Identifying Intraoperative Spinal Cord Injury Location from Somatosensory Evoked Potentials’ Time-Frequency Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model and Data Collection
2.2. Time-Frequency Analysis
2.3. Clustering of Time-Frequency Components
2.4. Feature Selection
2.5. Classification of SEP Time-Frequency Components
3. Results
3.1. SEP Waveforms and Time-Frequency Analysis
3.2. Clustering of Time-Frequency Components and Feature Selection
3.3. Classification
3.4. Important TFC Distribution Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwartz, D.M.; Auerbach, J.D.; Dormans, J.P.; Flynn, J.; Drummond, D.S.; Bowe, J.A.; Laufer, S.; Shah, S.A.; Bowen, J.R.; Pizzutillo, P.D.; et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J. Bone Jt. Surg. Am. 2007, 89, 2440–2449. [Google Scholar] [CrossRef]
- Biscevic, M.; Sehic, A.; Krupic, F. Intraoperative neuromonitoring in spine deformity surgery: Modalities, advantages, limitations, medicolegal issues-surgeons’ views. Efort Open Rev. 2020, 5, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Chacko, S.; McCann, M.E.; Soriano, S.G. Surgery for Scoliosis. In Koht, Sloan, Toleikis’s Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals; Seubert, C.N., Balzer, J.R., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 591–601. [Google Scholar]
- Nuwer, M.R.; Emerson, R.G.; Galloway, G.; Legatt, A.D.; Lopez, J.; Minahan, R.; Yamada, T.; Goodin, D.S.; Armon, C.; Chaudhry, V.; et al. Evidence-based guideline update: Intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 2012, 78, 585–589. [Google Scholar] [PubMed]
- Seifert, J.L.; Bell, J.E.; Elmer, B.B.; Sucato, D.J.; Romero, M.I. Characterization of a novel bidirectional distraction spinal cord injury animal model. J. Neurosci. Methods 2011, 197, 97–103. [Google Scholar] [CrossRef]
- Nelson, E.M.; Monazzam, S.M.; Kim, K.D.; Seibert, J.A.; Klineberg, E.O. Intraoperative fluoroscopy, portable X-ray, and CT: Patient and operating room personnel radiation exposure in spinal surgery. Spine J. 2014, 14, 2985–2991. [Google Scholar] [CrossRef]
- Ahern, D.P.; Gibbons, D.; Schroeder, G.D.; Vaccaro, A.R.; Butler, J.S. Image-guidance, Robotics, and the Future of Spine Surgery. Clin. Spine Surg. 2020, 33, 179–184. [Google Scholar] [CrossRef]
- Cui, G.; Wang, Y.; Kao, T.H.; Zhang, Y.; Liu, Z.; Liu, B.; Li, J.; Zhang, X.; Zhu, S.; Lu, N.; et al. Application of intraoperative computed tomography with or without navigation system in surgical correction of spinal deformity: A preliminary result of 59 consecutive human cases. Spine 2012, 37, 891–900. [Google Scholar] [CrossRef]
- Charalampidis, A.; Jiang, F.; Wilson, J.R.F.; Badhiwala, J.H.; Brodke, D.S.; Fehlings, M.G. The Use of Intraoperative Neurophysiological Monitoring in Spine Surgery. Global Spine J. 2020, 10, 104S–114S. [Google Scholar] [CrossRef]
- Nuwer, M.R.; Dawson, E.G.; Carlson, L.G.; Kanim, L.E.; Sherman, J.E. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: Results of a large multicenter survey. Electroencephalogr. Clin. Neurophysiol. 1995, 96, 6–11. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Luk, K.D.K.; Hu, Y. Component analysis of somatosensory evoked potentials for identifying spinal cord injury location. Sci. Rep. 2017, 7, 2351. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Wang, Y.; Li, G.; Huang, Y.; Hu, Y. Exploration of Cervical Myelopathy Location from Somatosensory Evoked Potentials Using Random Forests Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Z.; Li, X.; Cui, H.; Xie, X.; Luk, K.D.; Hu, Y. Usefulness of Time-Frequency Patterns of Somatosensory Evoked Potentials in Identification of the Location of Spinal Cord Injury. J. Clin. Neurophysiol. 2015, 32, 341–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Cui, H.; Pu, J.; Luk, K.D.; Hu, Y. Time-frequency patterns of somatosensory evoked potentials in predicting the location of spinal cord injury. Neurosci. Lett. 2015, 603, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, L.; Moviglia, G.; Sharma, A.; Al Zoubi, Z.M.; He, X.; Chen, D. Advances and prospects of cell therapy for spinal cord injury patients. J. Neurorestoratology 2022, 10, 13–30. [Google Scholar] [CrossRef]
