A New Fuzzy-Based Classification Method for Use in Smart/Precision Medicine
Abstract
:1. Introduction
2. Data Processing Specifics
2.1. Medical Data
2.2. Fuzzy Logic
3. A New Fuzzy-Based Method for the Classification of Medical Data
4. Principal Steps of the New Method
4.1. Feature Extraction
4.2. Dimensionality Reduction
4.3. Fuzzification
- (a)
- , if, and only if, x is not the member of set Ai,j;
- (b)
- , if, and only if, x is not the full member of set Ai,j;
- (c)
- , if, and only if, x is the full member of set Ai,j.
4.4. Fuzzy Classification
- Accuracy is the ratio of correctly predicted instances to all predicted ones:
- Specificity is the proportion of correctly identified of true negative results:
- Sensitivity is the probability of a correct initial prognosis:
- Precision is the proportion of correct positive predicted instances to the total number of instances in terms of positive predicted instances:
- The F1 score is the harmonic mean of sensitivity and precision:
5. Examples of Method Application
5.1. Signal Classification
5.2. Large Dimensional Data Classification
5.3. Numeric Data Classification
5.4. Expert Data Classification
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Krishnan, E. Big Data and Clinicians: A Review on the State of the Science. JMIR Public Health Surveill. 2014, 2, e1. [Google Scholar] [CrossRef] [PubMed]
- Iwashyna, T.J.; Liu, V. What’s So Different about Big Data?. A Primer for Clinicians Trained to Think Epidemiologically. Ann. Am. Thorac. Soc. 2014, 11, 1130–1135. [Google Scholar] [CrossRef] [Green Version]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet Things Cyber-Phys. Syst. 2022, 2, 12–30. [Google Scholar] [CrossRef]
- DeTore, A.W. Medical informatics: An introduction to computer technology in medicine. Am. J. Med. 1988, 85, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Paik, S.-H.; Kim, D.-J. Smart Healthcare Systems and Precision Medicine. Adv. Exp. Med. Biol. 2019, 1192, 263–279. [Google Scholar] [CrossRef]
- Thirunavukarasu, R.; Gnanasambandan, R.; Gopikrishnan, M.; Palanisamy, V. Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review. Comput. Biol. Med. 2022, 149, 106020. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Z.; Wu, J.; Tan, Y. Medical decision support system for cancer treatment in precision medicine in developing countries. Expert Syst. Appl. 2021, 186, 115725. [Google Scholar] [CrossRef]
- Altameem, A.; Kovtun, V.; Al-Ma’aitah, M.; Altameem, T.; Fouad, H.; Youssef, A.E. Patient’s data privacy protection in medical healthcare transmission services using back propagation learning. Comput. Electr. Eng. 2022, 102, 108087. [Google Scholar] [CrossRef]
- Mosavi, N.S.; Santos, M.F. How Prescriptive Analytics Influences Decision Making in Precision Medicine. Procedia Comput. Sci. 2020, 177, 528–533. [Google Scholar] [CrossRef]
- Kalra, D.; Ingram, D. Electronic Health Records. In Information Technology Solutions for Healthcare. Health Informatics; Zieliński, K., Duplaga, M., Ingram, D., Eds.; Springer: London, UK, 2006. [Google Scholar] [CrossRef] [Green Version]
- Delen, D. Prescriptive Analytics The Final Frontier for Evidence-Based Management and Optimal Decision; Pearson Education Inc.: London, UK, 2020. [Google Scholar]
