Semi-Supervised Segmentation of Interstitial Lung Disease Patterns from CT Images via Self-Training with Selective Re-Training
Abstract
:1. Introduction
- (1)
- We propose a novel method termed ESSegILD for the segmentation of ILD patterns from CT images. As far as we know, this is one of the few studies on pixel-level ILD pattern recognition in CT images.
- (2)
- In our proposed ESSegILD framework, we utilize consistency regularization and self-training with selective re-training to appropriately and effectively utilize the unlabeled images for improving the segmentation performance. Therein, a high-resolution network (HRNet) with parallel multi-resolution representations is adopted as the backbone of our model to better capture the discriminative features of ILD patterns.
- (3)
- Extensive experiments are conducted on a large-scale partially annotated CT dataset with eight different ILD patterns, with results suggesting the effectiveness of our proposed method and its superiority to other comparison methods. To the best of our knowledge, the ILD patterns identified in our work are the most diverse ever reported.
2. Related Work
2.1. ILD Pattern Recognition
2.2. Semi-Supervised Learning
3. Dataset and Methods
3.1. Dataset
3.2. Methods
3.2.1. The Proposed ESSegILD Framework
- Step 1:
- Training the segmentation model f using labeled set and unlabeled set .
- Step 2:
- Pseudo labeling using the pretrained teacher model and selecting high-confidence pseudo-labeled data from to obtain pseudo-labeled set , where the model’s prediction is represented as .
- Step 3:
- Updating the labeled and unlabeled images in the training set by = and = .
- Step 4:
- Retraining the model f using the updated dataset.
- Step 5:
- Repeating Steps 2–4 until reaching the maximum training rounds.
3.2.2. High-Resolution Network
3.3. Implementation Details
4. Experiments and Results
4.1. Experimental Setup
4.2. Ablation Study
4.3. Comparison with the State-of-the-Art Semi-Supervised Segmentation Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeganathan, N.; Sathananthan, M. The prevalence and burden of interstitial lung diseases in the USA. Eur. Respir. Soc. 2022, 8, 00630-2021. [Google Scholar] [CrossRef] [PubMed]
- Trusculescu, A.A.; Manolescu, D.; Tudorache, E.; Oancea, C. Deep learning in interstitial lung disease—How long until daily practice. Eur. Radiol. 2020, 30, 6285–6292. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Deng, L.; Zhu, H.; Wang, W.; Ren, Z.; Zhou, Q.; Lu, S.; Sun, S.; Zhu, Z.; Gorriz, J.M.; et al. Deep Learning in Food Category Recognition. Inf. Fusion 2023, 98, 101859. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Wang, S.H.; Zhang, Y.D. Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm. Neural Comput. Appl. 2021, 33, 10799–10811. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, R.; Hirano, Y.; Tachibana, R.; Kido, S. Classification of diffuse lung diseases patterns by a sparse representation based method on HRCT images. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5457–5460. [Google Scholar]
- Anthimopoulos, M.; Christodoulidis, S.; Christe, A.; Mougiakakou, S. Classification of interstitial lung disease patterns using local DCT features and random forest. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6040–6043. [Google Scholar]
- Song, Y.; Cai, W.; Huang, H.; Zhou, Y.; Feng, D.D.; Wang, Y.; Fulham, M.J.; Chen, M. Large margin local estimate with applications to medical image classification. IEEE Trans. Med. Imaging 2015, 34, 1362–1377. [Google Scholar] [CrossRef] [Green Version]
- Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [Google Scholar] [CrossRef]
- Gao, M.; Xu, Z.; Lu, L.; Harrison, A.P.; Summers, R.M.; Mollura, D.J. Holistic interstitial lung disease detection using deep convolutional neural networks: Multi-label learning and unordered pooling. arXiv 2017, arXiv:1701.05616. [Google Scholar]
