Placental-Derived Biomaterials and Their Application to Wound Healing: A Review
Abstract
:1. Introduction
2. Overview of Wound Healing
2.1. Inflammatory Phase
2.2. Proliferative Phase
2.3. Remodeling Phase
2.4. Wound Formation
- Elevated pro-inflammatory cytokines;
- Dysfunctional macrophages;
- Imbalanced proteolytic enzymes and protease inhibitors;
- High concentrations of MMPs;
- Abnormal ECM.
2.5. Chronic Inflammation Leading to Fibrosis
2.6. Factors That Impair Wound Healing
2.7. Economic Impact of Chronic Wounds
2.8. Treatment of Chronic Wounds
3. Placental-Derived Biomaterials
3.1. Source of Placental-Derived Biomaterials
3.1.1. Amniotic Fluid
3.1.2. Amniotic Sac
3.1.3. Placental Disc
3.1.4. Umbilical Cord
3.2. Properties of Placental-Derived Biomaterials
3.3. Differences among Placental-Derived Biomaterials
3.4. Preservation Method
3.5. Decellularization
3.6. Clinical Application
3.7. Commercial Products
4. Placental-Derived Biomaterials in Wound Healing: Clinical Results
4.1. Outcomes
4.2. Safety
5. Discussion
6. Next Steps
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sindrilaru, A.; Peters, T.; Wieschalka, S.; Baican, C.; Baican, A.; Peter, H.; Hainzl, A.; Schatz, S.; Qi, Y.; Schlecht, A.; et al. An unrestrained proinflammatory m1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Investig. 2011, 121, 985–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.S.; Kim, J.D.; Yoon, H.S.; Cho, Y.W. Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. Tissue Eng. Part A 2013, 19, 329–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niknejad, H.; Peirovi, H.; Jorjani, M.; Ahmadiani, A.; Ghanavi, J.; Seifalian, A.M. Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cell Mater. 2008, 15, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Gleason, J.; Guo, X.; Protzman, N.M.; Mao, Y.; Kuehn, A.; Sivalenka, R.; Gosiewska, A.; Hariri, R.; Brigido, S.A. Decellularized and dehydrated human amniotic membrane in wound management: Modulation of macrophage differentiation and activation. J. Biotechnol. Biomater. 2022, 12, 1000288. [Google Scholar]
- Mao, Y.; John, N.; Protzman, N.M.; Kuehn, A.; Long, D.; Sivalenka, R.; Junka, R.A.; Gosiewska, A.; Hariri, R.J.; Brigido, S.A. A decellularized flowable placental connective tissue matrix supports cellular functions of human tenocytes in vitro. J. Exp. Orthop. 2022, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Protzman, N.M.; John, N.; Kuehn, A.; Long, D.; Sivalenka, R.; Junka, R.A.; Shah, A.U.; Gosiewska, A.; Hariri, R.J.; et al. An in vitro comparison of human corneal epithelial cell activity and inflammatory response on differently designed ocular amniotic membranes and a clinical case study. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 111, 684–700. [Google Scholar] [CrossRef]
- Thompson, P.; Hanson, D.S.; Langemo, D.; Anderson, J. Comparing human amniotic allograft and standard wound care when using total contact casting in the treatment of patients with diabetic foot ulcers. Adv. Skin. Wound Care 2019, 32, 272–277. [Google Scholar] [CrossRef]
- Broughton, G., 2nd; Janis, J.E.; Attinger, C.E. Wound healing: An overview. Plast. Reconstr. Surg. 2006, 117, 1e-S–32e-S. [Google Scholar] [CrossRef] [Green Version]
- Solarte David, V.A.; Guiza-Arguello, V.R.; Arango-Rodriguez, M.L.; Sossa, C.L.; Becerra-Bayona, S.M. Decellularized tissues for wound healing: Towards closing the gap between scaffold design and effective extracellular matrix remodeling. Front. Bioeng. Biotechnol. 2022, 10, 821852. [Google Scholar] [CrossRef]
- Ozgok Kangal, M.K.; Regan, J.P. Wound healing. In Statpearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Porcheray, F.; Viaud, S.; Rimaniol, A.C.; Leone, C.; Samah, B.; Dereuddre-Bosquet, N.; Dormont, D.; Gras, G. Macrophage activation switching: An asset for the resolution of inflammation. Clin. Exp. Immunol. 2005, 142, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Stout, R.D.; Suttles, J. Immunosenescence and macrophage functional plasticity: Dysregulation of macrophage function by age-associated microenvironmental changes. Immunol. Rev. 2005, 205, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stout, R.D.; Jiang, C.; Matta, B.; Tietzel, I.; Watkins, S.K.; Suttles, J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 2005, 175, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.; Henry, A.; Poron, F.; Baba-Amer, Y.; van Rooijen, N.; Plonquet, A.; Gherardi, R.K.; Chazaud, B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007, 204, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Spiller, K.L.; Koh, T.J. Macrophage-based therapeutic strategies in regenerative medicine. Adv. Drug Deliv. Rev. 2017, 122, 74–83. [Google Scholar] [CrossRef]
- O’Brien, E.M.; Risser, G.E.; Spiller, K.L. Sequential drug delivery to modulate macrophage behavior and enhance implant integration. Adv. Drug Deliv. Rev. 2019, 149–150, 85–94. [Google Scholar] [CrossRef]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1, Normal and chronic wounds: Biology, causes, and approaches to care. Adv. Skin. Wound Care 2012, 25, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Bowers, S.; Franco, E. Chronic wounds: Evaluation and management. Am. Fam. Physician 2020, 101, 159–166. [Google Scholar]
- Mustoe, T.A.; O’Shaughnessy, K.; Kloeters, O. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast. Reconstr. Surg. 2006, 117, 35s–41s. [Google Scholar] [CrossRef] [Green Version]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussbaum, S.R.; Carter, M.J.; Fife, C.E.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 2018, 21, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Hamm, R.L. Factors that impair wound healing. J. Am. Coll. Clin. Wound Spec. 2012, 4, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Heyer, K.; Herberger, K.; Protz, K.; Glaeske, G.; Augustin, M. Epidemiology of chronic wounds in germany: Analysis of statutory health insurance data. Wound Repair Regen. 2016, 24, 434–442. [Google Scholar] [CrossRef]
- Guest, J.F.; Ayoub, N.; McIlwraith, T.; Uchegbu, I.; Gerrish, A.; Weidlich, D.; Vowden, K.; Vowden, P. Health economic burden that wounds impose on the national health service in the uk. BMJ Open 2015, 5, e009283. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. Idf diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. Idf diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and diabetes in the developing world--a growing challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Syst. Rev. 2017, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Kaplunovsky, A.; Zaka, R.; Wang, C.; Rana, H.; Turner, J.; Ye, Q.; Djuretic, I.; Gleason, J.; Jankovic, V.; et al. Modulation of cell attachment, proliferation, and angiogenesis by decellularized, dehydrated human amniotic membrane in in vitro models. Wounds 2017, 29, 28–38. [Google Scholar] [PubMed]
- O’Meara, S.; Cullum, N.A.; Nelson, E.A. Compression for venous leg ulcers. Cochrane Database Syst. Rev. 2009, 11, Cd000265. [Google Scholar] [CrossRef]
- Lavery, L.A.; Higgins, K.R.; La Fontaine, J.; Zamorano, R.G.; Constantinides, G.P.; Kim, P.J. Randomised clinical trial to compare total contact casts, healing sandals and a shear-reducing removable boot to heal diabetic foot ulcers. Int. Wound J. 2015, 12, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Lipp, A. Pressure-relieving interventions for treating diabetic foot ulcers. Cochrane Database Syst. Rev. 2013, Cd002302. [Google Scholar] [CrossRef] [PubMed]
- Kottner, J.; Haesler, E. The dissemination of the prevention and treatment of pressure ulcers clinical practice guideline 2014 in the academic literature. Wound Repair Regen. 2020, 28, 580–583. [Google Scholar] [CrossRef]
- Gould, L.; Stuntz, M.; Giovannelli, M.; Ahmad, A.; Aslam, R.; Mullen-Fortino, M.; Whitney, J.D.; Calhoun, J.; Kirsner, R.S.; Gordillo, G.M. Wound healing society 2015 update on guidelines for pressure ulcers. Wound Repair Regen. 2016, 24, 145–162. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, H.; Cen, S.; Huang, F. Negative pressure wound therapy versus conventional wound dressings in treatment of open fractures: A systematic review and meta-analysis. Int. J. Surg. 2018, 53, 72–79. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, S.; Da, J.; Wu, W.; Ma, F.; Tang, C.; Li, G.; Zhong, D.; Liao, B. A systematic review and meta-analysis of efficacy and safety of negative pressure wound therapy in the treatment of diabetic foot ulcer. Ann. Palliat. Med. 2021, 10, 10830–10839. [Google Scholar] [CrossRef]
- Andrade, S.M.; Santos, I.C. Hyperbaric oxygen therapy for wound care. Rev. Gaucha Enferm. 2016, 37, e59257. [Google Scholar] [CrossRef] [Green Version]
- Nik Hisamuddin, N.A.R.; Wan Mohd Zahiruddin, W.N.; Mohd Yazid, B.; Rahmah, S. Use of hyperbaric oxygen therapy (hbot) in chronic diabetic wound—A randomised trial. Med. J. Malaysia 2019, 74, 418–424. [Google Scholar]