- Tran, T.Q.B.; du Toit, C.; Padmanabhan, S. Artificial intelligence in healthcare—the road to precision medicine. J. Hosp. Manag. Heal. Policy 2021, 5, 29. [Google Scholar] [CrossRef]
- Kliem, P.S.; Tisljar, K.; Baumann, S.M.; Grzonka, P.; De Marchis, G.M.; Bassetti, S.; Bingisser, R.; Hunziker, S.; Marsch, S.; Sutter, R. First-Response ABCDE Management of Status Epilepticus: A Prospective High-Fidelity Simulation Study. J. Clin. Med. 2022, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.Q.; Lan, L.; Kay, J.; Lohre, R.; Ayeni, O.R.; Goel, D.P.; de Sa, D. Immersive Virtual Reality for Surgical Training: A Systematic Review. J. Surg. Res. 2021, 268, 40–58. [Google Scholar] [CrossRef]
- Verma, D.; Bach, K.; Mork, P.J. Application of Machine Learning Methods on Patient Reported Outcome Measurements for Predicting Outcomes: A Literature Review. Informatics 2021, 8, 56. [Google Scholar] [CrossRef]
- Yu, Y.; Li, M.; Liu, L.; Li, Y.; Wang, J. Clinical big data and deep learning: Applications, challenges, and future outlooks. Big Data Min. Anal. 2019, 2, 288–305. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Mallick, B.; Chakraborty, S. Mining of association rules for treatment of dental diseases. J. Decis. Anal. Intell. Comput. 2022, 2, 1–11. [Google Scholar] [CrossRef]
- Doğan, R.I.; Kim, S.; Chatr-Aryamontri, A.; Wei, C.-H.; Comeau, D.C.; Antunes, R.; Matos, S.; Chen, Q.; Elangovan, A.; Panyam, N.C.; et al. Overview of the BioCreative VI Precision Medicine Track: Mining protein interactions and mutations for precision medicine. Database 2019, 2019, bay147. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.; Long, T.; Jia, X.; Lu, W.; Gu, X.; Iqbal, Z.; Jiang, S. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci. Rep. 2019, 9, 1076. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Pan, Y.; Wang, C.; Ji, J. Biomedical semantic indexing by deep neural network with multi-task learning. BMC Bioinform. 2018, 19, 502. [Google Scholar] [CrossRef] [Green Version]
- Izonin, I.; Tkachenko, R.; Duriagina, Z.; Shakhovska, N.; Kovtun, V.; Lotoshynska, N. Smart Web Service of Ti-Based Alloy’s Quality Evaluation for Medical Implants Manufacturing. Appl. Sci. 2022, 12, 5238. [Google Scholar] [CrossRef]
- Tabares-Soto, R.; Orozco-Arias, S.; Romero-Cano, V.; Bucheli, V.S.; Rodríguez-Sotelo, J.L.; Jiménez-Varón, C.F. A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data. PeerJ Comput. Sci. 2020, 6, e270. [Google Scholar] [CrossRef] [Green Version]
- Backenroth, D.; Chase, H.S.; Wei, Y.; Friedman, C. Monitoring prescribing patterns using regression and electronic health records. BMC Med. Inform. Decis. Mak. 2017, 17, 175. [Google Scholar] [CrossRef] [Green Version]
- Arvanitis, A.; Furxhi, I.; Tasioulis, T.; Karatzas, K. Prediction of the effective reproduction number of COVID-19 in Greece. A machine learning approach using Google mobility data. J. Decis. Anal. Intell. Comput. 2021, 1, 1–21. [Google Scholar] [CrossRef]
- Kasbekar, P.U.; Goel, P.; Jadhav, S.P. A Decision Tree Analysis of Diabetic Foot Amputation Risk in Indian Patients. Front. Endocrinol. 2017, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Tai, A.M.; Albuquerque, A.; Carmona, N.E.; Subramanieapillai, M.; Cha, D.S.; Sheko, M.; Lee, Y.; Mansur, R.; McIntyre, R.S. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry. Artif. Intell. Med. 2019, 99, 101704. [Google Scholar] [CrossRef] [PubMed]
