Eco-Friendly Sustainable Nanocarriers to Treat Oxidative Stresses and Skin Aging-Related Ailments, Valorization of a By-Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Citrus sinensus L. Peels Extract
2.2.2. Total Phenolic Contents (TPC)
2.2.3. Total Flavonoid Contents (TFC)
2.2.4. Antioxidant Assay
2.2.5. Atomic Absorption Spectroscopy
2.2.6. Identification of Compounds in O-Ext via GC-MS
2.2.7. Effect of Extract on Oxidative Stress; Superoxide Dismutases (SOD), GST, GSH, POD, and Catalase
2.2.8. Preparation of NLCs
Selection of Solid Lipid and Liquid Lipid
Solid Lipid and Oils Compatibility
Surfactant and Cosurfactant Selection
Development of NLCs
Optimization of NLCs
2.2.9. O-NLCs Characterization
Zetapotential, Size and Polydispersity Index (PDI)
Entrapped Phenolic Contents
Fourier Transmission Infra-Red Spectroscopy
Morphological Observation
Cytotoxicity Studies via MTT Assay
Cells Permeation Studies
2.2.10. Preparation of O-NLCs Loaded O/W Emulsion
Characterization of O-NLCs-E
- Dilution test and microscopic evaluation
Stability Studies
- Accelerated Thermodynamic stability studies
pH
Chemical Stability
Ex Vivo Diffusion Studies
Rheological Studies of O-NLCs-E
Non-Invasive Skin Investigation of O-NLCs-E
- Safety evaluation of O-NLCs-E in human volunteers
Effect of O-NLCs-E on Different Skin Aging Parameters via Long Term Use
Panel Test of O-NLCs-E
2.3. Statistical Analysis
3. Results
3.1. Preparation and Evaluation of O-Extract
3.1.1. Total Phenolic and Flavonoids Contents
3.1.2. Antioxidant Assay
3.1.3. Atomic Absorption Spectroscopy
3.1.4. Identification of Compounds in O-Ext via GC-MS
3.1.5. Effect on Antioxidant Enzymes
3.2. Fabrication and Evaluation of O-Ext Loaded NLCs
3.2.1. Components Selection and Their Compatibility for NLCs Preparation
3.2.2. Optimization of NLC
3.2.3. Physico-Chemical Properties
3.2.4. Fourier Transmission Infra-Red (FTIR) Spectroscopy
3.2.5. Morphology, Safety, and Permeation of NLCs
3.3. Formulation of O-NLC-E
3.3.1. Stability Tests
- Accelerated Thermodynamic Stability Studies
pH of O-NLCs-E at Different Storage Conditions
3.4. Ex Vivo Analysis
3.4.1. Ex Vivo Diffusion and Safety Evaluation
3.4.2. Rheological Behavior of O-NLCs-E
3.5. Antiaging Efficacy of O-NLC-E
3.5.1. Melanin and Erythema
3.5.2. TEWL and Moisture
3.5.3. Sebum and Elasticity
3.5.4. Panel Test of O-NLCs-E
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, R.; Zhou, D. Oxidative Stress and Role of Natural Plant Derived Antioxidants in Animal Reproduction. J. Integr. Agric. 2013, 12, 1826–1838. [Google Scholar] [CrossRef]
- Raszewska-Famielec, M.; Flieger, J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions—An Overview of Dermo-Cosmetic and Dermatological Products. Int. J. Mol. Sci. 2022, 23, 15980. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Patel, S.K.S.; Sung, B.H.; Kalia, V.C. Biomolecules from Municipal and Food Industry Wastes: An Overview. Bioresour. Technol. 2019, 298, 122346. [Google Scholar] [CrossRef]
- Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and Sustainable Use of Medicinal Plants: Problems, Progress, and Prospects. Chin. Med. 2016, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K.; Bahadur, S.; Chaudhary, S.K.; Harwansh, R.K.; Nema, N.K. Validation of Medicinal Herbs for Skin Aging; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780128009963. [Google Scholar]