- Thistlethwaite, K.R.; Finlayson, K.J.; Cooper, P.D.; Brown, B.; Bennett, M.H.; Kay, G.; O’Reilly, M.T.; Edwards, H.E. The effectiveness of hyperbaric oxygen therapy for healing chronic venous leg ulcers: A randomized, double-blind, placebo-controlled trial. Wound Repair Regen. 2018, 26, 324–331. [Google Scholar] [CrossRef]
- Salama, S.E.; Eldeeb, A.E.; Elbarbary, A.H.; Abdelghany, S.E. Adjuvant hyperbaric oxygen therapy enhances healing of nonischemic diabetic foot ulcers compared with standard wound care alone. Int. J. Low. Extrem. Wounds 2019, 18, 75–80. [Google Scholar] [CrossRef]
- Qu, W.; Wang, Z.; Hunt, C.; Morrow, A.S.; Urtecho, M.; Amin, M.; Shah, S.; Hasan, B.; Abd-Rabu, R.; Ashmore, Z.; et al. The effectiveness and safety of platelet-rich plasma for chronic wounds: A systematic review and meta-analysis. Mayo Clin. Proc. 2021, 96, 2407–2417. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Hu, Z.; Zhang, Y.; Wang, P.; Li, S.; Huang, S.; Dong, Y.; Xu, H.; Rong, Y.; Zhu, W.; et al. Clinical studies on platelet-rich plasma therapy for chronic cutaneous ulcers: A systematic review and meta-analysis of randomized controlled trials. Adv. Wound Care (New Rochelle) 2022, 11, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, M.H.; Phillips, S.A.; Stacey, M.C. Growth factors for treating chronic venous leg ulcers: A systematic review and meta-analysis. Wound Repair Regen. 2022, 30, 117–125. [Google Scholar] [CrossRef]
- Brown, G.L.; Nanney, L.B.; Griffen, J.; Cramer, A.B.; Yancey, J.M.; Curtsinger, L.J., 3rd; Holtzin, L.; Schultz, G.S.; Jurkiewicz, M.J.; Lynch, J.B. Enhancement of wound healing by topical treatment with epidermal growth factor. N. Engl. J. Med. 1989, 321, 76–79. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, Q.; Sun, X. Comprehensive analysis of cell therapy on chronic skin wound healing: A meta-analysis. Hum. Gene Ther. 2021, 32, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Pichlsberger, M.; Jerman, U.D.; Obradović, H.; Tratnjek, L.; Macedo, A.S.; Mendes, F.; Fonte, P.; Hoegler, A.; Sundl, M.; Fuchs, J.; et al. Systematic review of the application of perinatal derivatives in animal models on cutaneous wound healing. Front. Bioeng. Biotechnol. 2021, 9, 742858. [Google Scholar] [CrossRef]
- Jones, J.E.; Nelson, E.A.; Al-Hity, A. Skin grafting for venous leg ulcers. Cochrane Database Syst. Rev. 2013, 2013, Cd001737. [Google Scholar] [CrossRef]
- Turner, N.J.; Badylak, S.F. The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Adv. Wound Care (New Rochelle) 2015, 4, 490–500. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Shih, S.; Khachemoune, A. Skin substitutes for acute and chronic wound healing: An updated review. J. Dermatolog. Treat. 2020, 31, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Towler, M.A.; Rush, E.W.; Richardson, M.K.; Williams, C.L. Randomized, prospective, blinded-enrollment, head-to-head venous leg ulcer healing trial comparing living, bioengineered skin graft substitute (apligraf) with living, cryopreserved, human skin allograft (theraskin). Clin. Podiatr. Med. Surg. 2018, 35, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Mantay, M.; Brannan, C.; Griffiths, S. Placental tissues as biomaterials in regenerative medicine. Biomed. Res. Int. 2022, 2022, 6751456. [Google Scholar] [CrossRef]
- Silini, A.R.; Di Pietro, R.; Lang-Olip, I.; Alviano, F.; Banerjee, A.; Basile, M.; Borutinskaite, V.; Eissner, G.; Gellhaus, A.; Giebel, B.; et al. Perinatal derivatives: Where do we stand? A roadmap of the human placenta and consensus for tissue and cell nomenclature. Front. Bioeng. Biotechnol. 2020, 8, 610544. [Google Scholar] [CrossRef]
- Pogozhykh, O.; Prokopyuk, V.; Figueiredo, C.; Pogozhykh, D. Placenta and placental derivatives in regenerative therapies: Experimental studies, history, and prospects. Stem Cells Int. 2018, 2018, 4837930. [Google Scholar] [CrossRef] [PubMed]
- Underwood, M.A.; Gilbert, W.M.; Sherman, M.P. Amniotic fluid: Not just fetal urine anymore. J. Perinatol. 2005, 25, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.L.; Wang, L.; Gao, T.B.; Qin, Y.G.; Qi, Y.Q.; Xu, Y.P. Potential function of amniotic fluid in fetal development---novel insights by comparing the composition of human amniotic fluid with umbilical cord and maternal serum at mid and late gestation. J. Chin. Med. Assoc. 2009, 72, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Suliburska, J.; Kocyłowski, R.; Komorowicz, I.; Grzesiak, M.; Bogdański, P.; Barałkiewicz, D. Concentrations of mineral in amniotic fluid and their relations to selected maternal and fetal parameters. Biol. Trace Elem. Res. 2016, 172, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Nyman, E.; Huss, F.; Nyman, T.; Junker, J.; Kratz, G. Hyaluronic acid, an important factor in the wound healing properties of amniotic fluid: In vitro studies of re-epithelialisation in human skin wounds. J. Plast. Surg. Hand Surg. 2013, 47, 89–92. [Google Scholar] [CrossRef]
- Lim, J.J.; Koob, T.J. Placental cells and tissues: The transformative rise in advanced wound care. In Worldwide wound Healing-Innovation in Natural and Conventional Methods; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Bourne, G. The foetal membranes. A review of the anatomy of normal amnion and chorion and some aspects of their function. Postgrad. Med. J. 1962, 38, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Mamede, A.C.; Carvalho, M.J.; Abrantes, A.M.; Laranjo, M.; Maia, C.J.; Botelho, M.F. Amniotic membrane: From structure and functions to clinical applications. Cell Tissue Res. 2012, 349, 447–458. [Google Scholar] [CrossRef]
- Parry, S.; Strauss, J.F., 3rd. Premature rupture of the fetal membranes. N. Engl. J. Med. 1998, 338, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Gude, N.M.; Roberts, C.T.; Kalionis, B.; King, R.G. Growth and function of the normal human placenta. Thromb. Res. 2004, 114, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.P.; Aplin, J.D. Placental extracellular matrix: Gene expression, deposition by placental fibroblasts and the effect of oxygen. Placenta 2003, 24, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, S. Integrated systems physiology: From molecules to function to disease. In Vascular Biology of the Placenta; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010. [Google Scholar]
- Ferguson, V.L.; Dodson, R.B. Bioengineering aspects of the umbilical cord. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 144 (Suppl. 1), S108–S113. [Google Scholar] [CrossRef] [PubMed]
- Spurway, J.; Logan, P.; Pak, S. The development, structure and blood flow within the umbilical cord with particular reference to the venous system. Australas. J. Ultrasound Med. 2012, 15, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Meyer, F.A.; Laver-Rudich, Z.; Tanenbaum, R. Evidence for a mechanical coupling of glycoprotein microfibrils with collagen fibrils in wharton’s jelly. Biochim. Biophys. Acta 1983, 755, 376–387. [Google Scholar] [CrossRef]
- Sobolewski, K.; Bańkowski, E.; Chyczewski, L.; Jaworski, S. Collagen and glycosaminoglycans of wharton’s jelly. Biol. Neonate 1997, 71, 11–21. [Google Scholar] [CrossRef]
- Franc, S.; Rousseau, J.C.; Garrone, R.; van der Rest, M.; Moradi-Améli, M. Microfibrillar composition of umbilical cord matrix: Characterization of fibrillin, collagen vi and intact collagen v. Placenta 1998, 19, 95–104. [Google Scholar] [CrossRef]
- Wang, H.S.; Hung, S.C.; Peng, S.T.; Huang, C.C.; Wei, H.M.; Guo, Y.J.; Fu, Y.S.; Lai, M.C.; Chen, C.C. Mesenchymal stem cells in the wharton’s jelly of the human umbilical cord. Stem Cells 2004, 22, 1330–1337. [Google Scholar] [CrossRef] [Green Version]
- Sobolewski, K.; Małkowski, A.; Bańkowski, E.; Jaworski, S. Wharton’s jelly as a reservoir of peptide growth factors. Placenta 2005, 26, 747–752. [Google Scholar] [CrossRef]
- McElreavey, K.D.; Irvine, A.I.; Ennis, K.T.; McLean, W.H. Isolation, culture and characterisation of fibroblast-like cells derived from the wharton’s jelly portion of human umbilical cord. Biochem. Soc. Trans. 1991, 19, 29s. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kubota, T.; Aso, T. Study on myofibroblast differentiation in the stromal cells of wharton’s jelly: Expression and localization of alpha-smooth muscle actin. Early Hum. Dev. 1998, 51, 223–233. [Google Scholar] [CrossRef]
- Fénelon, M.; Catros, S.; Meyer, C.; Fricain, J.C.; Obert, L.; Auber, F.; Louvrier, A.; Gindraux, F. Applications of human amniotic membrane for tissue engineering. Membranes 2021, 11, 387. [Google Scholar] [CrossRef]
- Koob, T.J.; Lim, J.J.; Massee, M.; Zabek, N.; Rennert, R.; Gurtner, G.; Li, W.W. Angiogenic properties of dehydrated human amnion/chorion allografts: Therapeutic potential for soft tissue repair and regeneration. Vasc. Cell 2014, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimmura, S.; Shimazaki, J.; Ohashi, Y.; Tsubota, K. Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 2001, 20, 408–413. [Google Scholar] [CrossRef]
