Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Functional OCT Imaging System with an Anesthesia System
2.2. Zebrafish Husbandry and Preparation
2.3. Image Acquisition and Processing
2.4. Organ Segmentation Method
3. Results and Discussion
3.1. Pigmentation Imaging for Adult Zebrafish Intra- and Extracranial Regions
3.2. Tissue-Specific Information in the Skin, Skull, and Brain
3.3. Intra- and Extracranial Vascular Imaging
3.4. Channels through the Cranial Sutures of Adult Zebrafish
3.5. Monitoring of Traumatic Brain Injury (TBI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jurisch-Yaksi, N.; Yaksi, E.; Kizil, C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020, 68, 2451–2470. [Google Scholar] [CrossRef] [PubMed]
- Fabian, P.; Tseng, K.-C.; Thiruppathy, M.; Arata, C.; Chen, H.-J.; Smeeton, J.; Nelson, N.; Crump, J.G. Lifelong single-cell profiling of cranial neural crest diversification in zebrafish. Nat. Commun. 2022, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Gerlai, R. Zebrafish (Danio rerio): A newcomer with great promise in behavioral neuroscience. Neurosci. Biobehav. Rev. 2023, 144, 104978. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.S.; Ninkovic, J. Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish. Neurogenes 2016, 3, e1148101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambusi, A.; Ninkovic, J. Regeneration of the central nervous system-principles from brain regeneration in adult zebrafish. World J. Stem Cells 2020, 12, 8–24. [Google Scholar] [CrossRef]
- Cosacak, M.I.; Papadimitriou, C.; Kizil, C. Regeneration, plasticity, and induced molecular programs in adult zebrafish brain. Biomed. Res. Int. 2015, 2015, 769763. [Google Scholar] [CrossRef] [Green Version]
- Kyritsis, N.; Kizil, C.; Zocher, S.; Kroehne, V.; Kaslin, J.; Freudenreich, D.; Iltzsche, A.; Brand, M. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 2012, 338, 1353–1356. [Google Scholar] [CrossRef]
- Mork, L.; Crump, G. Zebrafish craniofacial development: A window into early patterning. Curr. Top. Dev. Biol. 2015, 115, 235–269. [Google Scholar]
- Kanther, M.; Scalici, A.; Rashid, A.; Miao, K.; Van Deventer, E.; Fisher, S. Initiation and early growth of the skull vault in zebrafish. Mech. Dev. 2019, 160, 103578. [Google Scholar] [CrossRef]
- Teng, C.S.; Ting, M.; Farmer, D.T.; Brockop, M.; Maxson, R.E.; Crump, J.G. Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of saethre-chotzen syndrome. Elife 2018, 7, e37024. [Google Scholar] [CrossRef]
- Chow, D.M.; Sinefeld, D.; Kolkman, K.E.; Ouzounov, D.G.; Akbari, N.; Tatarsky, R.; Bass, A.; Xu, C.; Fetcho, J.R. Deep three-photon imaging of the brain in intact adult zebrafish. Nat. Methods 2020, 17, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Castranova, D.; Samasa, B.; Galanternik, M.V.; Jung, H.M.; Pham, V.N.; Weinstein, B.M. Live imaging of intracranial lymphatics in the zebrafish. Circ. Res. 2021, 128, 42–58. [Google Scholar] [CrossRef]
- Kassing, V.; Engelmann, J.; Kurtz, R. Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation. PLoS ONE 2013, 8, e62846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Koo, D.E.S.; Kitano, M.; Chiang, H.J.; Trinh, L.A.; Turcatel, G.; Steventon, B.; Arnesano, C.; Warburton, D.; Fraser, S.E.; et al. Pre-processing visualization of hyperspectral fluorescent data with spectrally encoded enhanced representations. Nat. Commun. 2020, 11, 726. [Google Scholar] [CrossRef] [Green Version]
