Physiological Signal Analysis and Stress Classification from VR Simulations Using Decision Tree Methods
Abstract
:1. Introduction
- A comprehensive study which demonstrates the positive impact of a VR Bubble Bloom fish game from Shaftesbury Technology Inc. for stress management. Unlike other studies, we present time, frequency, non-linear, GSR and Respiration analysis of the subjects after they played the game.
- We developed a personalized DT CART model using a novel Gini index algorithm to classify stress more effectively than other studies.
- We demonstrate the advantage of feature reduction and present a novel K-means feature developed from 11 other features. This reduced scattered data, magnitude of error and improved model performance at a faster rate.
- We classified five levels of stress from a VR roller coaster simulation. The purpose of this phase in the experiment was to induce stress through fear and anxiety.
2. Materials and Methods
2.1. Data Collection
2.2. HRV, GSR and Respiration Feature Extraction
2.2.1. Preprocessing
2.2.2. Time/Frequency Domain Feature Extraction
2.2.3. K-Means Feature Extraction
Algorithm 1: Novel 1D K-means Feature. |
2.3. Machine Learning Classification
2.3.1. Binary Classification of Stress
Algorithm 2: Novel Gini index Algorithm. |
1 function GiniSplit ; Input : features, labels, length(X + y) Output: gini split, cutoff value, length(X + y) 2 sorted ← ← ← ← ← ← ← ← ← and ← ← cutoff value ← 3 return , cutoff value, |
2.3.2. Five Classes in Classification of Stress
3. Results
3.1. Physiological Function Associated with Stress
3.2. Model Performance from Binary Classification of Stress
3.3. Classifying Five Classes of Stress from VR Roller Coaster Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DT | Decision Tree |
SNS | Sympathetic Nervous Systems |
PNS | Parasympathetic Nervous Systems |
ECG | Electrocardiogram |
GSR | Galvanic Skin Response |
RESP | Respiration |
VR | Virtual Reality |
CART | Classification and Regression Tree |
EGB | Ensemble Gradient Boosting |
XGB | Extreme Gradient Boosting |
HR | Heart Rate |
ApEN | Approximate Entropy |
LF/HF | High Frequency Ratio |
LF | Low Frequency |
HF | High Frequency |
References
- Debie, E.; Rojas, R.F.; Fidock, J.; Barlow, M.; Kasmarik, K.; Anavatti, S.; Garratt, M.; Abbass, H.A. Multimodal fusion for objective assessment of cognitive workload: A review. IEEE Trans. Cybern. 2019, 51, 1542–1555. [Google Scholar] [CrossRef]
- Rosenberg, W.; Chanwimalueang, T.; Adjei, T.; Jaffer, U.; Goverdovsky, V.; Mandic, D. Resolving ambiguities in the LF/HF ratio: LF-HF scatter plots for the categorization of mental and physical stress from HRV. Front. Physiol. 2017, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- Hernando, A.; Lázaro, J.; Arza, A.; Garzón, J.; Gil, E.; Laguna, P.; Aguiló, J.; Bailón, R. Changes in respiration during emotional stress. In Proceedings of the 2015 Computing in Cardiology Conference (CinC), Nice, France, 6–9 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1005–1008. [Google Scholar]
- Ramadan, M.; Alhaag, M. Evaluating the User Physical Stresses Associated with Watching 3D and 2D Displays over Extended Time Using Heart Rate Variability, Galvanic Skin Resistance, and Performance Measure. J. Sens. 2018, 2018, 2632157. [Google Scholar] [CrossRef] [Green Version]
- Shaker, N.; Asteriadis, S.; Yannakakis, G.N.; Karpouzis, K. Fusing visual and behavioral cues for modeling user experience in games. IEEE Trans. Cybern. 2013, 43, 1519–1531. [Google Scholar] [CrossRef] [Green Version]
- Aliyari, H.; Sahraei, H.; Daliri, M.; Minaei-Bidgoli, B.; Kazemi, M.; Agaei, H.; Sahraei, M.; Hosseini, S.M.; Hadipour, M.; Mohammadi, M.; et al. The beneficial or harmful effects of computer game stress on cognitive functions of players. Basic Clin. Neurosci. 2018, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Ferguson, C. Competitively versus cooperatively? An analysis of the effect of game play on levels of stress. Comput. Hum. Behav. 2016, 56, 14–20. [Google Scholar] [CrossRef]