- Moreno, S.E.; Massee, M.; Koob, T.J. Dehydrated human amniotic membrane regulates tenocyte expression and angiogenesis in vitro: Implications for a therapeutic treatment of tendinopathy. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 731–742. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, D.H.; Hwang, D.G.; Kim, W.S.; Zhang, F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 2000, 19, 348–352. [Google Scholar] [CrossRef]
- King, A.E.; Paltoo, A.; Kelly, R.W.; Sallenave, J.M.; Bocking, A.D.; Challis, J.R. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 2007, 28, 161–169. [Google Scholar] [CrossRef]
- Mencucci, R.; Paladini, I.; Menchini, U.; Gicquel, J.J.; Dei, R. Inhibition of viral replication in vitro by antiviral-treated amniotic membrane. Possible use of amniotic membrane as drug-delivering tool. Br. J. Ophthalmol. 2011, 95, 28–31. [Google Scholar] [CrossRef] [Green Version]
- Ramuta, T.; Šket, T.; Starčič Erjavec, M.; Kreft, M.E. Antimicrobial activity of human fetal membranes: From biological function to clinical use. Front. Bioeng. Biotechnol. 2021, 9, 691522. [Google Scholar] [CrossRef]
- Mamede, K.M.; Sant’anna, L.B. Antifibrotic effects of total or partial application of amniotic membrane in hepatic fibrosis. An. Acad. Bras. Cienc. 2019, 91, e20190220. [Google Scholar] [CrossRef] [PubMed]
- Niknejad, H.; Deihim, T.; Solati-Hashjin, M.; Peirovi, H. The effects of preservation procedures on amniotic membrane’s ability to serve as a substrate for cultivation of endothelial cells. Cryobiology 2011, 63, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Wassmer, C.H.; Berishvili, E. Immunomodulatory properties of amniotic membrane derivatives and their potential in regenerative medicine. Curr. Diab Rep. 2020, 20, 31. [Google Scholar] [CrossRef] [PubMed]
- Papait, A.; Ragni, E.; Cargnoni, A.; Vertua, E.; Romele, P.; Masserdotti, A.; Perucca Orfei, C.; Signoroni, P.B.; Magatti, M.; Silini, A.R.; et al. Comparison of ev-free fraction, evs, and total secretome of amniotic mesenchymal stromal cells for their immunomodulatory potential: A translational perspective. Front. Immunol. 2022, 13, 960909. [Google Scholar] [CrossRef] [PubMed]
- Silini, A.R.; Papait, A.; Cargnoni, A.; Vertua, E.; Romele, P.; Bonassi Signoroni, P.; Magatti, M.; De Munari, S.; Masserdotti, A.; Pasotti, A.; et al. Cm from intact ham: An easily obtained product with relevant implications for translation in regenerative medicine. Stem Cell Res. Ther. 2021, 12, 540. [Google Scholar] [CrossRef]
- Pozzobon, M.; D’Agostino, S.; Roubelakis, M.G.; Cargnoni, A.; Gramignoli, R.; Wolbank, S.; Gindraux, F.; Bollini, S.; Kerdjoudj, H.; Fenelon, M.; et al. General consensus on multimodal functions and validation analysis of perinatal derivatives for regenerative medicine applications. Front. Bioeng. Biotechnol. 2022, 10, 961987. [Google Scholar] [CrossRef]
- Warning, J.C.; McCracken, S.A.; Morris, J.M. A balancing act: Mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction 2011, 141, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Elkhenany, H.; El-Derby, A.; Abd Elkodous, M.; Salah, R.A.; Lotfy, A.; El-Badri, N. Applications of the amniotic membrane in tissue engineering and regeneration: The hundred-year challenge. Stem Cell Res. Ther. 2022, 13, 8. [Google Scholar] [CrossRef]
- Uchida, S.; Inanaga, Y.; Kobayashi, M.; Hurukawa, S.; Araie, M.; Sakuragawa, N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J. Neurosci. Res. 2000, 62, 585–590. [Google Scholar] [CrossRef]
- Moorefield, E.C.; McKee, E.E.; Solchaga, L.; Orlando, G.; Yoo, J.J.; Walker, S.; Furth, M.E.; Bishop, C.E. Cloned, cd117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS ONE 2011, 6, e26535. [Google Scholar] [CrossRef]
- Kamiya, K.; Wang, M.; Uchida, S.; Amano, S.; Oshika, T.; Sakuragawa, N.; Hori, J. Topical application of culture supernatant from human amniotic epithelial cells suppresses inflammatory reactions in cornea. Exp. Eye Res. 2005, 80, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Paradowska, E.; Blach-Olszewska, Z.; Gejdel, E. Constitutive and induced cytokine production by human placenta and amniotic membrane at term. Placenta 1997, 18, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Williams, J.D.; Fraser, D.J.; Phillips, A.O. Hyaluronan regulates transforming growth factor-beta1 receptor compartmentalization. J. Biol. Chem. 2004, 279, 25326–25332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzywocz, Z.; Pius-Sadowska, E.; Klos, P.; Gryzik, M.; Wasilewska, D.; Aleksandrowicz, B.; Dworczynska, M.; Sabalinska, S.; Hoser, G.; Machalinski, B.; et al. Growth factors and their receptors derived from human amniotic cells in vitro. Folia Histochem. Cytobiol. 2014, 52, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, M.; Pereira, M.; Rana, H.; Stout, B.; Lewis, C.; Abramson, S.; Labazzo, K.; Ray, C.; Liu, Q.; Hofgartner, W.; et al. The mechanism of cell interaction and response on decellularized human amniotic membrane: Implications in wound healing. Wounds 2007, 19, 207–217. [Google Scholar]
- Cheng, H.Y. The impact of mesenchymal stem cell source on proliferation, differentiation, immunomodulation and therapeutic efficacy. J. Stem Cell Res. Therapy 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hopkinson, A.; McIntosh, R.S.; Tighe, P.J.; James, D.K.; Dua, H.S. Amniotic membrane for ocular surface reconstruction: Donor variations and the effect of handling on tgf-beta content. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4316–4322. [Google Scholar] [CrossRef] [Green Version]
- Jang, T.H.; Park, S.C.; Yang, J.H.; Kim, J.Y.; Seok, J.H.; Park, U.S.; Choi, C.W.; Lee, S.R.; Han, J. Cryopreservation and its clinical applications. Integr. Med. Res. 2017, 6, 12–18. [Google Scholar] [CrossRef]
- Hunt, C.J. Cryopreservation: Vitrification and controlled rate cooling. Methods Mol. Biol. 2017, 1590, 41–77. [Google Scholar] [CrossRef]
- Kruse, F.E.; Joussen, A.M.; Rohrschneider, K.; You, L.; Sinn, B.; Baumann, J.; Völcker, H.E. Cryopreserved human amniotic membrane for ocular surface reconstruction. Graefes Arch. Clin. Exp. Ophthalmol. 2000, 238, 68–75. [Google Scholar] [CrossRef]
- Rodríguez-Ares, M.T.; López-Valladares, M.J.; Touriño, R.; Vieites, B.; Gude, F.; Silva, M.T.; Couceiro, J. Effects of lyophilization on human amniotic membrane. Acta Ophthalmol. 2009, 87, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Aamodt, J.M.; Grainger, D.W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 2016, 86, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Cesur, N.P.; Yalman, V.; LaÇİNTÜRkoĞLu, N. Decellularization of tissues and organs. Cumhur. Med. J 2020, 42, 192–197. [Google Scholar] [CrossRef]
- Gilpin, A.; Yang, Y. Decellularization strategies for regenerative medicine: From processing techniques to applications. Biomed. Res. Int. 2017, 2017, 9831534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keane, T.J.; Swinehart, I.T.; Badylak, S.F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 2015, 84, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef] [Green Version]
- Neishabouri, A.; Soltani Khaboushan, A.; Daghigh, F.; Kajbafzadeh, A.M.; Majidi Zolbin, M. Decellularization in tissue engineering and regenerative medicine: Evaluation, modification, and application methods. Front. Bioeng. Biotechnol. 2022, 10, 805299. [Google Scholar] [CrossRef]
- Leonel, L.; Miranda, C.; Coelho, T.M.; Ferreira, G.A.S.; Caãada, R.R.; Miglino, M.A.; Lobo, S.E. Decellularization of placentas: Establishing a protocol. Braz. J. Med. Biol. Res. 2017, 51, e6382. [Google Scholar] [CrossRef] [Green Version]
- Schneider, K.H.; Enayati, M.; Grasl, C.; Walter, I.; Budinsky, L.; Zebic, G.; Kaun, C.; Wagner, A.; Kratochwill, K.; Redl, H.; et al. Acellular vascular matrix grafts from human placenta chorion: Impact of ecm preservation on graft characteristics, protein composition and in vivo performance. Biomaterials 2018, 177, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Asgari, F.; Asgari, H.R.; Najafi, M.; Eftekhari, B.S.; Vardiani, M.; Gholipourmalekabadi, M.; Koruji, M. Optimization of decellularized human placental macroporous scaffolds for spermatogonial stem cells homing. J. Mater. Sci. Mater. Med. 2021, 32, 47. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.J.D.; Delrosario, L.; Fang, J.; Wong, S.Y.; Fang, Q.; Sievers, R.; Kotha, S.; Wang, A.; Farmer, D.; Janaswamy, P.; et al. Development of injectable amniotic membrane matrix for postmyocardial infarction tissue repair. Adv. Healthc. Mater. 2020, 9, e1900544. [Google Scholar] [CrossRef]
- Wilshaw, S.P.; Kearney, J.; Fisher, J.; Ingham, E. Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue Eng. Part A 2008, 14, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.H.; Aigner, P.; Holnthoner, W.; Monforte, X.; Nürnberger, S.; Rünzler, D.; Redl, H.; Teuschl, A.H. Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomater. 2016, 29, 125–134. [Google Scholar] [CrossRef]
