Additive Manufacturing Using Agriculturally Derived Biowastes: A Systematic Literature Review
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Initial Analysis
3.2. Agriculturally Derived Biowastes
3.3. AM Methods Used for Printing Agriculturally Derived Biowastes
3.3.1. Extrusion-Based AM Methods
AM Methods | Printer Size | References | 3D Printer Name | 3D Printer Type | Nozzle Diameter (mm) | Speed (mm/s) | Layer Height (mm) | Pressure (Bar) |
---|---|---|---|---|---|---|---|---|
FDM | Small | [39] | // | Extrusion-based printer (standard) | // | // | // | // |
[59] | Leapfrog Creatr 3D | Extrusion-based printer (standard) | 0.50 | // | // | // | ||
[72] | Prusa i3 Rework 3D printer | Extrusion-based printer (standard) | 1.00 | 50 to 150 | 0.6 to 1.0 | // | ||
[29] | // | Extrusion-based printer (standard) | 0.60 | 60.00 | 0.25 | // | ||
[73] | ENDER-3S | Extrusion-based printer (standard) | 0.40 | 50.00 | 0.20 | // | ||
[34] | CREALITY CR-10 3D printer | Extrusion-based printer (standard) | 0.40 | 35.00 | 0.20 | // | ||
[37] | Prusa i3 MK3 | Extrusion-based printer (standard) | 0.80 | 50 and infill 80 | 0.15 | // | ||
[75] | Combot-200 printer | Extrusion-based printer along with dry fiber deposition mechanism | 1.30 | 1.67 to 8.36 | 0.60 | // | ||
[65] | Lulzbot Taz 6 | Extrusion-based printer (standard) | 0.50 | 35.00 | 0.30 | // | ||
[4] | Lulzbot Taz 6 | Extrusion-based printer (standard) | 0.50 | 35.00 | 0.30 | // | ||
[66] | Ender 5 Pro | Extrusion-based printer (standard) | 0.40 | 65.00 | 0.25 | // | ||
[76] | Ultimaker 3 | Extrusion-based printer (standard) | 0.80 | // | 0.20 | // | ||
[77] | Prusa i3 MK3S | Extrusion-based printer (standard) | 0.60 | 60.00 | 0.30 | // | ||
[3] | 3D FF-STD Doppia machine | Extrusion-based printer (standard) | 0.80 | 60.00 | 0.25 | // | ||
[78] | 3D FF-STD Doppia machine | Extrusion-based printer (standard) | 0.80 | 60.00 | 0.25 | // | ||
[79] | Sharebot Next Generation | Extrusion-based printer (standard) | 0.40 | 45.00 | 0.10 | // | ||
[67] | FDM printer | Extrusion-based printer (standard) | // | // | // | // | ||
[69] | FDM printer | Extrusion-based printer (standard) | // | // | // | // | ||
[70] | 3D printing pen | Extrusion-based printer (standard) | // | // | // | // | ||
[40] | Ultimaker 3 | Extrusion-based printer (standard) | 0.60 | 50.00 | 0.10 | // | ||
[42] | Sharebot Next Generation | Extrusion-based printer (standard) | // | 45.00 | 0.10 | // | ||
[71] | FS-200 3D printer | Extrusion-based printer (standard) | 0.40 | 50.00 | 0.10 | // | ||
[82] | Sharebot Next Generation | Extrusion-based printer (standard) | 0.40 | 50.00 | 0.10 | // | ||
LDM | Small | [32] | Model FSE 2 | Extrusion-based printer (standard) | 2.00 | // | 3.00 | // |
[64] | 3D discovery™ Evolution printer | Extrusion-based printer (standard) | 0.60 | 2.50 | 0.20 | 4 bars | ||
Medium | [68] | Custom-built/in-house printer | Extrusion-based printer with 6 nozzles custom built | 225 to 400 mm2 for 6 different types of nozzles | // | // | // | |
Small | [43] | Foodini 3D food printer | Extrusion-based printer (standard) | 4.00 | // | // | // | |
[83] | Custom printer Arduino Mega2560 coupled with a RAMPS 1.4; the software used was Marlin™ | Extrusion-based printer (custom) | 0.19 | // | // | // | ||
[36] | Delta Wasp 2040 | Extrusion-based 3D printer with custom nozzle and extrusion system | 6.00 | 15.00 | 6.00 | 3.5 bars | ||
[44] | Focus 3D food printer | Extrusion-based printer (standard) | 1.60 | 10.00 | 1.12 | // | ||
[63] | Creality Ender 5 Pro | Extrusion-based printer with Custom Nozzle system for ink deposition | 0.60 | 10 to 20 | 0.1 to 1 | 2 to 3 bars | ||
[45] | Shotmini 200 Sx DIW printer | Extrusion-based printer with 50 mL Luer lock dispensing syringe | 0.90 | 50.00 | 0.40 | 0.9 bar | ||
[46] | 3D food printer CARK (controlled additive manufacturing robotic kit) | Extrusion-based printer custom printer for 3D food printing | 0.5 to 1.28 | 5 to 20 | // | 4 bars | ||
[47] | Foodini 3D food printer | Extrusion-based printer (standard) | 1.50 | // | // | // | ||
[48] | M4 3D printer [87] | Custom printer with seven printheads (two FFF heads, two DIW heads, two IJ heads, and one AJ head), two in situ curing modules (photonic and UV), and two robotic arms | 1.194, 0.838, 0.603 | // | 0.40 | // | ||
[49] | System 60 M | Extrusion-based printer (standard) | 0.70 | 20.00 | 0.50 | // | ||
[50] | 3D printer 3.0 developed by Felix | Extrusion-based printer (standard) | 1.55 | 10 | 0.60 | // | ||
[38] | KUKA KR 15/2 6-axis industrial robot | Custom extrusion-based printer with a single extruder attached to the robotic arm | 5 to 25 | 20 to 30 | // | 1.6 to 2 bars | ||
[80] | 3D4E | Extrusion-based custom-made printer capable of printing pastes, gels and highly viscous liquids | 0.68 | // | // | // | ||
[58] | Custom LDM printer with syringe-based extrusion system | Extrusion-based custom-made printer | 0.61 | 10.00 | 0.40 | // | ||
[33] | Foodini 3D food printer | Extrusion-based printer (standard) | 8, 15, 40 | 25 to 58.33 | 0.7 to 2.8 | // | ||
[57] | Foodini 3D food printer | Extrusion-based printer (standard) | // | 33.33 | 1.95 | // | ||
[52] | 3D food printer CARK (controlled additive manufacturing robotic kit) | Extrusion-based printer custom printer for 3D food printing | 1.20 | 1.67 to 10 | 0.45 to 1.07 | 2 to 6 bars | ||
[51] | 3D food printer CARK (controlled additive manufacturing robotic kit) | Extrusion-based printer custom printer for 3D food printing | 1.20 | 6.67 to 11.67 | 0.31 to 1.34 | 3.2 bars | ||
[41] | Delta Wasp 2040 | Extrusion-based 3D printer with custom nozzle and extrusion system | 6.00 | 15.00 | 6.00 | 3.5 bars | ||
[54] | Shinnove-E Pro | Extrusion-based printer (standard) | 0.84 | 25.00 | 0.60 | // | ||
[55] | Shinnove-E Pro | Extrusion-based printer (standard) | 0.84 | 25.00 | 0.60 | // | ||
[56] | Foodbot-D2 | Extrusion-based printer (standard) | 1.20 | 20.00 | // | // | ||
LDM-Syringe and gear based | Small | [53] | Syringe-based 3D printer 3.0 Felix and gear-based 3D printer L3D Extruder Kit | Extrusion-based printer (standard) | 1.55 for syringe-based and 0.5 for gear-based printing | 10.00 | 0.60 | // |
3.3.2. Selective Laser Sintering AM method
3.3.3. Stereolithography AM Method
3.3.4. Binder Jetting, Ink Jetting, and DCW AM Methods
3.4. Applications and Limitations
- Energy consumption increases when using AM methods compared to other manufacturing methods when the preprocessing (milling, chemical processing, using single or dual screw extruders) and post-processing (polishing, curing, heating, and cooling) steps required for processing agriculturally derived biowastes are included [2,39,60].