- Reinecke, L. Games and recovery: The use of video and computer games to recuperate from stress and strain. J. Media Psychol. 2009, 21, 126–142. [Google Scholar] [CrossRef]
- Long, X.; Fonseca, P.; Haakma, R.; Aarts, R.M.; Foussier, J. Time-frequency analysis of heart rate variability for sleep and wake classification. In Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), Larnaca, Cyprus, 11–13 November 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 85–90. [Google Scholar]
- Hsu, C.; Tsai, M.; Huang, G.; Lin, T.; Chen, K.; Ho, S.; Shyu, L.; Li, C. Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction. Acta Anaesthesiol. Taiwanica 2012, 50, 12–18. [Google Scholar] [CrossRef]
- Roy, B.; Ghatak, S. Nonlinear methods to assess changes in heart rate variability in type 2 diabetic patients. Arq. Bras. Cardiol. 2013, 101, 317–327. [Google Scholar] [CrossRef]
- Sarlabous, L.; Torres, A.; Fiz, J.A.; Gea, J.; Martínez-Llorens, J.M.; Morera, J.; Jané, R. Interpretation of the approximate entropy using fixed tolerance values as a measure of amplitude variations in biomedical signals. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 5967–5970. [Google Scholar]
- Ishaque, S.; Rueda, A.; Nguyen, B.; Khan, N.; Krishnan, S. Physiological Signal Analysis and Classification of Stress from Virtual Reality Video Game. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 867–870. [Google Scholar]
- Villarejo, M.V.; Zapirain, B.G.; Zorrilla, A.M. A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors 2012, 12, 6075–6101. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Järvelin-Pasanen, S.; Sinikallio, S.; Tarvainen, M. Heart rate variability and occupational stress—Systematic review. Ind. Health 2018, 56, 500–511. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Cheon, E.; Bai, D.; Lee, Y.; Koo, B. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235. [Google Scholar] [CrossRef] [Green Version]
- Hammoud, S.; Karam, R.; Mourad, R.; Saad, I.; Kurdi, M. Stress and Heart Rate Variability during University Final Examination among Lebanese Students. Behav. Sci. 2019, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Porter, A.; Goolkasian, P. Video Games and Stress: How Stress Appraisals and Game Content Affect Cardiovascular and Emotion Outcomes. Front. Psychol. 2019, 10, 967. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, K.; Larentzakis, A.; Khamis, N.; Alsuhaibani, G.; Alaska, Y.; Giallafos, E. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Medica 2018, 60, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Casari, A.; Zheng, A. Feature Engineering for Machine Learning; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018. [Google Scholar]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Shi, H.; Yang, L.; Zhao, L.; Su, Z.; Mao, X.; Zhang, L.; Liu, C. Differences of heart rate variability between happiness and sadness emotion states: A pilot study. J. Med. Biol. Eng. 2017, 37, 527–539. [Google Scholar] [CrossRef]
- Zaffalon Júnior, J.R.; Viana, A.O.; de Melo, G.E.L.; De Angelis, K. The impact of sedentarism on heart rate variability (HRV) at rest and in response to mental stress in young women. Physiol. Rep. 2018, 6, e13873. [Google Scholar] [CrossRef]
- Castaldo, R.; Montesinos, L.; Melillo, P.; James, C.; Pecchia, L. Ultra-short term HRV features as surrogates of short term HRV: A case study on mental stress detection in real life. BMC Med. Inform. Decis. Mak. 2019, 19, 12. [Google Scholar] [CrossRef] [Green Version]