- Kesler, S.R.; Rao, A.; Blayney, D.W.; Oakley-Girvan, I.A.; Karuturi, M.; Palesh, O. Predicting Long-Term Cognitive Outcome Following Breast Cancer with Pre-Treatment Resting State fMRI and Random Forest Machine Learning. Front. Hum. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, V.; Zhang, H. Depth importance in precision medicine (DIPM): A tree- and forest-based method for right-censored survival outcomes. Biostatistics 2020, 23, 157–172. [Google Scholar] [CrossRef]
- Rabcan, J.; Levashenko, V.; Zaitseva, E.; Kvassay, M. EEG Signal Classification Based On Fuzzy Classifiers. IEEE Trans. Ind. Inform. 2021, 18, 757–766. [Google Scholar] [CrossRef]
- Zaitseva, E.; Levashenko, V.; Rabcan, J.; Krsak, E. Application of the Structure Function in the Evaluation of the Human Factor in Healthcare. Symmetry 2020, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- Abbod, M.F.; von Keyserlingk, D.G.; Linkens, D.A.; Mahfouf, M. Survey of utilisation of fuzzy technology in Medicine and Healthcare. Fuzzy Sets Syst. 2001, 120, 331–349. [Google Scholar] [CrossRef]
- Lin, I.; Loyola-González, O.; Monroy, R.; Medina-Pérez, M.A. A Review of Fuzzy and Pattern-Based Approaches for Class Imbalance Problems. Appl. Sci. 2021, 11, 6310. [Google Scholar] [CrossRef]
- Loh, H.W.; Ooi, C.P.; Seoni, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Comput. Methods Programs Biomed. 2022, 226, 107161. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, J.; Subathra, M.S.P.; Mohammed, M.A.; Damaševičius, R.; Sairamya, N.J.; George, S.T. Automated epileptic seizure detection in pediatric subjects of chb-mit eeg database—A survey. J. Pers. Med. 2021, 11, 1028. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://uloz.to/file/W1WPexrq9k6Y/rats-data#!ZJWwMQR2ZGExBQqzLJH1AQLlBGuvZyx2nmyTAyxlEzu5Lwt5Lj== (accessed on 1 February 2023).
- Radha, P. Various Feature Selection Techniques in Type 2 Diabetic Patients for the Prediction of Cardiovascular Disease. Int. J. Recent Innov. Trends Comput. Commun. 2019, 7, 17–20. [Google Scholar] [CrossRef]
- Rabcan, J.; Zaitseva, E.; Levashenko, V.; Kvassay, M.; Surda, P.; Macekova, D. Fuzzy Decision Tree Based Method in Decision-Making of COVID-19 Patients’ Treatment. Mathematics 2021, 9, 3282. [Google Scholar] [CrossRef]
- Bodkhe, B.K.; Sood, S. Prediction of disease using fuzzy random forest. Int. J. Intell. Enterp. 2021, 8, 397–406. [Google Scholar] [CrossRef]
- Chatterjee, S.; Das, A. An ensemble algorithm using quantum evolutionary optimization of weighted type-II fuzzy system and staged Pegasos Quantum Support Vector Classifier with multi-criteria decision making system for diagnosis and grading of breast cancer. Soft Comput. 2023, 27, 7147–7178. [Google Scholar] [CrossRef]
- Sharma, G.; Umapathy, K.; Krishnan, S. Trends in audio signal feature extraction methods. Appl. Acoust. 2020, 158, 107020. [Google Scholar] [CrossRef]
- Polat, K.; Kara, S.; Güven, A.; Güneş, S. Usage of class dependency based feature selection and fuzzy weighted pre-processing methods on classification of macular disease. Expert Syst. Appl. 2009, 36, 2584–2591. [Google Scholar] [CrossRef]