- Flynn, L.; Semple, J.L.; Woodhouse, K.A. Decellularized placental matrices for adipose tissue engineering. J. Biomed. Mater. Res. A 2006, 79, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Gholipourmalekabadi, M.; Bandehpour, M.; Mozafari, M.; Hashemi, A.; Ghanbarian, H.; Sameni, M.; Salimi, M.; Gholami, M.; Samadikuchaksaraei, A. Decellularized human amniotic membrane: More is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients. Burns 2015, 41, 1488–1497. [Google Scholar] [CrossRef]
- Funamoto, S.; Nam, K.; Kimura, T.; Murakoshi, A.; Hashimoto, Y.; Niwaya, K.; Kitamura, S.; Fujisato, T.; Kishida, A. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 2010, 31, 3590–3595. [Google Scholar] [CrossRef]
- Sevastianov, V.I.; Basok, Y.B.; Grigoriev, A.M.; Nemets, E.A.; Kirillova, A.D.; Kirsanova, L.A.; Lazhko, A.E.; Subbot, A.; Kravchik, M.V.; Khesuani, Y.D.; et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J. Biomed. Mater. Res. A 2023, 111, 543–555. [Google Scholar] [CrossRef]
- Nonaka, P.N.; Campillo, N.; Uriarte, J.J.; Garreta, E.; Melo, E.; de Oliveira, L.V.; Navajas, D.; Farré, R. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J. Biomed. Mater. Res. A 2014, 102, 413–419. [Google Scholar] [CrossRef]
- Shevtsov, A.; Leybovich, B.; Artyuhov, I.; Maleev, Y.; Peregudov, A. Production of organ extracellular matrix using a freeze-thaw cycle employing extracellular cryoprotectants. Cryo Lett. 2014, 35, 400–406. [Google Scholar]
- Luo, G.; Cheng, W.; He, W.; Wang, X.; Tan, J.; Fitzgerald, M.; Li, X.; Wu, J. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen. 2010, 18, 506–513. [Google Scholar] [CrossRef]
- Abd-Allah, S.H.; El-Shal, A.S.; Shalaby, S.M.; Abd-Elbary, E.; Mazen, N.F.; Abdel Kader, R.R. The role of placenta-derived mesenchymal stem cells in healing of induced full-thickness skin wound in a mouse model. IUBMB Life 2015, 67, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Meamar, R.; Ghasemi-Mobarakeh, L.; Norouzi, M.R.; Siavash, M.; Hamblin, M.R.; Fesharaki, M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: A randomized clinical trial. Int. Immunopharmacol. 2021, 101, 108282. [Google Scholar] [CrossRef]
- Protzman, N.M.; Brigido, S.A. Recent advances in acellular regenerative tissue scaffolds. Clin. Podiatr. Med. Surg. 2015, 32, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Koob, T.J.; Lim, J.J.; Massee, M.; Zabek, N.; Denoziere, G. Properties of dehydrated human amnion/chorion composite grafts: Implications for wound repair and soft tissue regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Smiell, J.M.; Treadwell, T.; Hahn, H.D.; Hermans, M.H. Real-world experience with a decellularized dehydrated human amniotic membrane allograft. Wounds 2015, 27, 158–169. [Google Scholar] [PubMed]
- Letendre, S.; LaPorta, G.; O’Donnell, E.; Dempsey, J.; Leonard, K. Pilot trial of biovance collagen-based wound covering for diabetic ulcers. Adv. Skin. Wound Care 2009, 22, 161–166. [Google Scholar] [CrossRef]
- Bianchi, C.; Cazzell, S.; Vayser, D.; Reyzelman, A.M.; Dosluoglu, H.; Tovmassian, G. A multicentre randomised controlled trial evaluating the efficacy of dehydrated human amnion/chorion membrane (epifix(®)) allograft for the treatment of venous leg ulcers. Int. Wound J. 2018, 15, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Mrugala, A.; Sui, A.; Plummer, M.; Altman, I.; Papineau, E.; Frandsen, D.; Hill, D.; Ennis, W.J. Amniotic membrane is a potential regenerative option for chronic non-healing wounds: A report of five cases receiving dehydrated human amnion/chorion membrane allograft. Int. Wound J. 2016, 13, 485–492. [Google Scholar] [CrossRef]
- Caporusso, J.; Abdo, R.; Karr, J.; Smith, M.; Anaim, A. Clinical experience using a dehydrated amnion/chorion membrane construct for the management of wounds. Wounds 2019, 31, S19–S27. [Google Scholar] [PubMed]
- Tettelbach, W.; Cazzell, S.; Reyzelman, A.M.; Sigal, F.; Caporusso, J.M.; Agnew, P.S. A confirmatory study on the efficacy of dehydrated human amnion/chorion membrane dhacm allograft in the management of diabetic foot ulcers: A prospective, multicentre, randomised, controlled study of 110 patients from 14 wound clinics. Int. Wound J. 2019, 16, 19–29. [Google Scholar] [CrossRef]
- Tettelbach, W.H.; Cazzell, S.M.; Hubbs, B.; Jong, J.L.; Forsyth, R.A.; Reyzelman, A.M. The influence of adequate debridement and placental-derived allografts on diabetic foot ulcers. J. Wound Care 2022, 31, S16–S26. [Google Scholar] [CrossRef]
- Tettelbach, W.; Cazzell, S.; Sigal, F.; Caporusso, J.M.; Agnew, P.S.; Hanft, J.; Dove, C. A multicentre prospective randomised controlled comparative parallel study of dehydrated human umbilical cord (epicord) allograft for the treatment of diabetic foot ulcers. Int. Wound J. 2019, 16, 122–130. [Google Scholar] [CrossRef]
- Garoufalis, M.; Tettelbach, W. Expandable dehydrated human umbilical cord allograft for the management of nonhealing lower extremity wounds in patients with diabetes: A case series. Wounds 2022, 34, E91–E95. [Google Scholar] [CrossRef]
- Couture, M. A single-center, retrospective study of cryopreserved umbilical cord for wound healing in patients suffering from chronic wounds of the foot and ankle. Wounds 2016, 28, 217–225. [Google Scholar]
- Raphael, A. A single-centre, retrospective study of cryopreserved umbilical cord/amniotic membrane tissue for the treatment of diabetic foot ulcers. J. Wound Care 2016, 25, S10–S17. [Google Scholar] [CrossRef]
- Raphael, A.; Grimes, L. Implantation of cryopreserved umbilical cord allograft in hard-to-heal foot wounds: A retrospective study. J. Wound Care 2020, 29, S12–S17. [Google Scholar] [CrossRef]
- Bemenderfer, T.B.; Anderson, R.B.; Odum, S.M.; Davis, W.H. Effects of cryopreserved amniotic membrane-umbilical cord allograft on total ankle arthroplasty wound healing. J. Foot Ankle Surg. 2019, 58, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.J.; Inatomi, T.J.; Sotozono, C.J.; Fullwood, N.J.; Quantock, A.J.; Kinoshita, S. Growth factor mrna and protein in preserved human amniotic membrane. Curr. Eye Res. 2000, 20, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Mermet, I.; Pottier, N.; Sainthillier, J.M.; Malugani, C.; Cairey-Remonnay, S.; Maddens, S.; Riethmuller, D.; Tiberghien, P.; Humbert, P.; Aubin, F. Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair Regen. 2007, 15, 459–464. [Google Scholar] [CrossRef]
- Mohajeri-Tehrani, M.R.; Variji, Z.; Mohseni, S.; Firuz, A.; Annabestani, Z.; Zartab, H.; Rad, M.A.; Tootee, A.; Dowlati, Y.; Larijani, B. Comparison of a bioimplant dressing with a wet dressing for the treatment of diabetic foot ulcers: A randomized, controlled clinical trial. Wounds 2016, 28, 248–254. [Google Scholar]
- Moore, M.C.; Van De Walle, A.; Chang, J.; Juran, C.; McFetridge, P.S. Human perinatal-derived biomaterials. Adv. Healthc. Mater. 2017, 6, 21700345. [Google Scholar] [CrossRef]
- Irvin, J.; Danchik, C.; Rall, J.; Babcock, A.; Pine, M.; Barnaby, D.; Pathakamuri, J.; Kuebler, D. Bioactivity and composition of a preserved connective tissue matrix derived from human placental tissue. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2731–2740. [Google Scholar] [CrossRef] [Green Version]
- Brigido, S.A.; Carrington, S.C.; Protzman, N.M. The use of decellularized human placenta in full-thickness wound repair and periarticular soft tissue reconstruction: An update on regenerative healing. Clin. Podiatr. Med. Surg. 2018, 35, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Protzman, N.M.; Mao, Y.; Sivalenka, R.; Long, D.; Gosiewska, A.; Hariri, R.; Brigido, S.A. Flowable placental connective tissue matrices for tendon repair: A review. J. Biol. Med. 2022, 6, 010–020. [Google Scholar] [CrossRef]
- Zheng, Y.; Ji, S.; Wu, H.; Tian, S.; Zhang, Y.; Wang, L.; Fang, H.; Luo, P.; Wang, X.; Hu, X.; et al. Topical administration of cryopreserved living micronized amnion accelerates wound healing in diabetic mice by modulating local microenvironment. Biomaterials 2017, 113, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Garoufalis, M.; Nagesh, D.; Sanchez, P.J.; Lenz, R.; Park, S.J.; Ruff, J.G.; Tien, A.; Goldsmith, J.; Seat, A. Use of dehydrated human amnion/chorion membrane allografts in more than 100 patients with six major types of refractory nonhealing wounds. J. Am. Podiatr. Med. Assoc. 2018, 108, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B. The use of micronized dehydrated human amnion/chorion membrane allograft for the treatment of diabetic foot ulcers: A case series. Wounds 2016, 28, 152–157. [Google Scholar] [PubMed]
- Brigido, S.A.; Schwartz, E.; McCarroll, R.; Hardin-Young, J. Use of an acellular flowable dermal replacement scaffold on lower extremity sinus tract wounds: A retrospective series. Foot Ankle Spec. 2009, 2, 67–72. [Google Scholar] [CrossRef]
- Amniochor. Available online: https://celltrials.org/sites/default/files/report_files/Amniotic-Membrane-Tissue-Allograft-Products_AmnioChor20170529.pdf (accessed on 21 May 2023).