- An additional notable issue involves the possibility of biowastes undergoing biodegradation or decay over time. Due to the organic components present in biowastes, they can be prone to microbial growth, moisture absorption, and degradation. Consequently, the long-term durability and stability of printed objects may be compromised, thereby constraining their suitability for applications that demand extended lifespans [42].
3.5. Mechanical Characterizations
3.6. Future Research Opportunities
3.6.1. Rheological Studies
3.6.2. Printing Parameter Optimization
3.6.3. Material Composition Optimization
3.6.4. Numerical Simulations
3.6.5. Life Cycle Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ABS | Acrylonitrile buta-diene styrene |
AM | Additive manufacturing |
CBS | Cocoa bean shell |
CMR | Cox–Merz rule |
copes | Copolyester hot melt adhesive |
CSP | Crab shell powder |
DAGMA | Rosin-based monomer |
DIW | Direct Ink Writing |
EALNSs | Ethyl acetate treated lignin nanospheres |
ECM | Ethyl cellulose macromonomer |
EE | Engraulis encra-sicolus |
EoL | End of life |
FA | Fly ash |
FDM | Fused Deposition Modeling |
FFF | Fused Filament Fabrication |
FG-FS | Fluorescent rafted flax shives |
FS | Flax shives |
GHGs | Greenhouse gases |
HA | Nanometric hydroxyapatite |
HDPE | High-density poly-ethylene |
HEA | 2-hydroxyethyl acrylate |
HPMC | Hydroxypro-pyl methylcellulose |
HV | Hydroxyvalerate |
ILD | Individual layer fabrication |
KGM | Konjac gum |
LCA | Life cycle analysis |
LDM | Liquid deposition modeling |
MB | Mater-Bi® EF51L |
PBAT | Poly-(butylene-terephthalate) |
PCL | Poly(ε-caprolactone) |
PHB | Polyhydroxybutyrate |
PHBV | Poly(3-hydroxybutyrate-co-hydroxy valerate) |
PLA | Polylactic acid |
PP | Polypropylene |
PPP | Purple sweet potato |
PUL | Pullulan |
RQ | Research questions |
SLA | Stereolithography |
SLS | Selective laser sintering |
SPI | Soy protein isolate |
TAMU | Texas A&M University |
UV | Ultraviolet |
WoS | Web of Science |
XG | Xanthan gum |
References
- ASTM52900-15; Standard Terminology for Additive Manufacturing—General Principles—Terminology. ASTM International: West Conshohocken, PA, USA, 2015; Volume 3, p. 5.
- Romani, A.; Suriano, R.; Levi, M. Biomass waste materials through extrusion-based additive manufacturing: A systematic literature review. J. Clean. Prod. 2023, 386, 135779. [Google Scholar] [CrossRef]
- Morales, M.A.; Martinez, C.L.A.; Maranon, A.; Hernandez, C.; Michaud, V.; Porras, A. Development and Characterization of Rice Husk and Recycled Polypropylene Composite Filaments for 3D Printing. Polymers 2021, 13, 1067. [Google Scholar] [CrossRef]
- Maldonado-García, B.; Pal, A.K.; Misra, M.; Gregori, S.; Mohanty, A.K. Sustainable 3D printed composites from recycled ocean plastics and pyrolyzed soy-hulls: Optimization of printing parameters, performance studies and prototypes development. Compos. Part C Open Access 2021, 6, 100197. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium bio-composites in in-dustrial design and architecture: Comparative review and experimental analysis. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchoł, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D printing filament as a second life of waste plastics—A review. Environ. Sci. Pollut. Res. 2020, 28, 12321–12333. [Google Scholar] [CrossRef]
- FAOSTAT. 2014. Available online: https://www.fao.org/sustainability/news/detail/en/c/1274219 (accessed on 5 April 2023).
- Phonbumrung, T.; Khemsawas, C. Agricultural crop residue. In Proceedings of the Sixth Meeting of Regional Working Group on Grazing and Feed Resources for Southeast Asia, Legaspi, Philippines, 5–9 October 1998. [Google Scholar]
- Arvanitoyannis, I.S.; Tserkezou, P. Wheat, barley and oat waste: A comparative and critical presentation of methods and potential uses of treated waste. Int. J. Food Sci. Technol. 2008, 43, 694–725. [Google Scholar] [CrossRef]
- Nagendran, R. Chapter 24—Agricultural Waste and Pollution. In Waste; Letcher, T.M., Vallero, D.A., Eds.; Academic Press: Boston, MA, USA, 2011; pp. 341–355. [Google Scholar]
- Sommer, S.G.; Olesen, J.E.; Petersen, S.O.; Weisbjerg, M.R.; Valli, L.; Rodhe, L.; Béline, F. Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones. Glob. Chang. Biol. 2009, 15, 2825–2837. [Google Scholar] [CrossRef]
- FAO. 2006. Available online: https://www.fao.org/3/a0701e/a0701e00.htm (accessed on 5 April 2023).