- Delgado, M.; Ruiz, M.D.; Sánchez, D.; Vila, M.A. Fuzzy quantification: A state of the art. Fuzzy Sets Syst. 2014, 242, 1–30. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, P.; Wang, Y.; Li, H. A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation. Appl. Energy 2022, 325, 119849. [Google Scholar] [CrossRef]
- Glöckner, I. Fuzzy Quantifiers: A Computational Theory, Studies in Fuzziness and Soft Computing; Springer: New York, NY, USA, 2006; Volume 193. [Google Scholar]
- Nefti, S.; Oussalah, M. Probabilistic-fuzzy clustering algorithm. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics, Hague, The Netherlands, 10–13 October 2004; Volume 5, pp. 4786–4791. [Google Scholar]
- Andreu-Perez, J.; Poon, C.C.Y.; Merrifield, R.D.; Wong, S.T.C.; Yang, G.-Z. Big Data for Health. IEEE J. Biomed. Health Inform. 2015, 19, 1193–1208. [Google Scholar] [CrossRef]
- Laney, D. 3D data management: Controlling data volume, velocity, and variety. In Application Delivery Strategies; META Group Inc.: Stamford, UK, 2001. [Google Scholar]
- De Mauro, A.; Greco, M.; Grimaldi, M. A formal defnition of big data based on its essential features. Libr. Rev. 2016, 65, 122–135. [Google Scholar] [CrossRef]
- Motai, Y.; Alam Siddique, N.; Yoshida, H. Heterogeneous data analysis: Online learning for medical-image-based diagnosis. Pattern Recognit. 2017, 63, 612–624. [Google Scholar] [CrossRef]
- Li, Z.; Qu, L.; Zhang, G.; Xie, N. Attribute selection for heterogeneous data based on information entropy. Int. J. Gen. Syst. 2021, 50, 548–566. [Google Scholar] [CrossRef]
- Yue, L.; Tian, D.; Chen, W.; Han, X.; Yin, M. Deep learning for heterogeneous medical data analysis. World Wide Web 2020, 23, 2715–2737. [Google Scholar] [CrossRef]
- Luo, Y.; Ahmad, F.S.; Shah, S.J. Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction. J. Cardiovasc. Transl. Res. 2017, 10, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Begoli, E.; Bhattacharya, T.; Kusnezov, D. The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 2019, 1, 20–23. [Google Scholar] [CrossRef]
- Geiger, B.C.; Kubin, G. Information Loss in Deterministic Signal Processing Systems, 1st ed.; Springer International Publishing: New York, NY, USA, 2018. [Google Scholar]
- Potapov, P. On the loss of information in PCA of spectrum-images. Ultramicroscopy 2017, 182, 191–194. [Google Scholar] [CrossRef]
- Yager, R.R. Toward a General Theory of Reasoning with Uncertainty, I: Nonspecificity and Fuzziness. Int. J. Man-Mach. Stud. 1986, 25, 613–631. [Google Scholar] [CrossRef]
- Rokach, L. Using Fuzzy Logic in Data Mining. In Data Mining and Knowledge Discovery Handbook; Springer: New York, NY, USA, 2010; pp. 505–520. [Google Scholar]
- Burkov, A.; Paquet, S.; Michaud, G.; Valin, P. An Empirical Study of Uncertainty Measures in the Fuzzy Evidence Theory. In Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 453–460. [Google Scholar]
- Zadeh, L.A. A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 1983, 9, 149–184. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Kaur, A.; Kaur, I. An empirical evaluation of classification algorithms for fault prediction in open source projects. J. King Saud Univ.—Comput. Inf. Sci. 2018, 30, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Anders, C.; Arnrich, B. Wearable electroencephalography and multi-modal mental state classification: A systematic literature review. Comput. Biol. Med. 2022, 150, 106088. [Google Scholar] [CrossRef]