- Duarte, I.G.; Duval-Araujo, I. Amniotic membrane as a biological dressing in infected wound healing in rabbits. Acta Cir. Bras. 2014, 29, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Caputo, W.J.; Vaquero, C.; Monterosa, A.; Monterosa, P.; Johnson, E.; Beggs, D.; Fahoury, G.J. A retrospective study of cryopreserved umbilical cord as an adjunctive therapy to promote the healing of chronic, complex foot ulcers with underlying osteomyelitis. Wound Repair Regen. 2016, 24, 885–893. [Google Scholar] [CrossRef]
- Cooke, M.; Tan, E.K.; Mandrycky, C.; He, H.; O’Connell, J.; Tseng, S.C. Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue. J. Wound Care 2014, 23, 465–474, 476. [Google Scholar] [CrossRef] [PubMed]
- Brigido, S.A.; Riniker, M.L.; Protzman, N.M.; Constant, D.D. Application of acellular amniotic scaffold following total ankle replacement: A retrospective comparison. Clin. Res. Foot Ankle 2018, 6. [Google Scholar] [CrossRef]
- Snyder, R.J.; Shimozaki, K.; Tallis, A.; Kerzner, M.; Reyzelman, A.; Lintzeris, D.; Bell, D.; Rutan, R.L.; Rosenblum, B. A prospective, randomized, multicenter, controlled evaluation of the use of dehydrated amniotic membrane allograft compared to standard of care for the closure of chronic diabetic foot ulcer. Wounds 2016, 28, 70–77. [Google Scholar]
- Lintzeris, D.; Yarrow, K.; Johnson, L.; White, A.; Hampton, A.; Strickland, A.; Albert, K.; Cook, A. Use of a dehydrated amniotic membrane allograft on lower extremity ulcers in patients with challenging wounds: A retrospective case series. Ostomy Wound Manag. 2015, 61, 30–36. [Google Scholar]
- Barr, S.M. Dehydrated amniotic membrane allograft for treatment of chronic leg ulcers in patients with multiple comorbidities: A case series. J. Am. Coll. Clin. Wound Spec. 2014, 6, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdo, R.J. Treatment of diabetic foot ulcers with dehydrated amniotic membrane allograft: A prospective case series. J. Wound Care 2016, 25, S4–S9. [Google Scholar] [CrossRef]
- Rosenblum, B.I. A retrospective case series of a dehydrated amniotic membrane allograft for treatment of unresolved diabetic foot ulcers. J. Am. Podiatr. Med. Assoc. 2016, 106, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Doucette, M.; Payne, K.M.; Lough, W.; Beck, A.; Wayment, K.; Huffman, J.; Bond, L.; Thomas-Vogel, A.; Langley, S. Early advanced therapy for diabetic foot ulcers in high amputation risk veterans: A cohort study. Int. J. Low Extrem. Wounds 2022, 21, 111–119. [Google Scholar] [CrossRef]
- Tsai, G.L.; Zilberbrand, D.; Liao, W.J.; Horl, L.P. Healing hard-to-heal diabetic foot ulcers: The role of dehydrated amniotic allograft with cross-linked bovine-tendon collagen and glycosaminoglycan matrix. J. Wound Care 2021, 30, S47–S53. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.C.; Bonvallet, P.P.; Damaraju, S.M.; Modi, H.N.; Gandhi, A.; McFetridge, P.S. Biological characterization of dehydrated amniotic membrane allograft: Mechanisms of action and implications for wound care. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 3076–3083. [Google Scholar] [CrossRef]
- Boyar, V.; Galiczewski, C. Efficacy of dehydrated human amniotic membrane allograft for the treatment of severe extravasation injuries in preterm neonates. Wounds 2018, 30, 224–228. [Google Scholar] [PubMed]
- Lei, J.; Priddy, L.B.; Lim, J.J.; Massee, M.; Koob, T.J. Identification of extracellular matrix components and biological factors in micronized dehydrated human amnion/chorion membrane. Adv. Wound Care (New Rochelle) 2017, 6, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullard, J.D.; Lei, J.; Lim, J.J.; Massee, M.; Fallon, A.M.; Koob, T.J. Evaluation of dehydrated human umbilical cord biological properties for wound care and soft tissue healing. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 1035–1046. [Google Scholar] [CrossRef]
- McQuilling, J.P.; Vines, J.B.; Mowry, K.C. In vitro assessment of a novel, hypothermically stored amniotic membrane for use in a chronic wound environment. Int. Wound J. 2017, 14, 993–1005. [Google Scholar] [CrossRef] [Green Version]
- Serena, T.E.; Yaakov, R.; Moore, S.; Cole, W.; Coe, S.; Snyder, R.; Patel, K.; Doner, B.; Kasper, M.A.; Hamil, R.; et al. A randomized controlled clinical trial of a hypothermically stored amniotic membrane for use in diabetic foot ulcers. J. Comp. Eff. Res. 2020, 9, 23–34. [Google Scholar] [CrossRef] [Green Version]
- McQuilling, J.P.; Vines, J.B.; Kimmerling, K.A.; Mowry, K.C. Proteomic comparison of amnion and chorion and evaluation of the effects of processing on placental membranes. Wounds 2017, 29, E36–E40. [Google Scholar]
- McQuilling, J.P.; Sanders, M.; Poland, L.; Sanders, M.; Basadonna, G.; Waldrop, N.E.; Mowry, K.C. Dehydrated amnion/chorion improves achilles tendon repair in a diabetic animal model. Wounds 2019, 31, 19–25. [Google Scholar]
- McQuilling, J.P.; Burnette, M.; Kimmerling, K.A.; Kammer, M.; Mowry, K.C. A mechanistic evaluation of the angiogenic properties of a dehydrated amnion chorion membrane in vitro and in vivo. Wound Repair Regen. 2019, 27, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Lavery, L.A.; Fulmer, J.; Shebetka, K.A.; Regulski, M.; Vayser, D.; Fried, D.; Kashefsky, H.; Owings, T.M.; Nadarajah, J. The efficacy and safety of grafix® for the treatment of chronic diabetic foot ulcers: Results of a multi-centre, controlled, randomised, blinded, clinical trial. Int. Wound J. 2014, 11, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Farivar, B.S.; Toursavadkohi, S.; Monahan, T.S.; Sharma, J.; Ucuzian, A.A.; Kundi, R.; Sarkar, R.; Lal, B.K. Prospective study of cryopreserved placental tissue wound matrix in the management of chronic venous leg ulcers. J. Vasc. Surg. Venous Lymphat. Disord. 2019, 7, 228–233. [Google Scholar] [CrossRef]
- Gibbons, G.W. Grafix(®), a cryopreserved placental membrane, for the treatment of chronic/stalled wounds. Adv. Wound Care (New Rochelle) 2015, 4, 534–544. [Google Scholar] [CrossRef] [Green Version]
- Cole, A.; Lee, M.; Koloff, Z.; Ghani, K.R. Complex re-do robotic pyeloplasty using cryopreserved placental tissue: An adjunct for success. Int. Braz. J. Urol. 2021, 47, 214–215. [Google Scholar] [CrossRef] [PubMed]
- Davis, J. Skin transplantation with a review of 550 cases at the johns hopkins hospital. Johns Hopkins Med. 1910, 15, 307. [Google Scholar]
- Mohammadi Tofigh, A.; Tajik, M. Comparing the standard surgical dressing with dehydrated amnion and platelet-derived growth factor dressings in the healing rate of diabetic foot ulcer: A randomized clinical trial. Diabetes Res. Clin. Pract. 2022, 185, 109775. [Google Scholar] [CrossRef]
- Serena, T.E.; Orgill, D.P.; Armstrong, D.G.; Galiano, R.D.; Glat, P.M.; Carter, M.J.; Kaufman, J.P.; Li, W.W.; Zelen, C.M. A multicenter, randomized, controlled, clinical trial evaluating dehydrated human amniotic membrane in the treatment of venous leg ulcers. Plast. Reconstr. Surg. 2022, 150, 1128–1136. [Google Scholar] [CrossRef]
- Game, F.; Gray, K.; Davis, D.; Sherman, R.; Chokkalingam, K.; Connan, Z.; Fakis, A.; Jones, M. The effectiveness of a new dried human amnion derived membrane in addition to standard care in treating diabetic foot ulcers: A patient and assessor blind, randomised controlled pilot study. Int. Wound J. 2021, 18, 692–700. [Google Scholar] [CrossRef]
- Carter, M.J. Dehydrated human amnion and chorion allograft versus standard of care alone in treatment of wagner 1 diabetic foot ulcers: A trial-based health economics study. J. Med. Econ. 2020, 23, 1273–1283. [Google Scholar] [CrossRef]
- Bianchi, C.; Tettelbach, W.; Istwan, N.; Hubbs, B.; Kot, K.; Harris, S.; Fetterolf, D. Variations in study outcomes relative to intention-to-treat and per-protocol data analysis techniques in the evaluation of efficacy for treatment of venous leg ulcers with dehydrated human amnion/chorion membrane allograft. Int. Wound J. 2019, 16, 761–767. [Google Scholar] [CrossRef] [Green Version]