- Li, S.; Yu, H.; Ho, C.T. Nobiletin: Efficient and Large Quantity Isolation from Orange Peel Extract. Biomed. Chromatogr. 2006, 20, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Doha, H.A.B.; Ibrahim, B.M.M.; Abdel-Latif, Y.; Nabila, S.H.; Emad, M.H.; Souad, E.G. Biochemical and pharmacological prospects of Citrus-sinensis peels. Heliyon 2022, 8, e09979. [Google Scholar]
- Goulas, V.; Manganaris, G.A. Exploring the Phytochemical Content and the Antioxidant Potential of Citrus Fruits Grown in Cyprus. Food Chem. 2012, 131, 39–47. [Google Scholar] [CrossRef]
- Lante, A.; Tinello, F. Citrus Hydrosols as Useful by-Products for Tyrosinase Inhibition. Innov. Food Sci. Emerg. Technol. 2015, 27, 154–159. [Google Scholar] [CrossRef]
- Shah, P.R.; Desai, P.; Channer, D.; Singh, M. Enhanced Skin Permeation Using Polyarginine Modified Nanostructured Lipid Carriers. J. Control. Release 2012, 161, 735–775. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.; Prabhu, P.; Kamath, J.V. Nano Structured Lipid Carriers: A Novel Topical Drug Delivery System. Int. J. PharmTech. Res. 2012, 4, 705–714. [Google Scholar]
- Salvi, V.R.; Pawar, P. Nanostructured Lipid Carriers (NLC) System: A Novel Drug Targeting Carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Borges, A.; Freitas, V.; de Mateus, N.; Fernandes, I.; Oliveira, J. Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds. Antioxidants 2020, 9, 998. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.; Khan, T.; Mannan, A.; Ali, A.; Ni, J. In Vitro and Ex Vivo Evaluation of Mangifera Indica L. Extract-Loaded Green Nanoparticles in Topical Emulsion against Oxidative Stress and Aging. Biomedicines 2022, 10, 2266. [Google Scholar] [CrossRef]
- Baba, S.A.; Malik, S.A. Determination of Total Phenolic and Flavonoid Content, Antimicrobial and Antioxidant Activity of a Root Extract of Arisaema Jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Song, J.H.; Bae, E.Y.; Choi, G.; Hyun, J.W.; Lee, M.Y.; Lee, H.W.; Chae, S. Protective Effect of Mango (Mangifera Indica L.) against UVB-Induced Skin Aging in Hairless Mice. Photodermatol. Photoimmunol. Photomed. 2013, 29, 84–89. [Google Scholar] [CrossRef]
- Baylac, S.; Racine, P. Inhibition of Human Leukocyte Elastase by Natural Fragrant Extracts of Aromatic Plants. Int. J. Aromather. 2004, 14, 179–182. [Google Scholar] [CrossRef]
- Anal, J.M.H.; Chase, P. Trace Elements Analysis in Some Medicinal Plants Using Graphite Furnace-Atomic Absorption Spectroscopy. Environ. Eng. Res. 2016, 21, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.M.A.U.; Ali, H.; Islam, S.U.; Seo, E.K.; Khan, S. Continentalic Acid Exhibited Nephroprotective Activity against the LPS and E. Coli-Induced Kidney Injury through Inhibition of the Oxidative Stress and Inflammation. Int. Immunopharmacol. 2020, 80, 106209. [Google Scholar] [CrossRef]
- Walker, R.B. The Use of Quantitative Analysis and Hansen Solubility Parameter Predictions for the Selection of Excipients for Lipid Nanocarriers to Be Loaded with Water Soluble and Insoluble Compounds. Saudi Pharm. J. 2020, 28, 308–315. [Google Scholar] [CrossRef]