- Martinez-Ríos, E.A.; Bustamante-Bello, M.R.; Arce-Sáenz, L.A. A Review of Road Surface Anomaly Detection and Classification Systems Based on Vibration-Based Techniques. Appl. Sci. 2022, 12, 9413. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hammad, A.; Ali, A.A. Human emotion recognition from EEG-based brain–computer interface using machine learning: A comprehensive review. Neural Comput. Appl. 2022, 34, 12527–12557. [Google Scholar] [CrossRef]
- Arpitha, Y.; Madhumathi, G.L.; Balaji, N. Spectrogram analysis of ECG signal and classification efficiency using MFCC feature extraction technique. J. Ambient. Intell. Humaniz. Comput. 2021, 13, 757–767. [Google Scholar] [CrossRef]
- Petrantonakis, P.C.; Hadjileontiadis, L.J. Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis. IEEE Trans. Affect. Comput. 2010, 1, 81–97. [Google Scholar] [CrossRef]
- Peng, Y.; Qiu, T.; Wei, L. An approach to extracting graph kernel features from functional brain networks and its applications to the analysis of the noisy EEG signals. Biomed. Signal Process. Control 2023, 80, 104269. [Google Scholar] [CrossRef]
- Alharbey, R.; Alsubhi, S.; Daqrouq, K.; Alkhateeb, A. The continuous wavelet transform using for natural ECG signal arrhythmias detection by statistical parameters. Alex. Eng. J. 2022, 61, 9243–9248. [Google Scholar] [CrossRef]
- Chen, J.; Bin, H.; Moore, P.; Zhang, X.; Ma, X. Electroencephalogram-based emotion assessment system using ontology and data mining techniques. Appl. Soft Comput. 2015, 30, 663–674. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, N.; Zhang, Y. A Common Spatial Pattern and Wavelet Packet Decomposition Combined Method for EEG-Based Emotion Recognition. J. Adv. Comput. Intell. Intell. Inform. 2019, 23, 274–281. [Google Scholar] [CrossRef]
- Jiang, C.; Li, Y.; Tang, Y.; Guan, C. Enhancing EEG-Based Classification of Depression Patients Using Spatial Information. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Subasi, A. Eeg signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 2007, 32, 1084–1093. [Google Scholar] [CrossRef]
- Polat, K.; Güneş, S. Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Syst. Appl. 2008, 34, 2039–2048. [Google Scholar] [CrossRef]
- Parhizkar, R.; Barbotin, Y.; Vetterli, M. Sequences with minimal time–frequency uncertainty. Appl. Comput. Harmon. Anal. 2015, 38, 452–468. [Google Scholar] [CrossRef]
- Subha, D.P.; Joseph, P.K.; Acharya, R.; Lim, C.M. EEG Signal Analysis: A Survey. J. Med. Syst. 2010, 34, 195–212. [Google Scholar] [CrossRef]
- Li, M.; Chen, W.; Zhang, T. FuzzyEn-based features in FrFT-WPT domain for epileptic seizure detection. Neural Comput. Appl. 2019, 31, 9335–9348. [Google Scholar] [CrossRef]
- Li, M.; Wang, R.; Yang, J.; Duan, L. An Improved Refined Composite Multivariate Multiscale Fuzzy Entropy Method for MI-EEG Feature Extraction. Comput. Intell. Neurosci. 2019, 2019, 7529572. [Google Scholar] [CrossRef]
- Martinez, A.; Kak, A. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Hesamian, G.; Akbari, M.G. Principal component analysis based on intuitionistic fuzzy random variables. Comput. Appl. Math. 2019, 38, 158. [Google Scholar] [CrossRef]