- DiDomenico, L.A.; Orgill, D.P.; Galiano, R.D.; Serena, T.E.; Carter, M.J.; Kaufman, J.P.; Young, N.J.; Jacobs, A.M.; Zelen, C.M. Use of an aseptically processed, dehydrated human amnion and chorion membrane improves likelihood and rate of healing in chronic diabetic foot ulcers: A prospective, randomised, multi-centre clinical trial in 80 patients. Int. Wound J. 2018, 15, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Zelen, C.M.; Serena, T.E.; Gould, L.; Le, L.; Carter, M.J.; Keller, J.; Li, W.W. Treatment of chronic diabetic lower extremity ulcers with advanced therapies: A prospective, randomised, controlled, multi-centre comparative study examining clinical efficacy and cost. Int. Wound J. 2016, 13, 272–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelen, C.M.; Gould, L.; Serena, T.E.; Carter, M.J.; Keller, J.; Li, W.W. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int. Wound J. 2015, 12, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Serena, T.E.; Yaakov, R.; DiMarco, D.; Le, L.; Taffe, E.; Donaldson, M.; Miller, M. Dehydrated human amnion/chorion membrane treatment of venous leg ulcers: Correlation between 4-week and 24-week outcomes. J. Wound Care 2015, 24, 530–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serena, T.E.; Carter, M.J.; Le, L.T.; Sabo, M.J.; DiMarco, D.T. A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. Multilayer compression therapy alone in the treatment of venous leg ulcers. Wound Repair Regen. 2014, 22, 688–693. [Google Scholar] [CrossRef]
- Zelen, C.M.; Serena, T.E.; Snyder, R.J. A prospective, randomised comparative study of weekly versus biweekly application of dehydrated human amnion/chorion membrane allograft in the management of diabetic foot ulcers. Int. Wound J. 2014, 11, 122–128. [Google Scholar] [CrossRef]
- Zelen, C.M.; Poka, A.; Andrews, J. Prospective, randomized, blinded, comparative study of injectable micronized dehydrated amniotic/chorionic membrane allograft for plantar fasciitis—A feasibility study. Foot Ankle Int. 2013, 34, 1332–1339. [Google Scholar] [CrossRef]
- Lakmal, K.; Basnayake, O.; Hettiarachchi, D. Systematic review on the rational use of amniotic membrane allografts in diabetic foot ulcer treatment. BMC Surg. 2021, 21, 87. [Google Scholar] [CrossRef]
- Paggiaro, A.O.; Menezes, A.G.; Ferrassi, A.D.; De Carvalho, V.F.; Gemperli, R. Biological effects of amniotic membrane on diabetic foot wounds: A systematic review. J. Wound Care 2018, 27, S19–S25. [Google Scholar] [CrossRef]
- Gholipourmalekabadi, M.; Farhadihosseinabadi, B.; Faraji, M.; Nourani, M.R. How preparation and preservation procedures affect the properties of amniotic membrane? How safe are the procedures? Burns 2020, 46, 1254–1271. [Google Scholar] [CrossRef]
- Mendibil, U.; Ruiz-Hernandez, R.; Retegi-Carrion, S.; Garcia-Urquia, N.; Olalde-Graells, B.; Abarrategi, A. Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds. Int. J. Mol. Sci. 2020, 21, 5447. [Google Scholar] [CrossRef] [PubMed]
- Mrdjenovich, D.E. Human placental connective tissue matrix (hctm) a pathway toward improved outcomes. In Proceedings of the Symposium on Advanced Wound Care & Wound Healing Society, San Diego, CA, USA, 5 April 2017. [Google Scholar]
Phase 1. Inflammatory | Phase 2. Proliferative | Phase 3. Remodeling |
---|---|---|
Initial Injury–Days 4–6 | Day 4–Day 14 | Day 8–1 Year |
Hemostasis: bleeding stops | Epithelialization | Collagen synthesis |
Chemotaxis | Angiogenesis | Collagen turnover |
Activation | Granulation tissue formation | Collagen organization |
Local Factors | Systemic Factors |
---|---|
Oxygenation | Age |
Infection | Ambulatory status |
Venous insufficiency | Comorbidities (e.g., diabetes, obesity, malnutrition, and ischemia) |
Medications (e.g., steroids and nonsteroidal anti-inflammatory drugs) | |
Oncology interventions (e.g., radiation and chemotherapy) | |
Lifestyle habits (e.g., smoking and alcohol abuse) |
Method | Agent | Example(s) | Reference(s) |
---|---|---|---|
Chemical | Ionic Detergents | SDS SDC Triton-X-200 | [2,113,114,115] |
Non-ionic detergents | Triton-X-100 | [113,114,115] | |
Zwitterionic | CHAPS SB-10 SB-16 | [116] | |
Acids | Peracetic acid Hydrochloric acid | [117] | |
Hypertonic solutions | Sodium chloride | [116,118] | |
Hypotonic solutions | Tris-HCl | [116,118] | |
Chelating agents | EDTA EGTA | [113,116,119,120] | |
Organic solvents | Ethanol Methanol Acetones | [113] | |
Enzymatic | Proteases | Trypsin | [113] |
Nucleases | DNase RNase | [2,119] | |
Physical | Pressure | High hydrostatic pressure Supercritical fluids | [5,121,122] |
Temperature | Freeze–thaw | [118,122,123,124] | |
Force | Immersion and agitation Shaking Scraping | [2,118,120] |
No. | Company | Product | Source | Preservation Method | Decellularization Status | Unique Design Elements | Reference(s) |
---|---|---|---|---|---|---|---|
1 | AlloSource | AlloWrap® DS | A | Dry; Proprietary Technology | Nondecellularized | Dual layers, omnidirectional implantation | [155] |
2 | Amniox Medical, Inc. | Neox® 1K | UC | Cryopreservation; CryoTek® | Nondecellularized | ||
3 | Amniox Medical, Inc. | Neox® 100 | A | Cryopreservation; CryoTek® | Nondecellularized | ||
4 | Amniox Medical, Inc. | Neox® Cord RT | UC & A | Dehydration; SteriTek® | Nondecellularized | [140,156,157] | |
5 | Applied BiologicsTM | Xwrap® | A | Dehydration | Nondecellularized | Chorion-free | |
6 | Celularity Inc. | Biovance® | A | Dehydration | Decellularized | Decellularized | [4,32,99,130,131,158] |
7 | Celularity Inc. | Biovance3L® | A | Dehydration | Decellularized | Trilayer | |
8 | Integra Life Sciences | AmnioExcel® | A | Dehydration | Nondecellularized | [7,159,160,161,162,163,164,165,166,167] | |
9 | Integra LifeSciences | BioDFence® G3 | A & C | Proprietary method | Nondecellularized | Trilayer (amnion–chorion–amnion) | |
10 | Integra LifeSciences | BioDDryFlex® | A | Dehydration | Nondecellularized | ||
11 | Integra LifeSciences | BioFix® | A | Dehydration | Decellularized | Omnidirectional placement | |
12 | Integra LifeSciences | BioFix® Plus | C | Dehydration; HydraTek® | Decellularized | Omnidirectional placement | |
13 | MiMedx Group, Inc. | EPIFIX® | A & C | Dehydration; HydraTek® | Nondecellularized | Retains cytokines and growth factors | [129,168] |
14 | MiMedx Group, Inc. | EPICORD® | UC | Dehydration; PURION® | Nondecellularized | Expandable | [129,168] |
15 | MiMedx Group, Inc. | AMNIOCORD® | UC | Dehydration; PURION® | Nondecellularized | 250+ regulatory proteins | [169] |
16 | MiMedx Group, Inc. | AMNIOEFFECT® | A, IL & C | Dehydration; PURION® | Nondecellularized | 300+ regulatory proteins | |
17 | MiMedx Group, Inc. | AmnioFix® | A & C | Lyophilization; PURION® | Nondecellularized | 300+ regulatory proteins | [129,168] |
18 | MTF Biologics | AmnioBand | PT | Dehydration; PURION® | Nondecellularized | ||
19 | Organogenesis | Affinity® | A | Dehydration; Proprietary aseptic method | Nondecellularized | Fresh allograft derived from amnion tissue | [170,171] |
20 | Organogenesis | NuShield® | A & C | Hypothermically stored | Nondecellularized | LayerLoc™ preserves spongy layer | [134,172,173,174] |
21 | Skye Biologics, Inc. | WoundEx®45 | A | Dehydration; LayerLoc™ | Nondecellularized | Thin | |
22 | Skye Biologics, Inc. | WoundEx®200 | C | Dehydration | Nondecellularized | Thick | |
23 | Skye Biologics, Inc. | WoundFix™ | A | Dehydration | Nondecellularized | ||
24 | Smith & Nephew | GRAFIX® PL | A & C | Dehydration | Nondecellularized | Retains native cells and growth factors | |
25 | Smith & Nephew | GRAFIX® | A & C | Lyopreservation | Nondecellularized | Retains native cells and growth factors | [175,176,177] |
26 | Smith & Nephew | STRAVIX® PL | UC | Cryopreservation | Nondecellularized | ||