- Dragicevic, N.; Maibach, H.I. (Eds.) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Goyal, U.; Arora, R.; Aggarwal, G. Formulation Design and Evaluation of a Self-Microemulsifying Drug Delivery System of Lovastatin. Acta Pharm. 2012, 62, 357–370. [Google Scholar] [CrossRef]
- Pezeshki, A.; Ghanbarzadeh, B.; Mohammadi, M.; Fathollahi, I.; Hamishehkar, H. Encapsulation of Vitamin A Palmitate in Nanostructured Lipid Carrier (NLC)-Effect of Surfactant Concentration on the Formulation Properties. Adv. Pharm. Bull. 2014, 4, 563–568. [Google Scholar] [CrossRef]
- Khan, Z.U.; Razzaq, A.; Khan, A.; Rehman, N.U.; Khan, H.; Khan, T.; Khan, A.U.; Menaa, F.; Iqbal, H.; Khan, N.U. Physicochemical Characterizations and Pharmacokinetic Evaluation of Pentazocine Solid Lipid Nanoparticles against Inflammatory Pain Model. Pharmaceutics 2022, 14, 409. [Google Scholar] [CrossRef]
- Rodrigues, F.; Alves, A.C.; Nunes, C.; Sarmento, B.; Amaral, M.H.; Reis, S.; Oliveira, M.B.P.P. Permeation of Topically Applied Caffeine from a Food by—Product in Cosmetic Formulations: Is Nanoscale in Vitro Approach an Option? Int. J. Pharm. 2016, 513, 496–503. [Google Scholar] [CrossRef]
- Karimi, N.; Ghanbarzadeh, B.; Hamishehkar, H.; Mehramuz, B.; Kafil, H.S. Antioxidant, Antimicrobial and Physicochemical Properties of Turmeric Extract-Loaded Nanostructured Lipid Carrier (NLC). Colloids Interface Sci. Commun. 2018, 22, 18–24. [Google Scholar] [CrossRef]
- Damle, M.; Mallya, R. Development and Evaluation of a Novel Delivery System Containing Phytophospholipid Complex for Skin Aging. AAPS PharmSciTech 2016, 17, 607–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, H.; Khan, Z.U.; Razzaq, A.; Khan, N.U.; Khan, B.A.; Menaa, F. Fabrication, Physical Characterizations and In Vitro Antibacterial Activity of Cefadroxil-Loaded Chitosan/Poly (Vinyl Alcohol) Nanofibers against Staphylococcus aureus Clinical Isolates. Int. J. Biol. Macromol. 2019, 144, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zhao, J.; Zhang, X.; Pan, W. Nanostructured Lipid Carrier (NLC) Coated with Chitosan Oligosaccharides and Its Potential Use in Ocular Drug Delivery System. Int. J. Pharm. 2011, 403, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Shi, Q.H.; Zhang, W.; Sanderson, B.J.S. Anti-Skin Cancer Properties of Phenolic-Rich Extract from the Pericarp of Mangosteen (Garcinia mangostana Linn.). Food Chem. Toxicol. 2012, 50, 3004–3013. [Google Scholar] [CrossRef] [PubMed]
- Alnuqaydan, A. Toxicity and Genotoxicity of Beauty Products on Human Skin Cells In Vitro Journal of Clinical Toxicology Toxicity and Genotoxicity of Beauty Products on Human Skin Cells In Vitro. J. Clin. Toxicol. 2016, 6, 1000315. [Google Scholar] [CrossRef] [Green Version]
- Grafe, F.; Wohlrab, W.; Neubert, R.H.; Brandsch, M. Transport of Biotin in Human Keratinocytes. J. Invest. Dermatol. 2003, 120, 428–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.U.; Ali, A.; Khan, H.; Khan, Z.U.; Zia, A. Stability Studies and Characterization of Glutathione-Loaded Nanoemulsion. J. Cosm. Sci. 2018, 69, 161–168. [Google Scholar]
- Carlotti, M.E.; Sapino, S.; Trotta, M.; Battaglia, L.; Vione, D.; Pelizzetti, E. Photostability and Stability over Time of Retinyl Palmitate in an O/W Emulsion and in SLN Introduced in the Emulsion. J. Dispers. Sci. Technol. 2005, 26, 125–138. [Google Scholar] [CrossRef]