- Gao, M.; Bagci, U.; Lu, L.; Wu, A.; Buty, M.; Shin, H.C.; Roth, H.; Papadakis, G.Z.; Depeursinge, A.; Summers, R.M.; et al. Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Geiser, T.; Christe, A.; Mougiakakou, S. Semantic segmentation of pathological lung tissue with dilated fully convolutional networks. IEEE J. Biomed. Health Inform. 2018, 23, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermejo-Peláez, D.; Ash, S.Y.; Washko, G.R.; San José Estépar, R.; Ledesma-Carbayo, M.J. Classification of interstitial lung abnormality patterns with an ensemble of deep convolutional neural networks. Sci. Rep. 2020, 10, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depeursinge, A.; Vargas, A.; Platon, A.; Geissbuhler, A.; Poletti, P.A.; Müller, H. Building a reference multimedia database for interstitial lung diseases. Comput. Med. Imaging Graph. 2012, 36, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Yang, L.; Zhuo, W.; Qi, L.; Shi, Y.; Gao, Y. St++: Make self-training work better for semi-supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4268–4277. [Google Scholar]
- Korfiatis, P.D.; Karahaliou, A.N.; Kazantzi, A.D.; Kalogeropoulou, C.; Costaridou, L.I. Texture-based identification and characterization of interstitial pneumonia patterns in lung multidetector CT. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 675–680. [Google Scholar] [CrossRef]
- van Tulder, G.; de Bruijne, M. Learning features for tissue classification with the classification restricted Boltzmann machine. In Proceedings of the Medical Computer Vision: Algorithms for Big Data: International Workshop (MCV 2014)—Held in Conjunction with MICCAI 2014, Cambridge, MA, USA, 18–20 September 2014; Revised Selected Papers 4. Springer: Cham, Switzerland, 2014; pp. 47–58. [Google Scholar]
- Christodoulidis, S.; Anthimopoulos, M.; Ebner, L.; Christe, A.; Mougiakakou, S. Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE J. Biomed. Health Inform. 2016, 21, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zheng, Y.; Yang, G.; Jin, W.; Chen, X.; Yin, Y. Multiscale rotation-invariant convolutional neural networks for lung texture classification. IEEE J. Biomed. Health Inform. 2017, 22, 184–195. [Google Scholar] [CrossRef]
- Guo, W.; Xu, Z.; Zhang, H. Interstitial lung disease classification using improved DenseNet. Multimed. Tools Appl. 2019, 78, 30615–30626. [Google Scholar] [CrossRef]
- Pawar, S.P.; Talbar, S.N. Two-stage hybrid approach of deep learning networks for interstitial lung disease classification. BioMed Res. Int. 2022, 2022, 7340902. [Google Scholar] [CrossRef]
- Gupta, A.U.; Singh Bhadauria, S. Multi Level Approach for Segmentation of Interstitial Lung Disease (ILD) Patterns Classification Based on Superpixel Processing and Fusion of K-Means Clusters: SPFKMC. Comput. Intell. Neurosci. 2022, 2022, 4431817. [Google Scholar] [CrossRef]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Aliboni, L.; Pennati, F.; Dias, O.; Baldi, B.; Sawamura, M.; Chate, R.; De Carvalho, C.R.; Aliverti, A. Convolutional neural network (CNN) for interstitial lung disease (ILD) patterns recognition. Eur. Respir. J. 2019, 54, PA3926. [Google Scholar]
- Hwang, H.J.; Seo, J.B.; Lee, S.M.; Kim, E.Y.; Park, B.; Bae, H.J.; Kim, N. Content-based image retrieval of chest CT with convolutional neural network for diffuse interstitial lung disease: Performance assessment in three major idiopathic interstitial pneumonias. Korean J. Radiol. 2021, 22, 281. [Google Scholar] [CrossRef]
- Aoki, R.; Iwasawa, T.; Saka, T.; Yamashiro, T.; Utsunomiya, D.; Misumi, T.; Baba, T.; Ogura, T. Effects of Automatic Deep-Learning-Based Lung Analysis on Quantification of Interstitial Lung Disease: Correlation with Pulmonary Function Test Results and Prognosis. Diagnostics 2022, 12, 3038. [Google Scholar] [CrossRef] [PubMed]