- Lichtenegger, A.; Baumann, B.; Yasuno, Y. Optical coherence tomography is a promising tool for zebrafish-based research—A review. Bioengineering 2023, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xiang, X.; Chen, T.; Gao, C.; Fu, H.; Wang, L.; Deng, L.; Zeng, L.; Zhang, J. In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography. Biomed. Opt. Express 2019, 10, 1184–1195. [Google Scholar] [CrossRef]
- Xiang, X.; Gao, W.; Xu, Y.; Zhang, Y.; Lu, T.; Gan, S.; Huang, J.; Li, Z.; Huang, L.; Liao, Y.; et al. Study on promoting regeneration of zebrafish skull by phycocyanin characterized by in vivo optical coherence tomography. J. Biophotonics 2022, 15, e202100333. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, T.; Mao, G.; Qiu, T.; Lan, Y.; Xiang, X.; Huang, J.; Huang, J.; Lu, T.; Gan, S.; et al. Long-term and in vivo assessment of a beta protein-induced brain atrophy in a zebrafish model by optical coherence tomography. J. Biophotonics 2020, 13, e202000067. [Google Scholar] [CrossRef]
- Yang, D.; Yuan, Z.; Hu, M.; Liang, Y. Zebrafish brain and skull imaging based on polarization-sensitive optical coherence tomography. J. Biophotonics 2022, 15, e202200112. [Google Scholar] [CrossRef]
- Lichtenegger, A.; Mukherjee, P.; Zhu, L.; Morishita, R.; Tomita, K.; Oida, D.; Leskovar, K.; Abd El-Sadek, I.; Makita, S.; Kirchberger, S.; et al. Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography. Biomed. Opt. Express 2022, 13, 2202–2223. [Google Scholar] [CrossRef]
- Yang, D.; Yuan, Z.; Yang, Z.; Hu, M.; Liang, Y. High-resolution polarization-sensitive optical coherence tomography and optical coherence tomography angiography for zebrafish skin imaging. J. Innov. Opt. Health Sci. 2021, 14, 2150022. [Google Scholar] [CrossRef]
- Yang, D.; Hu, M.; Zhang, M.; Liang, Y. High-resolution polarization-sensitive optical coherence tomography for zebrafish muscle imaging. Biomed. Opt. Express 2020, 11, 5618–5632. [Google Scholar] [CrossRef] [PubMed]
- Schulter, G.; Leber, K.; Kronawetter, E.; Rubenbauer, V.R.; Konstantiniuk, P.; Papousek, I. Body pigmentation as a risk factor for the formation of intracranial aneurysms. Biomed. Res. Int. 2014, 2014, 301631. [Google Scholar] [CrossRef]
- Patterson, L.B.; Parichy, D.M. Zebrafish pigment pattern formation: Insights into the development and evolution of adult form. Annu. Rev. Genet. 2019, 53, 505–530. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.; Baumann, S.O.; Konegger, T.; Pircher, M.; Götzinger, E.; Schlanitz, F.; Schütze, C.; Sattmann, H.; Litschauer, M.; Schmidt-Erfurth, U.; et al. Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization. Biomed. Opt. Express 2012, 3, 1670–1683. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, Z.G.; Homer, N.A.; Epstein, A.; Nakra, T. Black bone disease of the skull incidentally discovered during endoscopic brow lifting. Eur. J. Plast. Surg. 2022, 45, 183–186. [Google Scholar] [CrossRef]
- Steadman, W.; Brown, Z.; Wall, C.J. Minocycline black bone disease in arthroplasty: A systematic review. J. Orthop. Surg. Res. 2021, 16, 479. [Google Scholar] [CrossRef]
- Edsall, S.C.; Franz-Odendaal, T.A. An assessment of the long-term effects of simulated microgravity on cranial neural crest cells in zebrafish embryos with a focus on the adult skeleton. PLoS ONE 2014, 9, e89296. [Google Scholar] [CrossRef]
- Yu, M.; Ma, L.; Yuan, Y.; Ye, X.; Montagne, A.; He, J.; Ho, T.-V.; Wu, Y.; Zhao, Z.; Sta Maria, N.; et al. Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis. Cell 2021, 184, 243–256.e18. [Google Scholar] [CrossRef]