- Ali, A.; Iqbal, S.; Ilyas, A.; Khan, H.; Asad, M.H.H.; Fatima, N.; Akhtar, N. Anti-Pollution Cosmetic-Based One-Step Formation of w/o/w Multiple Emulsion Containing D-Biotin for Skin Protection: Fabrication and in Vitro and in Vivo Evaluation. Drug Deliv. Transl. Res. 2019, 9, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- European Cosmetics Association. Cosmetics Europe Guidelines on Stability Testing of Cosmetic Products; Cosmetics Europe: Brussels, Belgium, 2004; pp. 1–8. [Google Scholar]
- Poomanee, W.; Khunkitti, W.; Chaiyana, W.; Leelapornpisid, P. Optimization of Mangifera Indica L. Kernel Extract-Loaded Nanoemulsions via Response Surface Methodology, Characterization, Stability, and Skin Permeation for Anti-Acne Cosmeceutical Application. Pharmaceutics 2020, 12, 454. [Google Scholar] [CrossRef] [PubMed]
- Wohlrab, J.; Gebert, A. PH and Buffer Capacity of Topical Formulations. Curr. Probl. Dermatol. 2018, 54, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, M.; Sikora, E.; Ogonowski, J. Rheological Properties of Nanoemulsions Stabilized by Polysorbate 80. Chem. Eng. Technol. 2015, 38, 1469–1476. [Google Scholar] [CrossRef]
- Ali, A.; Akhtar, N.; Khan, M.S. In Vivo Evaluation: The Effects of a Cream Containing Acacia Bark Extract on Skin Melanin and Erythema Content. Adv. Dermatol. Allergol. 2012, 5, 369–372. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Akhtar, N. The Safety and Efficacy of 3% Cannabis Seeds Extract Cream for Reduction of Human Cheek Skin Sebum and Erythema Content. Pak. J. Pharm. Sci. 2015, 28, 1389–1395. [Google Scholar]
- Ali, A.; Akhtar, N.; Khan, M.S.; Khan, M.T.; Ullah, A.; Shah, M.I. Effect of Moringa Oleifera on Undesireble Skin Sebum Secretions of Sebaceous Glands Observed during Winter Season in Humans. Biomed. Res. 2013, 24, 127–130. [Google Scholar]
- Ali, A.; Akhtar, N.; Chowdhary, F. Enhancement of Human Skin Facial Revitalization by Moringa Leaf Extract Cream. Adv. Dermatol. Allergol. Postępy Dermatol. Alergol. 2014, 31, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Fossa Shirata, M.M.; Maia Campos, P.M.B.G. Sunscreens and Cosmetic Formulations Containing Ascorbyl Tetraisopalmitate and Rice Peptides for the Improvement of Skin Photoaging: A Double-Blind, Randomized Placebo-Controlled Clinical Study. Photochem. Photobiol. 2021, 97, 805–815. [Google Scholar] [CrossRef]
- Gianeti, M.D.; Mercurio, D.G.; Maia Campos, P.M.B.G. The Use of Green Tea Extract in Cosmetic Formulations: Not Only an Antioxidant Active Ingredient. Dermatol. Ther. 2013, 26, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Palareti, G.; Legnani, C.; Cosmi, B.; Antonucci, E.; Erba, N.; Poli, D.; Testa, S.; Tosetto, A. Comparison between Different D-Dimer Cutoff Values to Assess the Individual Risk of Recurrent Venous Thromboembolism: Analysis of Results Obtained in the DULCIS Study. Int. J. Lab. Hematol. 2016, 38, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Akhtar, N.; Khan, H.M.S.; Muhammad, H.; Khan, S. Cream Containing Acacia Bark Extract Significantly Reduces Skin Sebum Content in Healthy Volunteers. J. Sci. Ind. Res. 2012, 71, 678–681. [Google Scholar]