- Egilmez, B.; Poyraz, E.; Zhou, W.; Memik, G.; Dinda, P.; Alshurafa, N. UStress: Understanding college student subjective stress using wrist-based passive sensing. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 673–678. [Google Scholar]
- Schäfer, F.; Anandkumar, A. Competitive gradient descent. In Proceedings of the Annual Conference on Neural Information Processing Systems 2019, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Shalev, S.; Ben, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lina, T.N.; Rumetna, M.S. Comparison Analysis of Breadth First Search and Depth Limited Search Algorithms in Sudoku Game. Bull. Comput. Sci. Electr. Eng. 2021, 2, 74–83. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [Green Version]
- Panigrahy, S.K.; Jena, S.K.; Turuk, A.K. Study and analysis of human stress detection using galvanic skin response (GSR) sensor in wired and wireless environments. Res. J. Pharm. Technol. 2017, 10, 545–550. [Google Scholar] [CrossRef]
- Chong, J.; Esa, N.; McManus, D.; Chon, K. Arrhythmia discrimination using a smart phone. IEEE J. Biomed. Health Inform. 2015, 19, 815–824. [Google Scholar] [CrossRef]
- Marzbanrad, F.; Khandoker, A.; Hambly, B.; Ng, E.; Tamayo, M.; Lu, Y.; Matthews, S.; Karmakar, C.; Palaniswami, M.; Jelinek, H.; et al. Methodological comparisons of heart rate variability analysis in patients with type 2 diabetes and angiotensin converting enzyme polymorphism. IEEE J. Biomed. Health Inform. 2015, 20, 55–63. [Google Scholar] [CrossRef]
- van de Laar, B.; Bos, D.P.O.; Reuderink, B.; Poel, M.; Nijholt, A. How much control is enough? Influence of unreliable input on user experience. IEEE Trans. Cybern. 2013, 43, 1584–1592. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Tang, S.; Tang, J.; Hong, R.; Li, J. Accurate estimation of human body orientation from RGB-D sensors. IEEE Trans. Cybern. 2013, 43, 1442–1452. [Google Scholar] [CrossRef]
- Syakur, M.; Khotimah, B.; Rochman, E.; Satoto, B.D. Integration k-means clustering method and elbow method for identification of the best customer profile cluster. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 336, p. 012017. [Google Scholar]
- Gaudette, L.; Japkowicz, N. Evaluation methods for ordinal classification. In Proceedings of the Canadian Conference on Artificial Intelligence, Kelowna, BC, Canada, 28–31 May 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 207–210. [Google Scholar]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Laerhoven, K. Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection. In Proceedings of the 2018 on International Conference on Multimodal Interaction, Boulder, CO, USA, 16–20 October 2018; ACM: New York, NY, USA, 2018; pp. 400–408. [Google Scholar]
- Hosseini, A.; Khalilzadeh, A. Emotional stress recognition system using EEG and psychophysiological signals: Using new labelling process of EEG signals in emotional stress state. In Proceedings of the 2010 International Conference on Biomedical Engineering and Computer Science, Wuhan, China, 23–25 April 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. [Google Scholar]
- Saidatul, A.; Paulraj, M.; Yaacob, S.; Yusnita, A. Analysis of EEG signals during relaxation and mental stress condition using AR modeling techniques. In Proceedings of the 2011 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 25–27 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 477–481. [Google Scholar]
- Khosrowabadi, R.; Quek, C.; Ang, K.; Tung, W.; Heijnen, M. A Brain-Computer Interface for classifying EEG correlates of chronic mental stress. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 757–762. [Google Scholar]
- Sharma, N.; Gedeon, T. Modeling stress recognition in typical virtual environments. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, Venice, Italy, 5–8 May 2013; ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering): Ghent, Belgium, 2013; pp. 17–24. [Google Scholar]