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; van Grinsven, H.; Winiwarter, W. Too much of a good thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinnerås, B. Sanitation and hygiene in manure management. In Animal Manure Recycling: Treatment and Management; Wiley: Hoboken, NJ, USA, 2013; pp. 91–104. [Google Scholar]
- Syakti, A.D.; Asia, L.; Kanzari, F.; Umasangadji, H.; Lebarillier, S.; Oursel, B.; Garnier, C.; Malleret, L.; Ternois, Y.; Mille, G.; et al. Indicators of terrestrial biogenic hydrocarbon contamination and linear alkyl benzenes as land-base pollution tracers in marine sediments. Int. J. Environ. Sci. Technol. 2013, 12, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Holden, N.M.; Neill, A.M.; Stout, J.C.; O’brien, D.; Morris, M.A. Biocircularity: A Framework to Define Sustainable, Circular Bioeconomy. Circ. Econ. Sustain. 2022, 3, 77–91. [Google Scholar] [CrossRef]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Meng, F.; Ferraris, E. Temperature gradient at the nozzle outlet in material extrusion additive manufacturing with thermoplastic filament. Addit. Manuf. 2023, 73, 103660. [Google Scholar] [CrossRef]
- Bi, X.; Huang, R. 3D printing of natural fiber and composites: A state-of-the-art review. Mater. Des. 2022, 222, 111065. [Google Scholar] [CrossRef]
- Li, Y.; Ren, X.; Zhu, L.; Li, C. Biomass 3D Printing: Principles, Materials, Post-Processing and Applications. Polymers 2023, 15, 2692. [Google Scholar] [CrossRef]
- Kumar, H.; Kim, K. Stereolithography 3D Bioprinting. In 3D Bioprinting: Principles and Protocols; Crook, J.M., Ed.; Springer: New York, NY, USA, 2020; pp. 93–108. [Google Scholar]
- Yilmaz, B.; Al Rashid, A.; Mou, Y.A.; Evis, Z.; Koç, M. Bioprinting: A review of processes, materials and applications. Bioprinting 2021, 23, e00148. [Google Scholar] [CrossRef]
- Moritz, T.; Maleksaeedi, S. 4—Additive manufacturing of ceramic components. In Additive Manufacturing; Zhang, J., Jung, Y.-G., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 105–161. [Google Scholar]
- Prabhakar, P.; Sen, R.K.; Dwivedi, N.; Khan, R.; Solanki, P.R.; Srivastava, A.K.; Dhand, C. 3D-Printed Microfluidics and Potential Biomedical Applications. Front. Nanotechnol. 2021, 3. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Sheikh, M.F.; Zolfagharian, A.; Bodaghi, M. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022, 10, 108159. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to properly use the PRISMA Statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Bramer, W.M.; De Jonge, G.B.; Rethlefsen, M.L.; Mast, F.; Kleijnen, J. A systematic approach to searching: An efficient and complete method to develop literature searches. J. Med. Libr. Assoc. 2018, 106, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Calì, M.; Pascoletti, G.; Gaeta, M.; Milazzo, G.; Ambu, R. New filaments with natural fillers for FDM 3D printing and their applications in biomedical field. Procedia Manuf. 2020, 51, 698–703. [Google Scholar] [CrossRef]
- Idriss, A.I.; Li, J.; Guo, Y.; Wang, Y.; Elfaki, E.A.; Ahmed, E.A. Improved Sintering Quality and Mechanical Properties of Peanut Husk Powder/Polyether Sulfone Composite for Selective Laser Sintering. 3D Print. Addit. Manuf. 2023, 10, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Barkane, A.; Jurinovs, M.; Briede, S.; Platnieks, O.; Onufrijevs, P.; Zelca, Z.; Gaidukovs, S. Biobased Resin for Sustainable Stereolithography: 3D Printed Vegetable Oil Acrylate Reinforced with Ultra-Low Content of Nanocellulose for Fossil Resin Substitution. 3D Print. Addit. Manuf. 2022. [Google Scholar] [CrossRef]
- An, Y.-J.; Guo, C.-F.; Zhang, M.; Zhong, Z.-P. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass. J. Sci. Food Agric. 2018, 99, 639–646. [Google Scholar] [CrossRef]
- Letras, P.; Oliveira, S.; Varela, J.; Nunes, M.; Raymundo, A. 3D printed gluten-free cereal snack with incorporation of Spirulina (Arthrospira platensis) and/or Chlorella vulgaris. Algal Res. 2022, 68, 102863. [Google Scholar] [CrossRef]
- Sun, Y.; Lee, D.; Wang, Y.; Li, S.; Ying, J.; Liu, X.; Xu, G.; Gwon, J.; Wu, Q. Effect of infill value on decay resistance, thermal, and mechanical properties of 3D printed polylactic acid composites filled with wood fibers. Bioresources 2020, 15, 6724–6734. [Google Scholar] [CrossRef]
- Lu, C.; Wang, C.; Yu, J.; Wang, J.; Chu, F. Two-Step 3 D-Printing Approach toward Sustainable, Repairable, Fluorescent Shape-Memory Thermosets Derived from Cellulose and Rosin. ChemSusChem 2020, 13, 893–902. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Vasselli, J.; Lucht, M.; Pei, Z.; Shaw, B.; Grasley, Z.; Wei, X.; Zou, N. 3D Printing of Biomass-Fungi Composite Material: A Preliminary Study. Manuf. Lett. 2020, 24, 96–99. [Google Scholar] [CrossRef]
- Andrzejewski, J.; Grad, K.; Wiśniewski, W.; Szulc, J. The Use of Agricultural Waste in the Modification of Poly(lactic acid)-Based Composites Intended for 3D Printing Applications. The Use of Toughened Blend Systems to Improve Mechanical Properties. J. Compos. Sci. 2021, 5, 253. [Google Scholar] [CrossRef]
- Elsacker, E.; Peeters, E.; De Laet, L. Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustain. Futures 2022, 4, 100085. [Google Scholar] [CrossRef]
- Long, H.; Hu, L.; Yang, F.; Cai, Q.; Zhong, Z.; Zhang, S.; Guan, L.; Xiao, D.; Zheng, W.; Zhou, W.; et al. Enhancing the performance of polylactic acid composites through self-assembly lignin nanospheres for fused deposition modeling. Compos. Part B Eng. 2022, 239, 109968. [Google Scholar] [CrossRef]
- Ohaeri, O.; Cree, D. Development and Characterization of PHB-PLA/Corncob Composite for Fused Filament Fabrication. J. Compos. Sci. 2022, 6, 249. [Google Scholar] [CrossRef]
- Rahman, A.M.; Bhardwaj, A.; Pei, Z.; Ufodike, C.; Castell-Perez, E. The 3D Printing of Biomass–Fungi Composites: Effects of Waiting Time after Mixture Preparation on Mechanical Properties, Rheological Properties, Minimum Extrusion Pressure, and Print Quality of the Prepared Mixture. J. Compos. Sci. 2022, 6, 237. [Google Scholar] [CrossRef]
- Scaffaro, R.; Citarrella, M.C.; Catania, A.; Settanni, L. Green composites based on biodegradable polymers and anchovy (Engraulis encrasicolus) waste suitable for 3D printing applications. Compos. Sci. Technol. 2022, 230, 109768. [Google Scholar] [CrossRef]
- Gudjónsdóttir, M.; Napitupulu, R.J.; Petty Kristinsson, H.T. Low field NMR for quality monitoring of 3D printed surimi from cod by-products: Effects of the pH-shift method compared with conventional washing. Magn. Reson. Chem. 2019, 57, 638–648. [Google Scholar] [CrossRef]
- Vieira, M.V.; Oliveira, S.M.; Amado, I.R.; Fasolin, L.H.; Vicente, A.A.; Pastrana, L.M.; Fuciños, P. 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocoll. 2020, 107, 105893. [Google Scholar] [CrossRef]