- Liew, S.S.; Ho, W.Y.; Yeap, S.K.; Sharifudin, S.A.B. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. PeerJ 2018, 6, e5331. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Rahaman, S.; Islam, R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, S.; et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef]
- Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E.; Denis Alexander, H.; Ross, O.A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [Google Scholar] [CrossRef]
- Fan, X.; Fan, Z.; Yang, Z.; Huang, T.; Tong, Y.; Yang, D.; Mao, X.; Yang, M. Flavonoids—Natural Gifts to Promote Health and Longevity. Int. J. Mol. Sci. 2022, 23, 2176. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Sreelatha, S.; Padma, P.R. Antioxidant Activity and Total Phenolic Content of Moringa Oleifera Leaves in Two Stages of Maturity. Plant Foods Hum. Nutr. 2009, 64, 303–311. [Google Scholar] [CrossRef]
- Khogta, S.; Patel, J.; Barve, K.; Londhe, V. Herbal Nano-Formulations for Topical Delivery. J. Herb. Med. 2020, 20, 100300. [Google Scholar] [CrossRef]
- Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, W.; Manosroi, J. Anti-Aging Efficacy of Topical Formulations Containing Niosomes Entrapped with Rice Bran Bioactive Compounds. Pharm. Biol. 2012, 50, 208–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.H.; Yap, C.K.; Zakaria, M.P.; Aris, A.Z.; Guan, T.S. Lithium Levels in Peninsular Malaysian Coastal Areas: An Assessment Based on Mangrove Snail Nerita Lineata and Surface Sediments. Pertanika J. Trop. Agric. Sci. 2015, 38, 93–101. [Google Scholar]
- Bocca, B.; Pino, A.; Alimonti, A.; Forte, G. Toxic Metals Contained in Cosmetics: A Status Report. Regul. Toxicol. Pharmacol. 2014, 68, 447–467. [Google Scholar] [CrossRef]
- Wu, M.L.; Deng, J.F.; Lin, K.P.; Tsai, W.J. Lead, Mercury, and Arsenic Poisoning Due to Topical Use of Traditional Chinese Medicines. Am. J. Med. 2013, 126, 451–454. [Google Scholar] [CrossRef] [PubMed]
- U.S. FDA. FDA’s Testing of Cosmetics for Arsenic, Cadmium, Chromium, Cobalt, Lead, Mercury, and Nickel Content. Available online: https://www.fda.gov/cosmetics/potential-contaminants-cosmetics/fdas-testing-cosmetics-arsenic-cadmium-chromium-cobalt-lead-mercury-and-nickel-content (accessed on 23 February 2022).
- Brügel, M. Global Organic Textile Standard. Zertif. Als Erfolgsfaktor Nachhalt. Wirtsch. Mit Vertrauen Transpar. 2016, 2020, 153–163. [Google Scholar] [CrossRef]
- Massadeh, A.M.; El-khateeb, M.Y.; Ibrahim, S.M. Evaluation of Cd, Cr, Cu, Ni, and Pb in Selected Cosmetic Products from Jordanian, Sudanese, and Syrian Markets. Public Health 2017, 149, 130–137. [Google Scholar] [CrossRef]
- Arshad, H.; Mehmood, M.Z.; Shah, M.H.; Abbasi, A.M. Evaluation of Heavy Metals in Cosmetic Products and Their Health Risk Assessment. Saudi Pharm. J. 2020, 28, 779–790. [Google Scholar] [CrossRef]
- Schwarz, J.C.; Baisaeng, N.; Hoppel, M.; Löw, M.; Keck, C.M.; Valenta, C. Ultra-Small NLC for Improved Dermal Delivery of Coenyzme Q10. Int. J. Pharm. 2013, 447, 213–217. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, S.; Liao, W.; Zhang, L.; Liu, J.; Gao, Y. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the PH-Driven Method. J. Agric. Food Chem. 2020, 68, 7103–7111. [Google Scholar] [CrossRef]