- Laine, S.; Aila, T. Temporal ensembling for semi-supervised learning. arXiv 2016, arXiv:1610.02242. [Google Scholar] [CrossRef]
- Miyato, T.; Maeda, S.i.; Koyama, M.; Ishii, S. Virtual adversarial training: A regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1979–1993. [Google Scholar] [CrossRef] [Green Version]
- Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; Raffel, C.A. Mixmatch: A holistic approach to semi-supervised learning. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Berthelot, D.; Carlini, N.; Cubuk, E.D.; Kurakin, A.; Sohn, K.; Zhang, H.; Raffel, C. Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring. arXiv 2019, arXiv:1911.09785. [Google Scholar]
- Yu, L.; Wang, S.; Li, X.; Fu, C.W.; Heng, P.A. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In Proceedings of the 22nd International Conference of the Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), Shenzhen, China, 13–17 October 2019; Proceedings—Part II 22. Springer: Cham, Switzerland, 2019; pp. 605–613. [Google Scholar]
- Cao, X.; Chen, H.; Li, Y.; Peng, Y.; Wang, S.; Cheng, L. Uncertainty aware temporal-ensembling model for semi-supervised abus mass segmentation. IEEE Trans. Med. Imaging 2020, 40, 431–443. [Google Scholar] [CrossRef]
- Wang, G.; Liu, X.; Li, C.; Xu, Z.; Ruan, J.; Zhu, H.; Meng, T.; Li, K.; Huang, N.; Zhang, S. A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images. IEEE Trans. Med. Imaging 2020, 39, 2653–2663. [Google Scholar] [CrossRef]
- Xie, Q.; Dai, Z.; Hovy, E.; Luong, T.; Le, Q. Unsupervised data augmentation for consistency training. Adv. Neural Inf. Process. Syst. 2020, 33, 6256–6268. [Google Scholar]
- Wang, Y.; Peng, J.; Zhang, Z. Uncertainty-aware pseudo label refinery for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9092–9101. [Google Scholar]
- Liu, Y.; Tian, Y.; Chen, Y.; Liu, F.; Belagiannis, V.; Carneiro, G. Perturbed and strict mean teachers for semi-supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4258–4267. [Google Scholar]
- Chen, J.; Fu, C.; Xie, H.; Zheng, X.; Geng, R.; Sham, C.W. Uncertainty teacher with dense focal loss for semi-supervised medical image segmentation. Comput. Biol. Med. 2022, 149, 106034. [Google Scholar] [CrossRef]
- Xie, Q.; Luong, M.T.; Hovy, E.; Le, Q.V. Self-training with noisy student improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10687–10698. [Google Scholar]
- Arazo, E.; Ortego, D.; Albert, P.; O’Connor, N.E.; McGuinness, K. Pseudo-labeling and confirmation bias in deep semi-supervised learning. In Proceedings of the IEEE 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Pham, H.; Dai, Z.; Xie, Q.; Le, Q.V. Meta pseudo labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11557–11568. [Google Scholar]
- Shi, Y.; Zhang, J.; Ling, T.; Lu, J.; Zheng, Y.; Yu, Q.; Qi, L.; Gao, Y. Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation. IEEE Trans. Med. Imaging 2021, 41, 608–620. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, L.; Wang, L.; Shi, Y.; Gao, Y. LaSSL: Label-guided self-training for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 9208–9216. [Google Scholar]
- Chen, B.; Jiang, J.; Wang, X.; Wan, P.; Wang, J.; Long, M. Debiased Self-Training for Semi-Supervised Learning. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022. [Google Scholar]
- Kim, M.; Kim, J.; Bento, J.; Song, G. Revisiting Self-Training with Regularized Pseudo-Labeling for Tabular Data. arXiv 2023, arXiv:2302.14013. [Google Scholar]
- Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proceedings of the Workshop on Challenges in Representation Learning (ICML), Atlanta, GA, USA, 16–21 June 2013; Volume 3, p. 896. [Google Scholar]
- Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice loss for data-imbalanced NLP tasks. arXiv 2019, arXiv:1911.02855. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yuan, Y.; Zeng, G.; Wang, J. Semi-supervised semantic segmentation with cross pseudo supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2613–2622. [Google Scholar]
Network | H | Con | HC | Pne | RO | Line | GGO | Cyst | Avg |
---|---|---|---|---|---|---|---|---|---|
U-Net | 86.26 ± 2.24 | 83.02. ± 3.08 | 82.76 ± 3.09 | 93.08 ± 1.43 | 77.17 ± 3.45 | 84.44 ± 2.62 | 72.29 ± 4.17 | 94.77 ± 1.17 | 82.68 ± 6.52 |
Dilated CNN | 86.73 ± 2.03 | 83.62 ± 2.91 | 83.08 ± 2.85 | 93.49 ± 1.29 | 78.59 ± 3.36 | 85.93 ± 2.45 | 73.45 ± 3.97 | 95.13 ± 1.06 | 83.50 ± 6.34 |
HRNet | 87.81 ± 1.90 | 84.83 ± 2.82 | 84.39 ± 2.63 | 94.12 ± 1.17 | 79.06 ± 3.28 | 86.97 ± 2.08 | 73.93 ± 3.83 | 95.40 ± 0.94 | 84.35 ± 6.19 |
Training Data | H | Con | HC | Pne | RO | Line | GGO | Cyst | Avg |
---|---|---|---|---|---|---|---|---|---|
Labeled (SupOnly) | 87.81 ± 1.90 | 84.83 ± 2.82 | 84.39 ± 2.63 | 94.12 ± 1.17 | 79.06 ± 3.28 | 86.97 ± 2.08 | 73.93 ± 3.83 | 95.40 ± 0.94 | 84.35 ± 6.19 |
Labeled + 25% Unlabeled | 88.29 ± 1.69 | 85.31 ± 2.54 | 84.73 ± 2.56 | 94.62 ± 1.12 | 79.64 ± 3.17 | 87.61 ± 1.94 | 74.78 ± 3.71 | 95.49 ± 0.93 | 84.79 ± 6.08 |
Labeled + 50% Unlabeled | 89.51 ± 1.45 | 86.08 ± 2.23 | 85.64 ± 2.39 | 95.37 ± 1.06 | 80.78 ± 2.92 | 88.51 ± 1.73 | 76.25 ± 3.50 | 95.88 ± 0.88 | 85.98 ± 5.67 |
Labeled + 75% Unlabeled | 89.93 ± 1.38 | 86.42 ± 2.15 | 86.27 ± 2.24 | 95.58 ± 0.95 | 81.16 ± 2.87 | 88.93 ± 1.57 | 76.73 ± 3.41 | 96.07 ± 0.87 | 86.37 ± 5.56 |
Labeled + 100% Unlabeled | 90.26 ± 1.27 | 86.80 ± 2.07 | 86.57 ± 2.15 | 95.72 ± 0.90 | 81.48 ± 2.81 | 89.27 ± 1.42 | 77.34 ± 3.30 | 96.16 ± 0.86 | 86.71 ± 5.49 |
Method | H | Con | HC | Pne | RO | Line | GGO | Cyst | Avg |
---|---|---|---|---|---|---|---|---|---|
MT | 88.69 ± 1.63 | 85.64 ± 2.43 | 85.07 ± 2.52 | 94.59 ± 1.08 | 79.86 ± 3.11 | 87.72 ± 1.92 | 75.19 ± 3.62 | 95.79 ± 0.90 | 85.17 ± 5.79 |
UA-MT | 88.82 ± 1.60 | 85.69 ± 2.40 | 85.26 ± 2.47 | 94.92 ± 1.07 | 80.56 ± 3.01 | 87.54 ± 2.01 | 75.63 ± 3.57 | 95.71 ± 0.91 | 85.48 ± 5.72 |
CPS-Seg | 89.04 ± 1.43 | 85.78 ± 2.29 | 85.33 ± 2.43 | 95.14 ± 1.02 | 80.52 ± 2.97 | 88.21 ± 1.74 | 75.87 ± 3.54 | 95.60 ± 0.92 | 85.61 ± 5.65 |
ST | 88.15 ± 1.71 | 85.10 ± 2.65 | 84.83 ± 2.61 | 94.56 ± 1.14 | 79.81 ± 3.13 | 87.05 ± 2.09 | 75.02 ± 3.66 | 95.54 ± 0.93 | 84.85 ± 6.07 |
ST++ | 89.47 ± 1.42 | 85.74 ± 2.34 | 85.71 ± 2.38 | 95.25 ± 0.98 | 80.67 ± 2.94 | 88.69 ± 1.63 | 76.09 ± 3.50 | 95.82 ± 0.89 | 85.89 ± 5.61 |
ESSegILD (Ours) | 90.26 ± 1.27 | 86.80 ± 2.07 | 86.57 ± 2.15 | 95.72 ± 0.90 | 81.48 ± 2.81 | 89.27 ± 1.42 | 77.34 ± 3.30 | 96.16 ± 0.86 | 86.71 ± 5.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, G.-W.; Liu, Y.-B.; Feng, Q.-J.; Liang, R.-H.; Zeng, Q.-S.; Deng, Y.; Yang, W. Semi-Supervised Segmentation of Interstitial Lung Disease Patterns from CT Images via Self-Training with Selective Re-Training. Bioengineering 2023, 10, 830. https://doi.org/10.3390/bioengineering10070830
Cai G-W, Liu Y-B, Feng Q-J, Liang R-H, Zeng Q-S, Deng Y, Yang W. Semi-Supervised Segmentation of Interstitial Lung Disease Patterns from CT Images via Self-Training with Selective Re-Training. Bioengineering. 2023; 10(7):830. https://doi.org/10.3390/bioengineering10070830
Chicago/Turabian StyleCai, Guang-Wei, Yun-Bi Liu, Qian-Jin Feng, Rui-Hong Liang, Qing-Si Zeng, Yu Deng, and Wei Yang. 2023. "Semi-Supervised Segmentation of Interstitial Lung Disease Patterns from CT Images via Self-Training with Selective Re-Training" Bioengineering 10, no. 7: 830. https://doi.org/10.3390/bioengineering10070830
APA StyleCai, G. -W., Liu, Y. -B., Feng, Q. -J., Liang, R. -H., Zeng, Q. -S., Deng, Y., & Yang, W. (2023). Semi-Supervised Segmentation of Interstitial Lung Disease Patterns from CT Images via Self-Training with Selective Re-Training. Bioengineering, 10(7), 830. https://doi.org/10.3390/bioengineering10070830