- Yang, X.; Song, Q.; Wang, Y. A weighted support vector machine for data classification. Int. J. Pattern Recogn. 2007, 21, 961–976. [Google Scholar] [CrossRef]
- Zhang, Z.; Luk, K.D.; Hu, Y. Identification of detailed time-frequency components in somatosensory evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.G.; Yang, J.L.; Chan, S.C.; Luk, K.D.; Hu, Y. Time-frequency component analysis of somatosensory evoked potentials in rats. Biomed. Eng. Online 2009, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschini, M.A.; Nissilä, I.; Wu, W.; Diamond, S.G.; Bonmassar, G.; Boas, D.A. Coupling between somatosensory evoked potentials and hemodynamic response in the rat. Neuroimage 2008, 41, 189–203. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, H.L.; Cui, H.Y.; Huang, Y.C.; Hu, Y. Identification of injury type using somatosensory and motor evoked potentials in a rat spinal cord injury model. Neural Regen. Res. 2023, 18, 422–427. [Google Scholar]
- Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef] [Green Version]
- Durka, P. Matching Pursuit and Unification in EEG Analysis; Artech House: Norwood, MA, USA, 2007. [Google Scholar]
- Jedrzejczak, W.W.; Blinowska, K.J.; Konopka, W. Time-frequency analysis of transiently evoked otoacoustic emissions of subjects exposed to noise. Hear. Res. 2005, 205, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xie, H. Two-stage clustering algorithm based on evolution and propagation patterns. Appl. Intell. 2022, 52, 11555–11568. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Su, J. Naive Bayes for optimal ranking. J. Exp. Theor. Artif. Intell. 2008, 20, 79–93. [Google Scholar] [CrossRef]
- Sharmila, A.; Geethanjali, P. DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers. IEEE Access 2016, 4, 7716–7727. [Google Scholar] [CrossRef]
- Hayashi, N.; Nishijo, H.; Ono, T.; Endo, S.; Tabuchi, E. Generators of somatosensory evoked potentials investigated by dipole tracing in the monkey. Neuroscience 1995, 68, 323–338. [Google Scholar] [CrossRef]
- Peterson, N.N.; Schroeder, C.E.; Arezzo, J.C. Neural generators of early cortical somatosensory evoked potentials in the awake monkey. Electroencephalogr. Clin. Neurophysiol. 1995, 96, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Seyal, M. Generators of short latency human somatosensory-evoked potentials recorded over the spine and scalp. J. Clin. Neurophysiol. 1998, 15, 227–234. [Google Scholar] [CrossRef]
- Cruccu, G.; Aminoff, M.J.; Curio, G.; Guerit, J.M.; Kakigi, R.; Mauguiere, F.; Rossini, P.M.; Treede, R.D.; Garcia-Larrea, L. Recommendations for the clinical use of somatosensory-evoked potentials. Clin. Neurophysiol. 2008, 119, 1705–1719. [Google Scholar] [CrossRef]
- Emerson, R.G. Anatomic and physiologic bases of posterior tibial nerve somatosensory evoked potentials. Neurol. Clin. 1988, 6, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Nuwer, M.R.; MacDonald, D.B.; Gertsch, J. Monitoring scoliosis and other spinal deformity surgeries. In Handbook of Clinical Neurology; Nuwer, M.R., MacDonald, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 186, pp. 179–204. [Google Scholar]