- Lee, C.P.; Takahashi, M.; Arai, S.; Lee, C.-L.K.; Hashimoto, M. 3D Printing of Okara Ink: The Effect of Particle Size on the Printability. ACS Food Sci. Technol. 2021, 1, 2053–2061. [Google Scholar] [CrossRef]
- Muthurajan, M.; Veeramani, A.; Rahul, T.; Gupta, R.K.; Anukiruthika, T.; Moses, J.A.; Anandharamakrishnan, C. Valorization of Food Industry Waste Streams Using 3D Food Printing: A Study on Noodles Prepared from Potato Peel Waste. Food Bioprocess Technol. 2021, 14, 1817–1834. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.; Shi, J.; Holmes, M.; Wang, X.; Zhang, J.; Zhai, X.; Huang, X.; Zou, X. Color 3D printing of pulped yam utilizing a natural pH sensitive pigment. Addit. Manuf. 2021, 46, 102062. [Google Scholar] [CrossRef]
- Armstrong, C.D.; Yue, L.; Deng, Y.; Qi, H.J. Enabling direct ink write edible 3D printing of food purees with cellulose nanocrystals. J. Food Eng. 2022, 330, 111086. [Google Scholar] [CrossRef]
- Carvajal-Mena, N.; Tabilo-Munizaga, G.; Pérez-Won, M.; Lemus-Mondaca, R. Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. LWT 2021, 155, 112931. [Google Scholar] [CrossRef]
- Chen, J.; Sun, H.; Mu, T.; Blecker, C.; Richel, A.; Richard, G.; Jacquet, N.; Haubruge, E.; Goffin, D. Effect of temperature on rheological, structural, and textural properties of soy protein isolate pastes for 3D food printing. J. Food Eng. 2022, 323, 110917. [Google Scholar] [CrossRef]
- Nida, S.; Moses, J.A.; Anandharamakrishnan, C. 3D Extrusion Printability of Sugarcane Bagasse Blended with Banana Peel for Prospective Food Packaging Applications. Sugar Tech 2022, 24, 764–778. [Google Scholar] [CrossRef]
- Nida, S.; Moses, J.A.; Anandharamakrishnan, C. Converting fruit waste to 3D printed food package casings: The case of banana peel. Circ. Econ. 2023, 2, 100023. [Google Scholar] [CrossRef]
- Shi, Z.; Blecker, C.; Richel, A.; Wei, Z.; Chen, J.; Ren, G.; Guo, D.; Yao, Y.; Haubruge, E. Three-dimensional (3D) printability assessment of food-ink systems with superfine ground white common bean (Phaseolus vulgaris L.) protein based on different 3D food printers. LWT 2021, 155, 112906. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.-Y.; Li, D.; Wang, L.-J.; Wang, Y. Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation. Food Hydrocoll. 2022, 131, 107824. [Google Scholar] [CrossRef]
- Yu, J.; Li, D.; Wang, L.-J.; Wang, Y. Improving freeze-thaw stability and 3D printing performance of soy protein isolate emulsion gel inks by guar & xanthan gums. Food Hydrocoll. 2023, 136, 108293. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Zhao, W.; Li, S.; Pan, J.; Prakash, S.; Dong, X. Hydrophilic colloids (Konjac gum/Xanthan gum) in 3D printing of transitional food from fish paste. Food Hydrocoll. 2023, 137, 108333. [Google Scholar] [CrossRef]
- Liu, P.; Dang, X.; Woo, M.W.; Chattha, S.A.; An, J.; Shan, Z. Feasibility Study of Starch-Based Biomass Incorporated 3D Printed Beef. Starch–Stärke 2022, 74, 2200030. [Google Scholar] [CrossRef]
- Islam, M.N.; Jiang, Y. 3D Printable Sustainable Composites with Thermally Tunable Properties Entirely from Corn-Based Products. ACS Sustain. Chem. Eng. 2022, 10, 7818–7824. [Google Scholar] [CrossRef]
- Girdis, J.; Gaudion, L.; Proust, G.; Löschke, S.; Dong, A. Rethinking Timber: Investigation into the Use of Waste Macadamia Nut Shells for Additive Manufacturing. JOM 2016, 69, 575–579. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, Y.; Jiang, T.; Li, J.; Jiang, K.; Zhang, H. Study on the Ingredient Proportions and After-Treatment of Laser Sintering Walnut Shell Composites. Materials 2017, 10, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Guo, Y.; Jiang, T.; Li, J.; Jiang, K.; Zhang, H.; Zhuang, Y. Study on the Characteristics of Walnut Shell/Co-PES/Co-PA Powder Produced by Selective Laser Sintering. Materials 2018, 11, 784. [Google Scholar] [CrossRef] [Green Version]
- Kam, D.; Layani, M.; BarkaiMinerbi, S.; Orbaum, D.; Abrahami Benharush, S.; Shoseyov, O.; Magdassi, S. Additive Manufacturing of 3D Structures Composed of Wood Materials. Adv. Mater. Technol. 2019, 4, 1900158. [Google Scholar] [CrossRef]
- Adams, D.; Ounaies, Z.; Basak, A. Printability Assessment of Ethyl Cellulose Biopolymer Using Direct Ink Writing. JOM 2021, 73, 3761–3770. [Google Scholar] [CrossRef]
- Cestari, F.; Petretta, M.; Yang, Y.; Motta, A.; Grigolo, B.; Sglavo, V.M. 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering. Sustain. Mater. Technol. 2021, 29, e00318. [Google Scholar] [CrossRef]
- Diederichs, E.; Picard, M.; Chang, B.P.; Misra, M.; Mohanty, A. Extrusion Based 3D Printing of Sustainable Biocomposites from Biocarbon and Poly(trimethylene terephthalate). Molecules 2021, 26, 4164. [Google Scholar] [CrossRef]
- Martins, L.S.; Cortat, L.I.; Zanini, N.C.; Barbosa, R.F.; de Souza, A.G.; Medeiros, S.F.; Rosa, D.S.; Mulinari, D.R. A versatile filler in polyhydroxyalcanoates filaments for FDM: A diverse panorama for pullulan application. Mater. Today Commun. 2021, 28, 102690. [Google Scholar] [CrossRef]
- Giani, N.; Mazzocchetti, L.; Benelli, T.; Bovo, M.; Gazzotti, S.; Torreggiani, D.; Tassinari, P.; Giorgini, L. A New Biocomposite Material Based on Wheat Waste and Suitable for 3D Printing Applications. Macromol. Symp. 2022, 405, 2100235. [Google Scholar] [CrossRef]
- Kong, X.; Dai, L.; Wang, Y.; Qiao, D.; Hou, S.; Wang, S. Influence of kenaf stalk on printability and performance of 3D printed industrial tailings based geopolymer. Constr. Build. Mater. 2021, 315, 125787. [Google Scholar] [CrossRef]
- Lohar, D.; Nikalje, A.; Damle, P. Development and testing of hybrid green polymer composite (HGPC) filaments of PLA reinforced with waste bio fillers. Mater. Today Proc. 2022, 62, 818–824. [Google Scholar] [CrossRef]
- Marton, A.M.; Monticeli, F.M.; Zanini, N.C.; Barbosa, R.F.; Medeiros, S.F.; Rosa, D.S.; Mulinari, D.R. Revalorization of Australian royal palm (Archontophoenix alexandrae) waste as reinforcement in acrylonitrile butadiene styrene (ABS) for use in 3D printing pen. J. Clean. Prod. 2022, 365, 132808. [Google Scholar] [CrossRef]
- Yang, F.; Ye, X.; Zhong, J.; Lin, Z.; Wu, S.; Hu, Y.; Zheng, W.; Zhou, W.; Wei, Y.; Dong, X. Recycling of waste crab shells into reinforced poly (lactic acid) biocomposites for 3D printing. Int. J. Biol. Macromol. 2023, 234, 122974. [Google Scholar] [CrossRef] [PubMed]
- Badouard, C.; Traon, F.; Denoual, C.; Mayer-Laigle, C.; Paës, G.; Bourmaud, A. Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Ind. Crops Prod. 2019, 135, 246–250. [Google Scholar] [CrossRef]
- Jiang, G.; Yang, T.; Xu, J.; Tao, D.; Luo, C.; Wang, C.; Dong, Q.; Wang, Y. Investigation into hydroxypropyl-methylcellulose-reinforced polylactide composites for fused deposition modelling. Ind. Crops Prod. 2020, 146, 112174. [Google Scholar] [CrossRef]