- Shargie, F.; Tang, B.; Badruddin, N.; Kiguchi, M. Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Med. Biol. Eng. Comput. 2018, 56, 125–136. [Google Scholar] [CrossRef]
- Arsalan, A.; Majid, M.; Butt, R.; Anwar, M. Classification of Perceived Mental Stress Using A Commercially Available EEG Headband. IEEE J. Biomed. Health Inform. 2019, 23, 2257–2264. [Google Scholar] [CrossRef]
Experiments | Number of Subjects | Number of Signals |
---|---|---|
Baseline Phase | 13 | 39 |
VR Roller Coaster | 13 | 39 |
Color Stroop Task | 13 | 39 |
VR Video Game | 11 | 33 |
User 2 | T1 | T2 | T3 | T4 | p-Value |
---|---|---|---|---|---|
Mean HR | 84.75 | 73.41 | 76.05 | 74.22 | |
SDNN | 0.05 | 0.07 | 0.16 | 0.08 | 0.03 |
RMSSD | 0.03 | 0.08 | 0.21 | 0.10 | 0.06 |
NN50 | 21 | 124 | 148 | 87 | 0.04 |
PNN50 | 0.20 | 0.14 | 0.26 | 0.25 | 0.01 |
SD1 | 0.02 | 0.06 | 0.15 | 0.07 | 0.07 |
SD2 | 0.07 | 0.08 | 0.17 | 0.09 | 0.02 |
ApEN | 0.31 | 0.70 | 0.88 | 0.76 | 0.01 |
VLF (AR) | 12.41 | 0.01 | |||
LF (AR) | 3.93 | 140.69 | 0.05 | ||
HF (AR) | 12.43 | 0.08 | |||
LF/HF (AR) | 0.32 | 1.58 | 0.60 | 1.11 | 0.16 |
TP (AR) | 30.54 | 0.05 | |||
VLF (Lomb) | 400.21 | 0.06 | |||
LF (Lomb) | 846.71 | 0.04 | |||
HF (Lomb) | 432.62 | 0.02 | |||
LF/HF (Lomb) | 1.96 | 1.14 | 1.80 | 0.88 | 0.04 |
TP (Lomb) | 0.01 | ||||
GSR_mean | 3.18 | 6.21 | 5.67 | 3.26 | 0.01 |
GSR_std | 0.04 | 0.07 | 0.02 | 0.04 | 0.02 |
RESP (breath/min) | 10.22 | 24.83 | 24.96 | 24.35 | 0.01 |
ML Algorithms | Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|
Personalized DT | 87.75 | 90.00 | 88.00 |
NB | 70.00 | 63.00 | 61.00 |
SVM | 60.00 | 76.00 | 59.00 |
EGB | 100 | 100 | 100 |
Acc (5 Folds) (%) | Pre (5 Folds) (%) | Rec (5 Folds) (%) | |
Personalized DT | 75.77 | 74.20 | 74.48 |
NB | 63.55 | 58.95 | 69.21 |
SVM | 71.55 | 69.45 | 62.14 |
EGB | 87.73 | 86.83 | 90.25 |
Acc (10 Folds) (%) | Pre (10 Folds) (%) | Rec (10 Folds) (%) | |
Personalized DT | 65.00 | 68.33 | 68.33 |
NB | 56.50 | 43.25 | 51.75 |
SVM | 55.50 | 33.00 | 52.50 |
EGB | 84.00 | 83.75 | 83.33 |
Model | Acc (%) | Mean Squared Error | R2 |
---|---|---|---|
DT * | 72.22 | 0.06 | 0.72 |
EGB * | 69.12 | 0.22 | 0.83 |
Xgboost * | 72.22 | 0.06 | 0.04 |
DT | 50.00 | 1.39 | 0.04 |
EGB | 69.12 | 0.83 | 0.22 |
Xgboost | 67.65 | 0.83 | 0.22 |
Reference | Physiological Signals | Classes | Method | Accuracy |
---|---|---|---|---|
[31] | ECG, EMG | 2, 3 | LDA, AB | 93 (2), 80 (3) |
[32] | RESP, PPG | 2 | Elman Classifier | 82.7 |
[33] | EEG | 2 | NN, Burg, Yule | 91.7 |
[34] | EEG | 2 | KNN, SVM | 90 |
[35] | ECG, eye gaze, pupil | 2 | SVM, ANN | 95 |
[36] | EEG | 2 | SVM + ECOC | 94.79 |
[37] | EEG | 2, 3 | MLP, SVM, NB | 92.85 (2), 64.28 (3) |
[38] | ECG, GSR, RESP | 2, 5 | Novel DT, GB, XGB | 100 (2), 72.2 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishaque, S.; Khan, N.; Krishnan, S. Physiological Signal Analysis and Stress Classification from VR Simulations Using Decision Tree Methods. Bioengineering 2023, 10, 766. https://doi.org/10.3390/bioengineering10070766
Ishaque S, Khan N, Krishnan S. Physiological Signal Analysis and Stress Classification from VR Simulations Using Decision Tree Methods. Bioengineering. 2023; 10(7):766. https://doi.org/10.3390/bioengineering10070766
Chicago/Turabian StyleIshaque, Syem, Naimul Khan, and Sridhar Krishnan. 2023. "Physiological Signal Analysis and Stress Classification from VR Simulations Using Decision Tree Methods" Bioengineering 10, no. 7: 766. https://doi.org/10.3390/bioengineering10070766
APA StyleIshaque, S., Khan, N., & Krishnan, S. (2023). Physiological Signal Analysis and Stress Classification from VR Simulations Using Decision Tree Methods. Bioengineering, 10(7), 766. https://doi.org/10.3390/bioengineering10070766