- Menon, S.; Salhotra, A.; Shailendra, S.; Tevlin, R.; Ransom, R.C.; Januszyk, M.; Chan, C.K.F.; Behr, B.; Wan, D.C.; Longaker, M.T.; et al. Skeletal stem and progenitor cells maintain cranial suture patency and prevent craniosynostosis. Nat. Commun. 2021, 12, 4640. [Google Scholar] [CrossRef]
- Quarto, N.; Longaker, M. The zebrafish (Danio rerio): A model system for cranial suture patterning. Cells. Tissues. Organs 2005, 181, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.S.; Cavin, L.; Maxson Jnr, R.E.; Sánchez-Villagra, M.R.; Crump, J.G. Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary. Elife 2019, 8, e52814. [Google Scholar] [CrossRef] [PubMed]
- White, R.M.; Sessa, A.; Burke, C.; Bowman, T.; LeBlanc, J.; Ceol, C.; Bourque, C.; Dovey, M.; Goessling, W.; Burns, C.E.; et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2008, 2, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachkar, S.; Dols, M.-M.; Ishak, B.; Iwanaga, J.; Tubbs, R. The diploic veins: A comprehensive review with clinical applications. Cureus 2019, 11, e4422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabani, H.; Tayebi Meybodi, A.; Benet, A. Chapter 3—Venous anatomy of the supratentorial compartment. Handb. Clin. Neurol. 2020, 169, 55–71. [Google Scholar]
- Schweitzer, T.; Kunz, F.; Meyer-Marcotty, P.; Müller-Richter, U.D.A.; Böhm, H.; Wirth, C.; Ernestus, R.-I.; Linz, C. Diagnostic features of prematurely fused cranial sutures on plain skull X-rays. Child’s Nerv. Syst. 2015, 31, 2071–2080. [Google Scholar] [CrossRef]
- Alsop, D.; Vijayan, M.M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Integr. Comp. Physiol. 2008, 294, R711–R719. [Google Scholar] [CrossRef] [Green Version]
- Obenaus, A.; Ng, M.; Orantes, A.M.; Kinney-Lang, E.; Rashid, F.; Hamer, M.; DeFazio, R.A.; Tang, J.; Zhang, J.H.; Pearce, W.J. Traumatic brain injury results in acute rarefication of the vascular network. Sci. Rep. 2017, 7, 239. [Google Scholar] [CrossRef] [Green Version]
- Sangiorgi, S.; De Benedictis, A.; Protasoni, M.; Manelli, A.; Reguzzoni, M.; Cividini, A.; Dell’orbo, C.; Tomei, G.; Se, B. Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting laboratory investigation. J. Neurosurg. 2013, 118, 763–774. [Google Scholar] [CrossRef]
- Kenney, K.; Amyot, F.; Haber, M.; Pronger, A.; Bogoslovsky, T.; Moore, C.; Diaz-Arrastia, R. Cerebral vascular injury in traumatic brain injury. Exp. Neurol. 2016, 275, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Hentig, J.; Cloghessy, K.; Lahne, M.; Jung, Y.J.; Petersen, R.; Morris, A.; Hyde, D. Zebrafish blunt-force TBI induces heterogenous injury pathologies that mimic human TBI and responds with sonic hedgehog-dependent cell proliferation across the neuroaxis. Biomedicines 2021, 9, 861. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Wang, W.; Yuan, Z.; Liang, Y. Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging. Bioengineering 2023, 10, 856. https://doi.org/10.3390/bioengineering10070856
Yang D, Wang W, Yuan Z, Liang Y. Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging. Bioengineering. 2023; 10(7):856. https://doi.org/10.3390/bioengineering10070856
Chicago/Turabian StyleYang, Di, Weike Wang, Zhuoqun Yuan, and Yanmei Liang. 2023. "Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging" Bioengineering 10, no. 7: 856. https://doi.org/10.3390/bioengineering10070856
APA StyleYang, D., Wang, W., Yuan, Z., & Liang, Y. (2023). Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging. Bioengineering, 10(7), 856. https://doi.org/10.3390/bioengineering10070856