- Buschmann, B.; Henke, K.; Talke, D.; Saile, B.; Asshoff, C.; Bunzel, F. Additive Manufacturing of Wood Composite Panels for Individual Layer Fabrication (ILF). Polymers 2021, 13, 3423. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, K.; Chen, X.; Wang, J.; Peng, Y.; Ahzi, S.; Chen, C. Interfacial and mechanical properties of continuous ramie fiber reinforced biocomposites fabricated by in-situ impregnated 3D printing. Ind. Crops Prod. 2021, 170, 113760. [Google Scholar] [CrossRef]
- Mayer-Laigle, C.; Foulon, L.; Denoual, C.; Pernes, M.; Rondet, E.; Magueresse, A.; Barron, C.; Habrant, A.; Bourmaud, A.; Paës, G. Flax shives-PBAT processing into 3D printed fluorescent materials with potential sensor functionalities. Ind. Crops Prod. 2021, 167, 113482. [Google Scholar] [CrossRef]
- Mohan, D.; Bakir, A.N.; Sajab, M.S.; Bakarudin, S.B.; Mansor, N.N.; Roslan, R.; Kaco, H. Homogeneous distribution of lignin/graphene fillers with enhanced interlayer adhesion for 3D printing filament. Polym. Compos. 2021, 42, 2408–2421. [Google Scholar] [CrossRef]
- Morales, M.A.; Maranon, A.; Hernandez, C.; Porras, A. Development and Characterization of a 3D Printed Cocoa Bean Shell Filled Recycled Polypropylene for Sustainable Composites. Polymers 2021, 13, 3162. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Maio, A.; Gulino, E.F.; Alaimo, G.; Morreale, M. Green Composites Based on PLA and Agricultural or Marine Waste Prepared by FDM. Polymers 2021, 13, 1361. [Google Scholar] [CrossRef]
- Bahcegul, E.G.; Ozkan, N. 3D printing of crude lignocellulosic biomass extracts containing hemicellulose and lignin. Ind. Crops Prod. 2022, 186, 115234. [Google Scholar] [CrossRef]
- Romero-Ocaña, I.; Delgado, N.F.; Molina, S.I. Biomass waste from rice and wheat straw for developing composites by stereolithography additive manufacturing. Ind. Crops Prod. 2022, 189, 115832. [Google Scholar] [CrossRef]
- Scaffaro, R.; Citarrella, M.C.; Morreale, M. Green Composites Based on Mater-Bi® and Solanum lycopersicum Plant Waste for 3D Printing Applications. Polymers 2023, 15, 325. [Google Scholar] [CrossRef]
- Bergamonti, L.; Bergonzi, C.; Graiff, C.; Lottici, P.P.; Bettini, R.; Elviri, L. 3D printed chitosan scaffolds: A new TiO2 support for the photocatalytic degradation of amoxicillin in water. Water Res. 2019, 163, 114841. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Rahman, A.M.; Wei, X.; Pei, Z.; Truong, D.; Lucht, M.; Zou, N. 3D Printing of Biomass–Fungi Composite Material: Effects of Mixture Composition on Print Quality. J. Manuf. Mater. Process. 2021, 5, 112. [Google Scholar] [CrossRef]
- Romani, A.; Rognoli, V.; Levi, M. Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability 2021, 13, 7269. [Google Scholar] [CrossRef]
- Taieba Tuba, R.; Al Mazedur, R.; Zhijian, P.; Ketan, T.; Hongmin, Q.; Aleena, K. 3D printing of microalgae-enriched cookie dough: Determining feasible regions of process parameters for continuous extrusion. Green Manuf. Open 2023, 1, 11. [Google Scholar] [CrossRef]
- Roach, D.J.; Hamel, C.M.; Dunn, C.K.; Johnson, M.V.; Kuang, X.; Qi, H.J. The m4 3D printer: A multi-material multi-method additive manufacturing platform for future 3D printed structures. Addit. Manuf. 2019, 29, 100819. [Google Scholar] [CrossRef]
- Henke, K.; Talke, D.; Bunzel, F.; Buschmann, B.; Asshoff, C. Individual layer fabrication (ILF): A novel approach to additive manufacturing by the use of wood. Eur. J. Wood Wood Prod. 2021, 79, 745–748. [Google Scholar] [CrossRef]
- Kariz, M.; Sernek, M.; Obućina, M.; Kuzman, M.K. Effect of wood content in FDM filament on properties of 3D printed parts. Mater. Today Commun. 2018, 14, 135–140. [Google Scholar] [CrossRef]
- Sang, L.; Han, S.; Peng, X.; Jian, X.; Wang, J. Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105518. [Google Scholar] [CrossRef]
- Yavas, D.; Zhang, Z.; Liu, Q.; Wu, D. Interlaminar shear behavior of continuous and short carbon fiber reinforced polymer composites fabricated by additive manufacturing. Compos. Part B Eng. 2020, 204, 108460. [Google Scholar] [CrossRef]
- Heng, P.W.S.; Chan, L.W.; Chow, K.T. Development of Novel Nonaqueous Ethylcellulose Gel Matrices: Rheological and Mechanical Characterization. Pharm. Res. 2005, 22, 676–684. [Google Scholar] [CrossRef]
- Santamaría, A.; Lizaso, M.I.; Muñoz, M.E. Rheology of ethyl cellulose solutions. Macromol. Symp. 1997, 114, 109–119. [Google Scholar] [CrossRef]
- Bahcegul, E.; Toraman, H.E.; Erdemir, D.; Akinalan, B.; Ozkan, N.; Bakir, U. An unconventional approach for improving the integrity and mechanical properties of xylan type hemicellulose based films. RSC Adv. 2014, 4, 34117–34126. [Google Scholar] [CrossRef]
- Zilliox, C.; Debeire, P. Hydrolysis of wheat straw by a thermostable endoxylanase: Adsorption and kinetic studies. Enzym. Microb. Technol. 1998, 22, 58–63. [Google Scholar] [CrossRef]
- Liu, Z.; Bhandari, B.; Prakash, S.; Mantihal, S.; Zhang, M. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocoll. 2018, 87, 413–424. [Google Scholar] [CrossRef]
- M’barki, A.; Bocquet, L.; Stevenson, A. Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing. Sci. Rep. 2017, 7, 6017. [Google Scholar] [CrossRef] [Green Version]
- Boddepalli, U.; Panda, B.; Gandhi, I.S.R. Rheology and printability of Portland cement based materials: A review. J. Sustain. Cem. Mater. 2022, 12, 789–807. [Google Scholar] [CrossRef]
- Zadpoor, A.A. Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater. 2018, 85, 41–59. [Google Scholar] [CrossRef]
- O’bryan, C.S.; Kabb, C.P.; Sumerlin, B.S.; Angelini, T.E. Jammed Polyelectrolyte Microgels for 3D Cell Culture Applications: Rheological Behavior with Added Salts. ACS Appl. Bio Mater. 2019, 2, 1509–1517. [Google Scholar] [CrossRef]
- Zare, Y.; Mišković-Stanković, V.; Rhee, K.Y. The complex viscosity of polymer carbon nanotubes nanocomposites as a function of networks properties. Carbon Lett. 2019, 29, 535–545. [Google Scholar] [CrossRef]
- Iervolino, F.; Belgio, B.; Bonessa, A.; Potere, F.; Suriano, R.; Boschetti, F.; Mantero, S.; Levi, M. Versatile and non-cytotoxic GelMA-xanthan gum biomaterial ink for extrusion-based 3D bioprinting. Bioprinting 2023, 31, e00269. [Google Scholar] [CrossRef]
- Chan, S.; Pennings, R.M.; Edwards, L.; Franks, G.V. 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability. Addit. Manuf. 2020, 35, 101335. [Google Scholar] [CrossRef]
- Lee, K.P.M.; Brandt, M.; Shanks, R.; Daver, F. Rheology and 3D Printability of Percolated Graphene–Polyamide-6 Composites. Polymers 2020, 12, 2014. [Google Scholar] [CrossRef] [PubMed]
- Cox, W.P.; Merz, E.H. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 1958, 28, 619–622. [Google Scholar] [CrossRef]
- Bistany, K.L.; Kokini, J.L. Dynamic Viscoelastic Properties of Foods in Texture Control. J. Rheol. 1983, 27, 605–620. [Google Scholar] [CrossRef]
- Vernon-Carter, E.J.; Avila-de la Rosa, G.; Carrillo-Navas, H.; Carrera, Y.; Alvarez-Ramirez, J. Cox–Merz rules from phenomenological Kelvin–Voigt and Maxwell models. J. Food Eng. 2016, 169, 18–26. [Google Scholar] [CrossRef]
