7905 | 0.7568 | 0.2135 |
Baseline | ✔ | Squeeze-Excitation Attention [33] | With Blocks | 0.6551 | 0.2450 | 0.7548 | 0.2212 | 0.0436 | 0.0382 | 0.7910 | 0.7629 | 0.2155 |
Baseline | ✔ | Triplet Attention [34] | With Blocks | 0.6570 | 0.2414 | 0.7564 | 0.2160 | 0.0432 | 0.0360 | 0.7911 | 0.7604 | 0.2083 |
Baseline | ✔ | Pyramid Attention [35] | Independent | 0.6097 | 0.2276 | 0.7355 | 0.2178 | 0.0488 | 0.0345 | 0.7848 | 0.7344 | 0.2045 |
Baseline | ✔ | Parallel Reverse Attention [36] | Independent | 0.6349 | 0.2255 | 0.7343 | 0.2137 | 0.0461 | 0.0371 | 0.7914 | 0.7640 | 0.1882 |
Baseline | ✔ | Multi-scale Self-Guided Attention [37] | Independent | 0.6193 | 0.2208 | 0.7370 | 0.2114 | 0.0483 | 0.0377 | 0.7918 | 0.7483 | 0.1939 |
Co-ERA-Net | ✔ | Enhanced Region Attention | Independent | 0.6736 | 0.2317 | 0.7711 | 0.2094 | 0.0411 | 0.0336 | 0.7989 | 0.7683 | 0.2144 |
Network | Lung Region | Enhanced Region Attention | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Baseline | 0.6721 | 0.2417 | 0.7566 | 0.2265 | 0.0414 | 0.0302 | 0.7955 | 0.7713 | 0.2307 | |||
Baseline | ✔ | 0.6742 | 0.2450 | 0.7657 | 0.2283 | 0.0398 | 0.0316 | 0.8048 | 0.7717 | 0.2275 | ||
Co-ERA-Net | ✔ | ✔ | 0.6893 | 0.2329 | 0.7823 | 0.2170 | 0.0389 | 0.0308 | 0.8085 | 0.7756 | 0.2186 | |
Network | Multi-Scale | BCE Loss | Hybird Loss | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Co-ERA-Net | ✔ | 0.6305 | 0.2249 | 0.7509 | 0.2121 | 0.0433 | 0.0324 | 0.7865 | 0.7594 | 0.2092 | ||
Co-ERA-Net | ✔ | 0.6843 | 0.2422 | 0.7761 | 0.2241 | 0.0398 | 0.0306 | 0.7991 | 0.7680 | 0.2246 | ||
Co-ERA-Net | ✔ | ✔ | 0.6773 | 0.2307 | 0.7719 | 0.2097 | 0.0392 | 0.0291 | 0.7917 | 0.7654 | 0.2117 | |
Co-ERA-Net | ✔ | ✔ | 0.6893 | 0.2329 | 0.7823 | 0.2170 | 0.0389 | 0.0308 | 0.8085 | 0.7756 | 0.2186 | |
Network | Lung Region | Attention Type | Work Type | IoU↑ | Dice↑ | MAE ↓ | F-Score↑ | |||||
Mean | STD | Mean | STD | Mean | STD | Max | Mean | STD | ||||
Baseline | ✔ | Convolution Block Attention Module [19] | With Blocks | 0.6711 | 0.2459 | 0.7603 | 0.2308 | 0.0405 | 0.0342 | 0.7944 | 0.7606 | 0.2048 |
Baseline | ✔ | Squeeze-Excitation Attention [33] | With Blocks | 0.6710 | 0.2394 | 0.7666 | 0.2156 | 0.0405 | 0.0328 | 0.7925 | 0.7650 | 0.2040 |
Baseline | ✔ | Triplet Attention [34] | With Blocks | 0.6767 | 0.2354 | 0.7729 | 0.2151 | 0.0408 | 0.0347 | 0.7997 | 0.7674 | 0.1990 |
Baseline | ✔ | Pyramid Attention [35] | Independent | 0.6272 | 0.2178 | 0.7521 | 0.2042 | 0.0457 | 0.0310 | 0.7903 | 0.7511 | 0.1830 |
Baseline | ✔ | Parallel Reverse Attention [36] | Independent | 0.6432 | 0.2173 | 0.7435 | 0.2155 | 0.0445 | 0.0318 | 0.8004 | 0.7685 | 0.1795 |
Baseline | ✔ | Multi-scale Self-Guided Attention [37] | Independent | 0.6222 | 0.2268 | 0.7377 | 0.2238 | 0.0467 | 0.0356 | 0.7872 | 0.7463 | 0.2013 |
Co-ERA-Net | ✔ | Enhanced Region Attention | Independent | 0.6893 | 0.2329 | 0.7823 | 0.2170 | 0.0389 | 0.0308 | 0.8085 | 0.7756 | 0.2186 |
(a) CT | |
Value | |
Accuracy | 0.9420 |
Sensitivity | 0.9383 |
Specificity | 0.9451 |
precision | 0.9333 |
F1 score | 0.9358 |
Matthews correlation coefficient | 0.8864 |
(b) X-ray | |
Value | |
Accuracy | 0.9632 |
Sensitivity | 0.9609 |
Specificity | 0.9656 |
precision | 0.9655 |
F1 score | 0.9632 |
Matthews correlation coefficient | 0.9279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Wong, A.N.N.; Yoo, J.S. Co-ERA-Net: Co-Supervision and Enhanced Region Attention for Accurate Segmentation in COVID-19 Chest Infection Images. Bioengineering 2023, 10, 928. https://doi.org/10.3390/bioengineering10080928
He Z, Wong ANN, Yoo JS. Co-ERA-Net: Co-Supervision and Enhanced Region Attention for Accurate Segmentation in COVID-19 Chest Infection Images. Bioengineering. 2023; 10(8):928. https://doi.org/10.3390/bioengineering10080928
Chicago/Turabian StyleHe, Zebang, Alex Ngai Nick Wong, and Jung Sun Yoo. 2023. "Co-ERA-Net: Co-Supervision and Enhanced Region Attention for Accurate Segmentation in COVID-19 Chest Infection Images" Bioengineering 10, no. 8: 928. https://doi.org/10.3390/bioengineering10080928
APA StyleHe, Z., Wong, A. N. N., & Yoo, J. S. (2023). Co-ERA-Net: Co-Supervision and Enhanced Region Attention for Accurate Segmentation in COVID-19 Chest Infection Images. Bioengineering, 10(8), 928. https://doi.org/10.3390/bioengineering10080928