- Subasi, A.; Gursoy, M.I. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 2010, 37, 8659–8666. [Google Scholar] [CrossRef]
- Akinola, O.O.; Ezugwu, A.E.; Agushaka, J.O.; Abu Zitar, R.; Abualigah, L. Multiclass feature selection with metaheuristic optimization algorithms: A review. Neural Comput. Appl. 2022, 34, 19751–19790. [Google Scholar] [CrossRef] [PubMed]
- Naheed, N.; Shaheen, M.; Khan, S.A.; Alawairdhi, M.; Khan, M.A. Importance of Features Selection, Attributes Selection, Challenges and Future Directions for Medical Imaging Data: A Review. Comput. Model. Eng. Sci. 2020, 125, 315–344. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Maldonado, J.; Riff, M.C.; Neveu, B. A review of recent approaches on wrapper feature selection for intrusion detection. Expert Syst. Appl. 2022, 198, 116822. [Google Scholar] [CrossRef]
- Yager, R.R. General multiple-objective decision functions and linguistically quantified statements. Int. J. Man-Mach. Stud. 1984, 21, 389–400. [Google Scholar] [CrossRef]
- Ying, M. Linguistic quantifiers modeled by Sugeno integrals. Artif. Intell. 2006, 170, 581–606. [Google Scholar] [CrossRef] [Green Version]
- Kupka, J. Some chaotic and mixing properties of fuzzified dynamical systems. Inf. Sci. 2014, 279, 642–653. [Google Scholar] [CrossRef]
- Volna, E.; Jarusek, R.; Kotyrba, M.; Zacek, J. Training set fuzzification based on histogram to increase the performance of a neural network. Appl. Math. Comput. 2021, 398, 125994. [Google Scholar] [CrossRef]
- Cánovas, J.; Kupka, J. Topological entropy of fuzzified dynamical systems. Fuzzy Sets Syst. 2011, 165, 37–49. [Google Scholar] [CrossRef]
- Javadian, M.; Malekzadeh, A.; Heydari, G.; Shouraki, S.B. A clustering fuzzification algorithm based on ALM. Fuzzy Sets Syst. 2020, 389, 93–113. [Google Scholar] [CrossRef]
- Kaushal, M.; Lohani, Q.M.D. Generalized intuitionistic fuzzy c-means clustering algorithm using an adaptive intuitionistic fuzzification technique. Granul. Comput. 2022, 7, 183–195. [Google Scholar] [CrossRef]
- Bustamante, C.; Garrido, L.; Soto, R. Comparing Fuzzy Naive Bayes and Gaussian Naive Bayes for Decision Making in RoboCup 3D. In Proceedings of the Mexican International Conference on Artificial Intelligence, Apizaco, Mexico, 13–17 November 2006; pp. 237–247. [Google Scholar]
- Kulkarni, A.D. Generating Classification Rules from Training Samples. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, L.M.; Nassar, S.M.; De Azevedo, F.M.; De Carvalho, H.J.T.; Monteiro, L.L.; Rech, C.M.Z. A neuro-fuzzy system to support in the diagnostic of epileptic events and non-epileptic events using different fuzzy arithmetical operations. Arq. de Neuro-Psiquiatr. 2008, 66, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Shaw, M.J. Induction of fuzzy decision trees. Fuzzy Sets Syst. 1995, 69, 125–139. [Google Scholar] [CrossRef]
- Eusebi, P. Diagnostic Accuracy Measures. Cerebrovasc. Dis. 2013, 36, 267–272. [Google Scholar] [CrossRef]
- Levashenko, V.G.; Zaitseva, E.N. Usage of New Information Estimations for Induction of Fuzzy Decision Trees. In Intelligent Data Engineering and Automated Learning—IDEAL 2002; Yin, H., Allinson, N., Freeman, R., Keane, J., Hubbard, S., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2412. [Google Scholar] [CrossRef]
- Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 2001, 64 Pt 1, 061907. [Google Scholar] [CrossRef] [Green Version]
- Takhar, A.; Surda, P.; Ahmad, I.; Amin, N.; Arora, A.; Camporota, L.; Denniston, P.; El-Boghdadly, K.; Kvassay, M.; Macekova, D.; et al. Timing of Tracheostomy for Prolonged Respiratory Wean in Critically Ill Coronavirus Disease 2019 Patients: A Machine Learning Approach. Crit. Care Explor. 2020, 2, e0279. [Google Scholar] [CrossRef]
Classification Algorithm | Type | Accuracy | Specificity | Sensitivity | Precision | F1 Score |
---|---|---|---|---|---|---|
FDT | Fuzzy | 0.995 | 0.993 | 0.996 | 0.981 | 0.989 |
Decision Tree, C4.5 | Non-fuzzy | 0.981 | 0.969 | 0.992 | 0.978 | 0.984 |
Fuzzy Naive Bayes classifier | Fuzzy | 0.952 | 0.917 | 0.999 | 0.862 | 0.924 |
Naive Bayes | Non-fuzzy | 0.962 | 0.928 | 0.987 | 0.949 | 0.968 |
Fuzzy Multi-Layer Perceptron | Fuzzy | 0.948 | 0.889 | 0.997 | 0.919 | 0.956 |
Multi-Layer Perceptron | Non-fuzzy | 0.942 | 0.881 | 0.991 | 0.913 | 0.950 |
Algorithm | Type | Accuracy | Specificity | Sensitivity | Precision | F1 Score |
---|---|---|---|---|---|---|
FDT | Fuzzy | 0.872 | 0.892 | 0.854 | 0.897 | 0.875 |
Decision Tree, C 4.5 | Non-fuzzy | 0.859 | 0.892 | 0.829 | 0.895 | 0.861 |
Naïve Bayes | Non-fuzzy | 0.833 | 0.757 | 0.902 | 0.804 | 0.851 |
Neural Network | Non-fuzzy | 0.859 | 0.838 | 0.878 | 0.857 | 0.867 |
K-nearest Neighbor | Non-fuzzy | 0.795 | 0.811 | 0.780 | 0.821 | 0.800 |
SVM | Non-fuzzy | 0.846 | 0.784 | 0.902 | 0.822 | 0.860 |
Classification Algorithm | Type | Accuracy | Specificity | Sensitivity | Precision | F1 Score |
---|---|---|---|---|---|---|
FDT | Fuzzy | 0.867 | 0.563 | 0.921 | 0.921 | 0.921 |
Decision Tree, C4.5 | Non-fuzzy | 0.835 | 0.357 | 0.91 | 0.9 | 0.905 |
Fuzzy Naive Bayes classifier | Fuzzy | 0.816 | 0.143 | 0.921 | 0.872 | 0.896 |
Naive Bayes | Non-fuzzy | 0.816 | 0.143 | 0.921 | 0.872 | 0.896 |
Fuzzy Multi-Layer Perceptron | Fuzzy | 0.857 | 0.563 | 0.91 | 0.92 | 0.915 |
Multi-Layer Perceptron | Non-fuzzy | 0.845 | 0.357 | 0.921 | 0.901 | 0.911 |
Classification Algorithm | Type | Accuracy | Specificity | Sensitivity | Precision | F1 Score |
---|---|---|---|---|---|---|
FDT | Fuzzy | 0.934 | 0.456 | 0.823 | 0.893 | 0.944 |
Fuzzy Naive Bayes classifiers | Fuzzy | 0.915 | 0.372 | 0.798 | 0.852 | 0.902 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaitseva, E.; Levashenko, V.; Rabcan, J.; Kvassay, M. A New Fuzzy-Based Classification Method for Use in Smart/Precision Medicine. Bioengineering 2023, 10, 838. https://doi.org/10.3390/bioengineering10070838
Zaitseva E, Levashenko V, Rabcan J, Kvassay M. A New Fuzzy-Based Classification Method for Use in Smart/Precision Medicine. Bioengineering. 2023; 10(7):838. https://doi.org/10.3390/bioengineering10070838
Chicago/Turabian StyleZaitseva, Elena, Vitaly Levashenko, Jan Rabcan, and Miroslav Kvassay. 2023. "A New Fuzzy-Based Classification Method for Use in Smart/Precision Medicine" Bioengineering 10, no. 7: 838. https://doi.org/10.3390/bioengineering10070838
APA StyleZaitseva, E., Levashenko, V., Rabcan, J., & Kvassay, M. (2023). A New Fuzzy-Based Classification Method for Use in Smart/Precision Medicine. Bioengineering, 10(7), 838. https://doi.org/10.3390/bioengineering10070838