- Deswal, S.; Narang, R.; Chhabra, D. Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness. Int. J. Interact. Des. Manuf. 2019, 13, 1197–1214. [Google Scholar] [CrossRef]
- Dey, A.; Yodo, N. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. J. Manuf. Mater. Process. 2019, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Zhang, M.; Bhandari, B. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: A review. Crit. Rev. Food Sci. Nutr. 2018, 59, 3074–3081. [Google Scholar] [CrossRef] [PubMed]
- Tosto, C.; Tirillò, J.; Sarasini, F.; Sergi, C.; Cicala, G. Fused Deposition Modeling Parameter Optimization for Cost-Effective Metal Part Printing. Polymers 2022, 14, 3264. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Sheoran, A.J.; Kumar, H. Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Mater. Today Proc. 2019, 21, 1659–1672. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Rahman, A.M.; Rob, S.M.A.; Srivastava, A.K. Modeling and optimization of process parameters in face milling of Ti6Al4V alloy using Taguchi and grey relational analysis. Procedia Manuf. 2021, 53, 204–212. [Google Scholar] [CrossRef]
- Guo, T.; Holzberg, T.R.; Lim, C.G.; Gao, F.; Gargava, A.; Trachtenberg, J.E.; Mikos, A.G.; Fisher, J.P. 3D printing PLGA: A quantitative examination of the effects of polymer composition and printing parameters on print resolution. Biofabrication 2017, 9, 024101. [Google Scholar] [CrossRef] [Green Version]
- Kavimughil, M.; Leena, M.M.; Moses, J.; Anandharamakrishnan, C. Effect of material composition and 3D printing temperature on hot-melt extrusion of ethyl cellulose based medium chain triglyceride oleogel. J. Food Eng. 2022, 329, 111055. [Google Scholar] [CrossRef]
- Şahin, H.G.; Mardani-Aghabaglou, A. Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review. Constr. Build. Mater. 2022, 316, 125865. [Google Scholar] [CrossRef]
- Wang, X.; Jia, L.; Jia, Z.; Zhang, C.; Chen, Y.; Ma, L.; Wang, Z.; Deng, Z.; Banthia, N.; Zhang, Y. Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process. J. Build. Eng. 2022, 56, 104745. [Google Scholar] [CrossRef]
- Anderegg, D.A.; Bryant, H.A.; Ruffin, D.C.; Skrip, S.M., Jr.; Fallon, J.J.; Gilmer, E.L.; Bortner, M.J. In-situ monitoring of polymer flow temperature and pressure in extrusion based additive manufacturing. Addit. Manuf. 2019, 26, 76–83. [Google Scholar] [CrossRef]
- Serdeczny, M.P.; Comminal, R.; Mollah, M.T.; Pedersen, D.B.; Spangenberg, J. Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing. Addit. Manuf. 2020, 36, 101454. [Google Scholar] [CrossRef]
- Nzebuka, G.C.; Ufodike, C.O.; Rahman, A.M.; Gwynn, C.M.; Ahmed, M.F. Numerical modeling of the effect of nozzle diameter and heat flux on the polymer flow in fused filament fabrication. J. Manuf. Process. 2022, 82, 585–600. [Google Scholar] [CrossRef]
- Ufodike, C.O.; Ahmed, M.F.; Dolzyk, G. Additively manufactured biomorphic cellular structures inspired by wood microstructure. J. Mech. Behav. Biomed. Mater. 2021, 123, 104729. [Google Scholar] [CrossRef] [PubMed]
- Ufodike, C.O.; Nzebuka, G.C. Investigation of thermal evolution and fluid flow in the hot-end of a material extrusion 3D Printer using melting model. Addit. Manuf. 2021, 49, 102502. [Google Scholar] [CrossRef]
- Ufodike, C.O.; Wang, H.; Ahmed, M.F.; Dolzyk, G.; Jung, S. Design and modeling of bamboo biomorphic structure for in-plane energy absorption improvement. Mater. Des. 2021, 205, 109736. [Google Scholar] [CrossRef]
- Nienhaus, V.; Smith, K.; Spiehl, D.; Dörsam, E. Investigations on nozzle geometry in fused filament fabrication. Addit. Manuf. 2019, 28, 711–718. [Google Scholar] [CrossRef]
- Serdeczny, M.P.; Comminal, R.; Pedersen, D.B.; Spangenberg, J. Experimental and analytical study of the polymer melt flow through the hot-end in material extrusion additive manufacturing. Addit. Manuf. 2019, 32, 100997. [Google Scholar] [CrossRef]
Criteria for Eligibility | Search Library | Binary Strings for Query |
---|---|---|
| TAMU Library | (“Additive manufacturing*” OR “3D print*” OR “am methods*” OR “rapid prototyping*” OR “extrusion-based method*” OR “3d-print*” OR “3D printing” OR “3D-printing” (All Fields) AND “agriculturally derived materials*” OR “agri-food*” OR “agro-food*” OR “agrofood*” OR “agroindustrial*” OR “food*” OR “agricult*” (All Fields) AND “feedstock” OR “biomass*” OR “bio-mass*” OR “biowaste*” OR “waste*” OR “biomass-fungi*” OR “biomass-fungi composites*” OR “biocomposites*” OR “scrap” OR “biomass fungi*” (All Fields)) |
| ||
| ||
| Web of Science (WoS) | (((ALL = (“Additive manufacturing*” OR “3D print*” OR “am methods*” OR “rapid prototyping*” OR “3d-print*” OR “3D printing” OR “3D-printing”)) AND (ALL = (“feedstock” OR “biowaste*” OR “biomass*” OR “bio-mass*” OR “waste*” OR “biomass-fungi*” OR “biomass-fungi composites*” OR “biocomposites*” OR “scrap” OR “biomass fungi*”))) |
|
Principal Research Area | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|
Additive Manufacturing | // | // | // | // | [29] | [30] | [31] | // |
Agriculture and food science | // | // | [32] | // | // | // | // | // |
Biological science | // | // | // | // | // | // | [33] | // |
Biomaterials engineering | // | // | // | // | [34] | // | // | // |
Chemical engineering | // | // | // | // | [35] | // | // | // |
Composite science and engineering | // | // | // | // | [36] | [4,37] | [38,39,40,41,42] | // |
Food engineering | // | // | // | [43] | [44] | [45,46,47] | [48,49,50,51,52,53,54] | [55,56] |
Food Science and Nutrition | // | // | // | // | // | // | [57] | // |
Green chemistry and engineering | // | // | // | // | // | // | [58] | // |
Materials science and engineering | // | [59,60] | [61] | [62] | // | [63,64,65,66] | [67,68,69,70,71] | // |
Polymer science and engineering | // | // | // | [72] | [73] | [3,74,75,76,77,78,79] | [80,81] | [82] |
Water research | // | // | // | [83] | // | // | // |
Biowaste Types | References | Biowaste Sources | Biowastes | Matrix | % w.t. |
---|---|---|---|---|---|
Anthocyanin antioxidant | [47] | Purple sweet potato (PPP) | Purple sweet potato powder, mulberry powder, carrot powder, black wolfberry powder, roselle powder | Pulped yam | 0.5 to 6 |
Bean | [53] | Phaseolus vulgaris L. | Protein extract from common bean | Sodium alginate, gelatin, water for syringe-based 3D printing; agar, xanthan, water for gear-based 3D printing | 40 for syringe based and 10 for gear based |
Biomass | [32] | Algae | Nostoc sphaeroides | Water/Juice | 5 |
[36] | Switch grass, rice straw, sorghum stalks, and hemp | Biomass | Water | 40 | |
[35] | Wood and rosin | Ethyl cellulose macromonomer (ECM) and rosin-based monomer (DAGMA) | HEA/DAGMA | // | |
[44] | Arthrospira platensis | Antioxidants | Wheat flour, butter, powdered sugar, milk, xanthan gum | 0.8 to 10 | |