27 | Smith & Nephew | STRAVIX® | UC | Lyopreservation | Nondecellularized | [178] | |
28 | StimLabs, LLC | Revita® | A, IL & C | Cryopreservation | Nondecellularized | ||
29 | StimLabs, LLC | Cogenex® | A, IL & C | Dehydration; Clearify™ | Nondecellularized | Fenestrated | |
30 | StimLabs, LLC | Enverse® | A, IL & C | Dehydration | Nondecellularized | Translucent | |
31 | StimLabs, LLC | Vialize® | A, IL & C | Clearify™ | Nondecellularized | Lyophilized | |
32 | Tides Medical | Artacent® Wound | A | Dehydration; Clearify™ | Nondecellularized | Dual layer | |
33 | Ventris Medical | CellestaTM | A | Dehydration; Clearify™ | Nondecellularized | Poly mesh backing | |
34 | Vivex | CYGNUS® Solo | A | Dehydration | Nondecellularized | Single layer | |
35 | Vivex | CYGNUS® Matrix | A & C | Artacleanse® | Nondecellularized | ||
36 | Vivex | CYGNUS® Max | UC | Clearant™ | Nondecellularized | ||
37 | Vivex | CYGNUS® Max XL | UC | Dehydrated; INTEGRITY PROCESSING™ | Nondecellularized | Fenestrated |
# | Company | Product | Source | Preservation Method | Decellularization Status | Unique Design Elements | Reference(s) |
---|---|---|---|---|---|---|---|
1 | AediCell | Dermavest®/ Plurivest® | PD, A, C & UC | Dehydration | Decellularized | ||
2 | Applied Biologics™ | FLŌGRAFT® | AF | Cryopreservation | Nondecellularized | ||
3 | Celularity Inc. | Interfyl® | C | Dehydration | Decellularized | Decellularized | [148] |
4 | Integra LifeSciences | AmnioMatrix® | A & AF | Cryopreservation | Nondecellularized | ||
5 | Integra LifeSciences | BioDFactor® | A & AF | Cryopreservation | Nondecellularized | ||
6 | Integra LifeSciences | BioFix® Flo | PT | Dehydration; HydraTek® | Decellularized | ||
7 | MiMedx Group, Inc. | AmnioFill® | A & C | Dehydration; Purion® | Nondecellularized | 300+ regulatory proteins | [129] |
8 | MiMedx Group, Inc. | AxioFillTM | PD | Dehydrated; Purion® | Decellularized | ||
9 | Skye Biologics, Inc. | BioRenewTM | PT | Cryopreservation | Nondecellularized | Growth factors | [147] |
10 | Skye Biologics, Inc. | WoundEx®Flow | PT | Dehydration | Nondecellularized | ||
11 | Ventris Medical | CellestaTM Flowable | A | Clearant™ | Nondecellularized |
No. | Study Details | Purpose | Results Summary | Conclusion |
---|---|---|---|---|
1 | Study: Mohammadi Tofigh et al., 2022 [180] Study Design: Prospective, Single Center Wound Type: DFU Placental-Derived Biomaterial: dAP (AMOR) Patients: 243 (81 dAP, 81 PDGF Gel, 81 Debridement) | To compare the therapeutic effects of the three methods of diabetic wound care: surgical debridement and dressing, dressing with dAP, and dressing with PDGF gel | Percent area reduction was significantly different among dehydrated amnion, PDGF gel, and debridement at 4 weeks (49.3% vs. 14.8% vs. 7.4%), 6 weeks (79% vs. 35.8% vs. 20.1%), 8 weeks (86.4% vs. 56.8% vs. 43.7%), and weeks 10 and 12 (87.6% vs. 61.7% vs. 50%) Similar safety profiles between groups | Shows improved healing with application of dehydrated amnion powder in DFU patients, compared with platelet-derived growth factor dressing and surgical debridement |
2 | Study: Serena et al., 2022 [181] Study Design: Prospective, Multicenter Wound Type: VLU Placental-Derived Biomaterial: dHACA (AmnioBand®) Patients: 60 (40 dHACA, 20 SOC) | To evaluate the safety and effectiveness of weekly and biweekly applications of dHACA plus SOC compared to SOC alone on chronic VLUs | Significantly higher proportion of healed VLUs in the two dHACA groups than SOC (75% vs. 30%) No significant differences in the proportion of ulcers achieving 40% closure at 4 weeks AE Rate: 63.5%; no graft- or procedure-related AEs | Shows dHACA and SOC, either applied weekly or biweekly, healed significantly more VLUs than SOC alone, suggesting that the use of aseptically processed dHACA is a safe and effective treatment option in the healing of chronic VLUs |
3 | Study: Game et al., 2021 [182] Study Design: Prospective, Multicenter Wound Type: DFU Placental-Derived Biomaterial: dHAM® (Omnigen) Patients: 31 (15 dHAM, 16 SOC) | To investigate whether 2 weekly additions of the dHAM to standard care versus standard care alone increased the proportion of healed participants’ DFUs within 12 weeks | Similar proportion of healed DFUs for dHAM and SOC (27% vs. 6.3%) Percent wound area reduction was significantly higher in the dHAM group No difference in AEs | Shows dHAM preparation is safe treatment for DFUs |
4 | Study: Carter, 2020 [183] Study Design: Health Economics Study Wound Type: DFU Placental-Derived Biomaterial: dHACA (AmnioBand®) Patients: 80 (40 dHACA, 40 SOC) | To estimate the cost-utility of an aseptically processed dHACA plus SOC versus SOC alone based on a published randomized controlled trial in which patients who had an eligible Wagner 1 DFU wound were randomized to either of these treatments | ICER at 1 year for group 1 versus group 2 was USD-4373 Group 1 had 69.2% lower cost values with increased positive incremental effectiveness for 94.9% of values A willingness to pay curve showed that about 92% of interventions were cost effective for group 1 when USD 50,000 was paid | Demonstrates dHACA added to SOC compared to SOC alone is a cost-effective treatment for DFUs |
5 | Study: Serena et al., 2020 [171] Study Design: Prospective, Multicenter Wound Type: DFU Placental-Derived Biomaterial: HSAM (Affinity®) Patients: 76 (38 HSAM, 38 SOC) | To determine the effectiveness of HSAM versus SOC in DFUs | Proportion of wound closure for HSAM was significantly greater at 12 (55% vs. 29%) and 16 (58% vs. 29%) weeks Incidence of ulcers achieving >60% reductions in area and depth was significantly greater for HSAM (area: 82% vs. 58%; depth: 65% vs. 39%) | Demonstrates an increased frequency and probability of wound closure in DFUs with HSAM versus SOC |
6 | Study: Tettelbach et al., 2019 [135] Study Design: Prospective, Multicenter Wound Type: DFU Placental-Derived Biomaterial: dHACM (EpiFix®) Patients: 110 ITT (54 dHACM, 56 SOC); 98 PP (47 dHACM, 51 SOC) | To confirm the efficacy of dHACM for the treatment of chronic lower extremity ulcers in persons with diabetes | Significantly higher proportion of complete wound closure in 12 weeks for dHACM (ITT: 70% vs. 50%; PP: 81% vs. 55%) A Kaplan–Meier analysis showed a significantly improved time to healing with dHACM Higher proportion of wound remained closed at 16 weeks for dHACM (95% vs. 86%) 230 AEs; 3 possibly product related | Confirms dHACM is an efficacious treatment for lower extremity DFUs |
7 | Study: Bianchi et al., 2019 [184] Study Design: Prospective, Multicenter Wound Type: VLU Placental-Derived Biomaterial: dHACM (EpiFix®) Patients: 128 (64 dHACM, 64 Control) | To report ITT results and assess if both ITT and PP data analyses arrive at the same conclusion of the efficacy of dHACM as a treatment for VLU | Kaplan–Meier plot of time to heal showed a superior wound healing trajectory for dHACM in both ITT and PP Proportion of healed ulcers was significantly greater for dHACM (ITT: 50% vs. 31%; PP: 60% vs. 35%) 65 AEs; none related to dHACM or study procedures | Provides an additional level of assurance regarding the effectiveness of dHACM |
8 | Study: Tettelbach et al., 2019 [137] Study Design: Prospective, Multicenter Wound Type: DFU Placental-Derived Biomaterial: dHUC (EpiCord®) Patients: 155 (101 dHUC, 54 Alginate); 134 PP (86 dHUC; 48 Alginate); 107 AD (67 dHUC; 40 Alginate) | To determine the safety and effectiveness of dHUC allograft compared with alginate wound dressings for the treatment of chronic, nonhealing DFUs | Proportion of patients with complete wound closure at 12 weeks was significantly greater for dHUC (70% vs. 48%) Proportion of AD patients with complete wound closure at 12 weeks was significantly greater for dHUC (96% vs. 65%) Rate of healing at 12 weeks in PP patients was significantly greater for dHUC (81% vs. 54%) 160 AEs; none related to dHUC or alginate dressing | Demonstrates the safety and efficacy of dHUC as a treatment for nonhealing DFUs |