- Hu, Y.; Luk, K.D.; Lu, W.W.; Holmes, A.; Leong, J.C. Prevention of spinal cord injury with time-frequency analysis of evoked potentials: An experimental study. J. Neurol. Neurosurg. Psychiatry 2001, 71, 732–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Luk, K.D.; Lu, W.W.; Leong, J.C. Application of time-frequency analysis to somatosensory evoked potential for intraoperative spinal cord monitoring. J. Neurol. Neurosurg. Psychiatry 2003, 74, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.Y.; Wu, Y.X.; Li, R.; Li, G.S.; Hu, Y. A translational study of somatosensory evoked potential time-frequency components in rats, goats, and humans. Neural Regen. Res. 2021, 16, 2269–2275. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, A.; Geethanjali, P. Evaluation of time domain features on detection of epileptic seizure from EEG signals. Health Technol. 2020, 10, 711–722. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Y.; Chang, C.; Luk, K.D. Fast extraction of Somatosensory Evoked Potential based on Second Order Blind Identification. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 5457–5460. [Google Scholar]
- Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714. [Google Scholar]
- Kononenko, I. Semi-Naive Bayesian Classifier. In Proceedings of the Machine Learning—EWSL-91, Porto, Portugal, 6–8 March 1991; Springer: Berlin/Heidelberg, Germany, 1991; pp. 206–219. [Google Scholar]
- Heckerman, D. A Tutorial on Learning with Bayesian Networks. In Learning in Graphical Models; Jordan, M.I., Ed.; Springer: Dordrecht, The Netherlands, 1998; pp. 301–354. [Google Scholar]
Group | SCI Segment | Rats |
---|---|---|
Normal | − | 20 (9.5%) |
Cervical | C5, C6 | 20 (9.5%) |
Thoracic | T1–T4 and T7–T13 | 110 (52.4%) |
Lumbar | L1–L6 | 60 (28.6%) |
Predicted | Recall | ||||||
---|---|---|---|---|---|---|---|
Normal | Injury | ||||||
Cervical | Thoracic | Lumbar | |||||
Actual | Normal | 8.92% | 2.09% | 0.78% | 0% | 75.66% | |
Injury | Cervical | 0.70% | 9.78% | 0.00% | 0.54% | 88.73% | |
Thoracic | 2.02% | 0.00% | 37.08% | 0.39% | 93.91% | ||
Lumbar | 1.16% | 1.86% | 5.59% | 29.09% | 77.16% | ||
Precision | 69.70% | 71.19% | 85.36% | 96.90% | 84.87% |
Predicted | Recall | |||||
---|---|---|---|---|---|---|
Normal | Injury | |||||
C5 | C6 | |||||
Actual | Normal | 41.41% | 0.78% | 3.15% | 91.38% | |
Injury | C5 | 3.13% | 26.04% | 2.34% | 82.64% | |
C6 | 1.30% | 1.04% | 20.83% | 89.89% | ||
Precision | 90.34% | 93.46% | 79.21% | 88.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Gao, S.; Li, R.; Cui, H.; Huang, W.; Huang, Y.; Hu, Y. Identifying Intraoperative Spinal Cord Injury Location from Somatosensory Evoked Potentials’ Time-Frequency Components. Bioengineering 2023, 10, 707. https://doi.org/10.3390/bioengineering10060707
Li H, Gao S, Li R, Cui H, Huang W, Huang Y, Hu Y. Identifying Intraoperative Spinal Cord Injury Location from Somatosensory Evoked Potentials’ Time-Frequency Components. Bioengineering. 2023; 10(6):707. https://doi.org/10.3390/bioengineering10060707
Chicago/Turabian StyleLi, Hanlei, Songkun Gao, Rong Li, Hongyan Cui, Wei Huang, Yongcan Huang, and Yong Hu. 2023. "Identifying Intraoperative Spinal Cord Injury Location from Somatosensory Evoked Potentials’ Time-Frequency Components" Bioengineering 10, no. 6: 707. https://doi.org/10.3390/bioengineering10060707
APA StyleLi, H., Gao, S., Li, R., Cui, H., Huang, W., Huang, Y., & Hu, Y. (2023). Identifying Intraoperative Spinal Cord Injury Location from Somatosensory Evoked Potentials’ Time-Frequency Components. Bioengineering, 10(6), 707. https://doi.org/10.3390/bioengineering10060707