[65] | Miscanthus | Biocarbon | Poly(trimethylene terephthalate) | 5 to 10 | |
[77] | Oil palm empty fruit bunch | Organosolv lignin | Acrylonitrile butadiene styrene (ABS) | 5 to 15 | |
[80] | Corn | Hemicellulose and lignin | Water | 76 to 86 | |
[33] | Spirulina (arthrospira platensis) and/or chlorella vulgaris | Chlorella vulgaris and arthrospira platensis (“spirulina”) biomass | Corn, rice flours, olive oil and water | 5 to 30 | |
[40] | Corn | Lignocellulosic corncob | Polyhydroxybutyrate (PHB)/polylactic acid (PLA) biopolymer | 0 to 8 | |
[41] | Switch grass, rice straw, sorghum stalks, and hemp | Biomass | Water | 40 | |
Bone and shell | [64] | Cuttlefish, egg, mussel | Nanometric hydroxyapatite (HA) | Poly(ε-caprolactone) (PCL) | 15 |
Bran | [67] | Wheat | Wheat wastes (middlings of bran) | Poly lactic acid (PLA) | 10 |
By products | [43] | Cod | Surimi | Water | 25 |
Chips, stalks | [74] | Wood | Wood powder | Wood powder and adhesives | // |
[39] | Lignin from industrial waste | Ethyl acetate treated lignin nanospheres (EALNSs) | Poly lactic acid (PLA) | 0.50 | |
Fiber | [70] | Royal palm | Palm fiber | Acrylonitrile butadiene styrene (ABS) | 5 to 20 |
[72] | Skin of flax plant | Flax fiber | Poly lactic acid/polybutylene adipate terephthalate | 10 to 30 | |
[73] | Vegetable | Hydroxypropyl methylcellulose (HPMC) | Poly lactic acid (PLA) | 1 to 7 | |
[75] | Ramie plants | Ramie fiber | Poly lactic acid (PLA) | // | |
Fishbone | [42] | Engraulis encrasicolus (EE) fish | Anchovy fishbone powder | Polylactic acid (PLA)/mater-bi® ef51l (mb) | 10 to 20 |
Flour | [62] | Wood | Wood flour particles | Different printing methods had different matrix | // |
Gum | [55] | Wheat, corn, soy and dairy | Xanthan and guar gum | Soy protein isolate emulsion gel | 0.2 and 0.5 |
[56] | Wheat, corn, soy and dairy | Konjac gum (KGM)/xanthan gum (XG) | Water | 0.15 to 0.9 | |
Hulls | [4] | Soy | Biocarbon | Recycled high-density polyethylene (HDPE) and polypropylene (PP) | 20 |
Husk | [37] | Buckwheat | Buckwheat husk | Poly lactic acid/polybutylene adipate terephthalate | 5 to 15 |
[30] | Peanut | Peanut husk powder | Polyether sulfone | 10 to 25 | |
[3] | Rice | Rice husk fiber | Recycled polypropylene | 5 to 10 | |
[58] | Corn | Corn starch and cellulose fiber | Water | 34 to 44 | |
Oil | [31] | Vegetable | Soybean oil epoxidized acrylate | Soyabean oil epoxidized acrylate | // |
Peel and bagasse | [46] | Potato | Potato peel powder | Guar gum, whole wheat, table salt, vegetable oil | 0 to 100 |
[52] | Banana | Banana peel | Banana peel paste | 40 | |
[51] | Banana and sugarcane | Banana peel (BP) and sugarcane bagasse (SCB) | Banana peel and sugarcane bagasse paste | 10 to 90 | |
Plant biomass | [79] | Opuntia Ficus indica | Cladodes | Polylactic acid (PLA) | // |
[82] | Solanum Lycopersicon plant | Lignocellulosic wastes | Mater-Bi® EF51L (MB) | 5 to 15 | |
ProteinIsolate | [50] | Soy | Soy protein isolate | Water and Na alginate solution | 20 |
[54] | Soy | Soy protein isolate (SPI) | Water | 6 | |
PulpBiomass | [48] | Wood | Cellulose nanocrystals | Tomato, spinach, and applesauce puree | 2.5 to 7.5 |
[63] | Wood, cotton, hemp | Ethyl cellulose | A-terpineol | 8 | |
Sawdust | [34] | Wood | Wood powder | Polylactic acid (PLA) | 30 |
[38] | Beechwood | Biomass | Water | 5–28.5 | |
Shell | [59] | Macadamia nut | Micro-ground macadamia nutshell polymer composite | Acrylonitrile butadiene styrene (ABS) | // |
[60] | Walnut | Walnut shell powder | Copolyester hot melt adhesive (co-pes) | 0 to 52 | |
[61] | Walnut | Walnut shell powder | Copolyester (co-pes) powder, copolyamide (co-pa) | 40 | |
[83] | Crabs and other crustaceans | Chitosan | Water and glacial acetic acid | 2 | |
[69] | Wall nut and egg | Powder from eggshell, walnut shell, and white marble | PLA and abs with different biofillers | 2.5 to 5 | |
[71] | Crabs and other crustaceans | Crab shell powder | Poly (lactic acid) (PLA) | 1.50 | |
[78] | Cocoa bean | Cocoa bean shells | Recycled polypropylene | 5.00 | |
Shives | [29] | Industrial plant | Weed, hemp | Poly lactic acid | Hemp 15–25, Weed 10 to 15 |
[76] | Flax | Fluorescent rafted flax shives (FG-FS) and flax shives (FS) | Poly-(butylene-terephthalate) (PBAT) | 10 | |
Skin | [49] | Seafood | Gelatin | Water | 2 to 14 |
Soybean byproduct | [45] | Soybean | Okara | Water | 25 to 50 |
Stalk | [68] | Kenaf | Kenaf straw core (KSC) and kenaf fiber (KF) | Fly ash (FA), ground granulated blast furnace slag (GGBFS) (geopolymer) | Ksc 1.5 and kf 0.2 |
Starch | [57] | Potato, corn, vegetables | Carbohydrate | Beef | // |
Strain | [66] | Polymorphic fungus Aureobasidium pullulans | Pullulan (PUL) | Poly(3-hydroxybutyrate-co-hydroxy valerate) (PHBV), hydroxyvalerate (HV) | 5 |
Straw | [81] | Rice, wheat | Straw fiber | Photocurable resin | 5 |
Reference | 3D Printer Name | Layer Height (mm) | Specifications for SLS |
---|---|---|---|
[60] | AFS-360 rapid prototyping equipment | 0.10 | Laser power of 14 W, scanning speed of 2000 mm/s, layer thickness of 0.1 mm, scan spacing of 0.2 mm |
[61] | AFS-360 rapid prototyping equipment | 0.15 | Wavelength of 10.6 μm and laser power of 55 W, Scan speed 2000 mm/s, scan spacing 0.2, laser power 12 |
[30] | AFS-360 rapid prototyping machine | 0.15 | Laser wavelength 10.6 micrometer, scan speed 2000 mm/s, scan spacing 0.2 mm, processing temperature 75, preheating 82 and laser power 14 W |
References | 3D Printer Name | Specs for Stereolithography Printing |
---|---|---|
[35] | Creality LD 001 | // |
[31] | Original PRUSA SLI | Irradiation dose 0.75–1.5 mj·cm2, intensity 0.1 mw/cm2 and exposure time 7.5–35 s per 0.05 mm layer |
[81] | Forms Lab 1 | 405 nm laser |
AM Methods | References | Printer Size | 3D Printer Name | 3D Printer Type | Nozzle Sizes for DIW and DCW (mm) | Specifications for Ink Jet Printing | Specifications for Binder Jet Printing |
---|---|---|---|---|---|---|---|
Binder jetting, Direct ink writing (DIW) and Direct cryo writing (DCW) | [62] | Large, small | Hyrel3D 30M, Dimatix DMP-2831 piezoelectric ink jet printer, Cometrue T10 binder jet printer | Extrusion-based printer with custom nozzles and inkjet printer with a 10 pL cartridge which had 16 nozzles along with a binder jet printer | For DIW and DCW, the nozzle was 1.2 mm | Ink jetting frequency was set to 1000 Hz using 200 or 600 dpi. Platform temperature was set to 60 °C. | High-resolution printing setup was selected, with level 3 counter width and layer height of 0.08 mm for binder jetting. |
Individual Layer Fabrication (ILF) | [74] | Large | Custom modified for Individual Layer Fabrication | Binder jetting-based system | // | // | Brush roller and a scatter roller was used. Electro-pneumatically driven jet valve system was used for adhesive distribution. |
AM Methods | Application Sectors | References | New Materials | Product Applications |
---|---|---|---|---|