9 | Study: DiDomenico et al., 2018 [185] Study Design: Prospective, Multicenter Wound Type: DFU Placental-Derived Biomaterial: dHACA (AmnioBand®) Patients: 80 (40 dHACA, 40 SOC) | To compare dHACA with SOC in achieving wound closure in nonhealing DFUs | Higher proportion of healed DFUs at 12 weeks for dHACA (85% vs. 33%) Significantly faster mean time to heal for dHACA (37 days vs. 67 days) Mean number of grafts used per healed DFU was 4.0 Mean graft cost per healed DFU was USD 1771 11 AEs; none dHACA related | Shows aseptically processed dHACA heals DFUs significantly faster than SOC at 12 weeks |
10 | Study: Bianchi et al., 2018 [132] Study Design: Prospective, Multicenter Wound Type: VLU Placental-Derived Biomaterial: dHACM (EpiFix®) Patients: 109 (52 dHACM, 57 Control) | To evaluate the efficacy of dHACM as an adjunct to multilayer compression therapy for the treatment of nonhealing full-thickness VLUs | Kaplan–Meier plot of time to heal showed a superior wound healing trajectory for dHACM Proportion of healed ulcers was significantly greater for dHACM at 12 weeks (60% vs. 35%) and 16 weeks (71% vs. 44%) 65 AEs; none related to dHACM or study procedures | Confirms dHACM as an adjunct to multilayer compression therapy for the treatment of nonhealing, full-thickness VLUs |
11 | Study: Zelen et al., 2016 [186] Study Design: Prospective, Multicenter Wound Type: DFU Placental-Derived Biomaterial: dHACM (EpiFix®) Patients: 100 (33 Apligraf, 32 dHACM, 35 SOC) | To compare clinical outcomes at 12 weeks in 100 patients with chronic lower extremity DFUs treated with weekly applications of Apligraf®, dHACM, or SOC with collagen–alginate dressing as controls | Significantly higher proportion of healed ulcers for dHACM versus Apligraft versus SOC (97% vs. 73% vs. 51%) Significantly faster time to healing for dHACM versus Apligraft versus SOC (23.6 days vs. 47.9 days vs. 57.4 days) Median number of grafts per healed wound was significantly lower for dHACM (2.5 vs. 6) Median graft cost per healed wound was significantly lower for dHACM (USD 1517 vs. USD 8918) 10 AEs; none dHACM related | Provides further evidence of the clinical and resource utilization superiority of dHACM for the treatment of lower extremity DFUs |
12 | Study: Zelen et al., 2015 [187] Study Design: Prospective, Multicenter Wound Type: DFU Placental-Derived Biomaterial: dHACM (EpiFix®) Patients: 60 (20 Apligraf, 20 dHACM, 20 SOC) | To compare the healing effectiveness of treatment of chronic lower extremity diabetic ulcers with either weekly applications of Apligraf®, dHACM, or SOC with collagen–alginate dressing | Significantly higher proportion of complete wound closure for dHACM versus Apligraf and SOC at 4 weeks (85% vs. 35% and 30%) and 6 weeks (95% vs. 45% and 35%) At each week 1–6, mean percent wound size reduction was greatest for dHACM Significantly faster median time to healing for dHACM versus Apligraf and SOC (13 days vs. 49 days and 49 days) Significantly fewer grafts for dHACM (2.15 vs. 6.2) Significantly lower graft cost per patient for dHACM (USD 1669 vs. USD 9216) 5 AEs; none related to treatment | Demonstrates superior clinical and resource utilization for dHACM compared with Apligraf and SOC for the treatment of DFUs |
13 | Study: Serena et al., 2015 [188] Study Design: Retrospective, Multicenter Wound Type: VLU Placental-Derived Biomaterial: dHACM (EpiFix®) Patients: 44 (20 ≥40%, 24 <40%) | To evaluate correct correlation between an intermediate rate of wound reduction (40% wound area reduction after 4 weeks of treatment) and complete healing at 24 weeks in patients with a VLU | Complete healing occurred in 16/20 of the ≥40% group at a mean of 46 days 8/24 of the <40% group at a mean of 103.6 days Correct correlation of status at 4 weeks and ultimate healing status of VLU occurred in 32/44 patients (73%) | Confirms the intermediate outcome is a viable predictor of VLU healing |
14 | Study: Serena et al., 2014 [189] Study Design: Prospective, Multicenter Wound Type: VLU Placental-derived Biomaterial: dHACM (EpiFix®) Patients: 84 (53 dHACM, 31 Control) | To evaluate the safety and efficacy of one or two applications of dHACM and multilayer compression therapy versus multilayer compression therapy alone in the treatment of VLUs | Proportion of patients achieving >40% wound closure at 4 weeks was significantly greater for dHACM (62% vs. 32%). Significant reduction in mean ulcer size for dHACM (48% vs. 19%) 14 AEs (dHACM: 9, Control: 5) | Shows dHACM significantly improved VLU healing at 4 weeks |
15 | Study: Zelen et al., 2014 [190] Study Design: Prospective, Single Center Wound Type: DFU Placental-Derived Biomaterial: dHACM (EpiFix®) Patients: 40 (20 weekly, 20 bi-weekly) | To determine if the weekly application of dHACM allograft reduces time to heal more effectively than biweekly application for treatment of DFUs | Significantly shorter mean time to complete healing in the weekly application group (2.4 ± 1.8 weeks vs. 4.1 ± 2.9 weeks) Proportion of completely healed wounds at 4 weeks was significantly greater in the weekly application group (90% vs. 50%) Similar number of grafts applied to healed wounds (weekly: 2.3 ± 1.8; biweekly: 2.4 ± 1.5) 8 AEs; none attributed to dHACM | Shows dHACM is an effective treatment for DFUs, and DFUs heal more rapidly with weekly application |
16 | Study: Lavery et al., 2014 [175] Study Design: Prospective, Multicenter Wound Type: DFU Placental-Derived Biomaterial: hVWM (Grafix®) Patients: 97 (50 hVWM, 47 Control) | To compare the efficacy of an hVWM with standard wound care to heal DFUs | Proportion of patients with complete wound closure at 12 weeks was significantly greater for hVWM (62% vs. 21%) Significantly shorter median time to healing for hVWM (42 days vs. 69.5 days) Significantly fewer AEs for hVWM (44% vs. 66%) Significantly fewer wound-related infections for hVWM (18% vs. 36%) Similar proportion of wounds remained closed in crossover phase (hVWM: 82%; Control: 70%) | Shows that hVWM is a safe and effective therapy for treating DFUs |
17 | Study: Zelen et al., 2013 [191] Study Design: Prospective, Single Center Wound Type: DFU Placental-Derived Biomaterial: dHACM (EpiFix®) Patients: 25 (13 dHACM, 12 SOC) | To compare healing characteristics of DFUs treated with dHACM versus standard of care | Reductions in wound size were significantly greater for dHACM at 4 weeks (97% vs. 32%) and 6 weeks (98% vs. −2%) Healing rates were significantly higher for dHACM at 4 weeks (77% vs. 0%) and 6 weeks (92% vs. 8%) 5 AEs; none dHACM related | Shows dHACM in addition to the SOC is efficacious for wound healing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Protzman, N.M.; Mao, Y.; Long, D.; Sivalenka, R.; Gosiewska, A.; Hariri, R.J.; Brigido, S.A. Placental-Derived Biomaterials and Their Application to Wound Healing: A Review. Bioengineering 2023, 10, 829. https://doi.org/10.3390/bioengineering10070829
Protzman NM, Mao Y, Long D, Sivalenka R, Gosiewska A, Hariri RJ, Brigido SA. Placental-Derived Biomaterials and Their Application to Wound Healing: A Review. Bioengineering. 2023; 10(7):829. https://doi.org/10.3390/bioengineering10070829
Chicago/Turabian StyleProtzman, Nicole M., Yong Mao, Desiree Long, Raja Sivalenka, Anna Gosiewska, Robert J. Hariri, and Stephen A. Brigido. 2023. "Placental-Derived Biomaterials and Their Application to Wound Healing: A Review" Bioengineering 10, no. 7: 829. https://doi.org/10.3390/bioengineering10070829
APA StyleProtzman, N. M., Mao, Y., Long, D., Sivalenka, R., Gosiewska, A., Hariri, R. J., & Brigido, S. A. (2023). Placental-Derived Biomaterials and Their Application to Wound Healing: A Review. Bioengineering, 10(7), 829. https://doi.org/10.3390/bioengineering10070829