- Bai, L.; McClements, D.J. Formation and Stabilization of Nanoemulsions Using Biosurfactants: Rhamnolipids. J. Colloid Interface Sci. 2016, 479, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Li, R.; Wei, Y.; Sun, C.; Mao, L.; Gao, Y. Fabrication of Zein and Rhamnolipid Complex Nanoparticles to Enhance the Stability and in Vitro Release of Curcumin. Food Hydrocoll. 2018, 77, 617–628. [Google Scholar] [CrossRef]
- Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Rhamnolipid Nanoparticles for in Vivo Drug Delivery and Photodynamic Therapy. Nanomed. Nanotechnol. Biol. Med. 2019, 19, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Improvement of Curcuminoid Bioaccessibility from Turmeric by a Nanostructured Lipid Carrier System. Food Chem. 2018, 251, 51–57. [Google Scholar] [CrossRef]
- Jose, J.; Netto, G. Role of Solid Lipid Nanoparticles as Photoprotective Agents in Cosmetics. J. Cosmet. Dermatol. 2018, 18, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathi, M.; Varshosaz, J.; Mohebbi, M.; Shahidi, F. Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food Bioprocess Technol. 2013, 6, 1464–1475. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. Drug Res. 2010, 67, 217–223. [Google Scholar]
- Marcon, A.F.; Wagemaker, T.; Maia, M.B.; Campos, P. Rheology, Clinical Efficacy and Sensorial of a Silicone-Based Formulation Containing Pearl Extract. J. Biomed. Biopharm. Res. 2014, 11, 247–255. [Google Scholar] [CrossRef]
- Alison, L.; Rühs, P.A.; Tervoort, E.; Teleki, A.; Zanini, M.; Isa, L.; Studart, A.R. Pickering and Network Stabilization of Biocompatible Emulsions Using Chitosan-Modified Silica Nanoparticles. Langmuir 2016, 32, 13446–13457. [Google Scholar] [CrossRef]
S. No | Element | Symbols | Concentration Found (ppm) |
---|---|---|---|
1 | Arsenic | As | 0.000 |
2 | Chromium | Cr | 0.033 ± 0.001 |
3 | Cobalt | Co | 0.083 ± 0.0012 |
4 | Cadmium | Cd | 0.028 ± 0.0043 |
5 | Lead | Pb | 0.897 ± 0.011 |
6 | Iron | Fe | 0.332 ± 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Z.U.; Khan, T.; Khan, H.; Khan, N.U.; Ding, Y.; Ali, A.; Ni, J. Eco-Friendly Sustainable Nanocarriers to Treat Oxidative Stresses and Skin Aging-Related Ailments, Valorization of a By-Product. Bioengineering 2023, 10, 798. https://doi.org/10.3390/bioengineering10070798
Khan ZU, Khan T, Khan H, Khan NU, Ding Y, Ali A, Ni J. Eco-Friendly Sustainable Nanocarriers to Treat Oxidative Stresses and Skin Aging-Related Ailments, Valorization of a By-Product. Bioengineering. 2023; 10(7):798. https://doi.org/10.3390/bioengineering10070798
Chicago/Turabian StyleKhan, Zaheer Ullah, Taous Khan, Hira Khan, Naveed Ullah Khan, Yang Ding, Atif Ali, and Jiang Ni. 2023. "Eco-Friendly Sustainable Nanocarriers to Treat Oxidative Stresses and Skin Aging-Related Ailments, Valorization of a By-Product" Bioengineering 10, no. 7: 798. https://doi.org/10.3390/bioengineering10070798
APA StyleKhan, Z. U., Khan, T., Khan, H., Khan, N. U., Ding, Y., Ali, A., & Ni, J. (2023). Eco-Friendly Sustainable Nanocarriers to Treat Oxidative Stresses and Skin Aging-Related Ailments, Valorization of a By-Product. Bioengineering, 10(7), 798. https://doi.org/10.3390/bioengineering10070798