Binder jetting, Direct ink writing (DIW) and Direct cryo writing | Construction sector for thermal insulation | [62] | Yes | Developing 3D printing materials replacing synthetic binder and using 100% wood extracts |
Binder jetting—ILF | Construction industry | [74] | No, but new in 3D printing process. | Wood panels |
FDM | Biomedical industry | [29] | Yes | Biomedical devices |
[71] | Yes | Developing sustainable bio-based Dd printable filaments | ||
[66] | Yes | Developing 3D printing filament using pullulan to apply in tissue engineering | ||
Electrical and automotive industry | [65] | Yes, never used BC in PTT matrix | Customizable, non-structural components in electrical and automotive industries | |
Application sector unspecified | [59] | Yes | 3D printing filament improvement for lightweight print | |
[72] | No, already used in [89] | Biocomposite production | ||
[73] | Yes | 3D printing filament development using biofillers | ||
[34] | No | Developing sustainable bio-based 3D printable materials (potential exterior use) | ||
[77] | Yes, graphene fillers added with biofiller | Improving 3D printing materials interlayer adhesion properties | ||
[75] | No, already used in [90] [91] | Biodegradable filament production | ||
[37] | Only shown as representative example of a wide range of lignocellulosic waste that could be used as an alternative filler | Cheaper filament production | ||
[76] | Yes | Fluorescent emitting 3D printing filament development | ||
[79] | Yes | Developing sustainable bio-based 3D printable materials for green fabrication of furniture panels, objects, toys | ||
[4] | Yes | Developing filaments using 100% recyclable plastics and soybean residues | ||
[78] | Yes | 3D printable composite filaments based on agro-industrial and polymeric wastes such as cocoa bean shell (CBS) | ||
[3] | Yes | 3D printable composite filaments based on agro-industrial and polymeric wastes such as rice husk | ||
[70] | Yes | Developing cheaper 3D printable filaments | ||
[42] | Yes | 3D printable composite filaments based on fish residue such as fish bone powder | ||
[69] | No | Developing biofilled filaments for 3D printing | ||
[67] | No | 3D printing filament development using biofillers | ||
[39] | Yes | Improving filaments for 3D printing | ||
[40] | Yes | 3D printable composite filaments based on agro-industrial and polymeric wastes such as corncob biomass | ||
[82] | Yes | Developing sustainable bio-based 3D printable materials | ||
LDM | Biomedical industry | [64] | No | Bone tissue generation |
Construction sector | [68] | Yes | Developing crack resistance, high shape retention and low carbon emission of 3D-printed material | |
Construction, furniture industries | [38] | No | Biomass–fungi biocomposite 3D printing | |
Food industry | [32] | Yes, but already used for traditional food in different countries | 3D food printing for controlled nutrition supply | |
[43] | Yes | 3D fish printing | ||
[44] | No | Developing 3D printable food ink | ||
[46] | Yes | Food printing | ||
[47] | Yes | Developing color 3D printable food ink | ||
[45] | No | Developing okara ink as food without additive to alter rheological properties | ||
[57] | No, but new for beef 3D printing | Using oxidized starch to improve 3D food printing quality | ||
[33] | No | Gluten-free snack production | ||
[48] | Yes, because previously used to create biocompatible cell culture scaffolds, high-strength aerogel structures, and packaging | 3D food printing for controlled nutrition supply | ||
[49] | Yes | Food printing | ||
[54] | No | Developing 3D-printable food ink | ||
[50] | No | Protein-based food production | ||
[55] | No | Developing 3D-printable food ink | ||
[56] | Yes | Developing 3D-printable food ink | ||
Food, electronic, pharmaceutical industry | [63] | Tested in different papers [92,93] | Hypothesis for food printing, flexible electronic parts, tablet printing | |
Application sector unspecified | [36] | Yes | Developing printable materials for packaging, construction, furniture | |
[80] | No, already used in [94,95] | 3D printing crude lignocellulosic biomass extracts | ||
[58] | Yes | Developing thermally tunable sustainable 3D printing inks | ||
Packaging industry | [41] | No | Packaging, construction, furniture industry | |
[51] | Yes | Developing 3D printable food packaging materials | ||
[52] | Yes | Developing 3D printable food packaging materials | ||
Wastewater treatment plants | [83] | Yes | Hypothesis to use in wastewater cleaning sector for cleaning pollutants such as amoxicillin | |
Selective laser sintering | Biomedical, construction, electronic and aerospace industry | [30] | Yes | Producing environmentally friendly SLS materials to use in manufacturing medical equipment, automotive parts |
Application sector unspecified | [60] | Yes | Developing sustainable, low-cost, and environmentally friendly feedstock for SLS printing | |
[61] | Yes | Developing sustainable, low-cost, and environmentally friendly feedstock for SLS printing | ||
Stereolithography | Aerospace, automotive, and electronics industries | [35] | Yes | Hypothesis to use in flexible conductive hydrogels that have important potential application in the flexible electronic materials and smart photoelectric materials and developing sustainable and green polymeric 3D printable materials for replacing petroleum-based materials use |
Construction sector | [81] | Yes | Developing composites for stereolithography which can be used for thermal insulation | |
Application sector unspecified | [31] | Yes, because nanocellulose has been used as a filler in the resin | Reducing petrochemical use and new resin production | |
LDM—Syringe and gear based | Food industry | [53] | Yes | Developing 3D printable food ink |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, A.M.; Rahman, T.T.; Pei, Z.; Ufodike, C.O.; Lee, J.; Elwany, A. Additive Manufacturing Using Agriculturally Derived Biowastes: A Systematic Literature Review. Bioengineering 2023, 10, 845. https://doi.org/10.3390/bioengineering10070845
Rahman AM, Rahman TT, Pei Z, Ufodike CO, Lee J, Elwany A. Additive Manufacturing Using Agriculturally Derived Biowastes: A Systematic Literature Review. Bioengineering. 2023; 10(7):845. https://doi.org/10.3390/bioengineering10070845
Chicago/Turabian StyleRahman, Al Mazedur, Taieba Tuba Rahman, Zhijian Pei, Chukwuzubelu Okenwa Ufodike, Jaesung Lee, and Alaa Elwany. 2023. "Additive Manufacturing Using Agriculturally Derived Biowastes: A Systematic Literature Review" Bioengineering 10, no. 7: 845. https://doi.org/10.3390/bioengineering10070845
APA StyleRahman, A. M., Rahman, T. T., Pei, Z., Ufodike, C. O., Lee, J., & Elwany, A. (2023). Additive Manufacturing Using Agriculturally Derived Biowastes: A Systematic Literature Review. Bioengineering, 10(7), 845. https://doi.org/10.3390/bioengineering10070845