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Abstract: Sometimes, one needs to control different emotional situations which can lead 
the person suffering them to dangerous situations, in both the medium and short term. 
There are studies which indicate that stress increases the risk of cardiac problems. In this 
study we have designed and built a stress sensor based on Galvanic Skin Response (GSR), 
and controlled by ZigBee. In order to check the device’s performance, we have used  
16 adults (eight women and eight men) who completed different tests requiring a certain 
degree of effort, such as mathematical operations or breathing deeply. On completion, we 
appreciated that GSR is able to detect the different states of each user with a success rate of 
76.56%. In the future, we plan to create an algorithm which is able to differentiate between 
each state. 
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1. Introduction 

Stress, better explained in [1], is a response to particular events. It is the way our body prepares 
itself to face a difficult situation with focus, strength and heightened alertness. When we perceive a 
threat, our nervous system responds by releasing a flood of stress hormones, including adrenaline and 
cortisol. These hormones rouse the body for emergency action. In some cases it is necessary to collect 
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feedback in order to control this symptom because it can become dangerous in certain situations. 
Therefore, it is necessary to build a device to detect stress.  

For this objective, we have designed a Galvanic Skin Response (GSR) device in order to detect the 
different conductance of the skin when a person is under stress or when not [2]. It uses just two electrodes 
which are placed on the fingers and act as if they were the two terminals of one resistance [3,4].  

This device sends different data to a coordinator via ZigBee and, at the same time, this coordinator 
will send the information to a computer. The final objective is to implement this GSR into an 
application which controls different medical devices, [5,6]. The Figure 1 shows the communication of 
the final application. 

The user can use the stress sensor anywhere in his home provided he is at a distance of less than  
10 meters [7]. By using a wireless communication system, the user is provided with a certain degree of 
freedom when using the device. The final user could manage the different devices from his television 
and the control center could take different action so as to change a person’s stress levels. Therefore, the 
coordination center could use different systems to help the person relax, such as turning down the 
lights or changing the kind of music the user is listening to. There are two main reasons why we 
decided to work with ZigBee: 

• It’s low power consumption. 
• It is possible to connect as many as 255 nodes.  

This means of communication has been used before in healthcare applications, as can be seen in [8] 
and [9]. In order to verify the stress sensor, we carried out different trials with 16 adult subjects. The 
idea was to establish one threshold for each person because there are people who are more nervous 
than others, so there could be cases where the results are not reliable. Despite this, there exist studies 
which have obtained good results establishing the same limit for all the subjects [10].  

Therefore, there are two parts: the hardware design of the GSR and the algorithm which detects the 
emotional state of the user. This first study focuses on the hardware part, so the trials were done in 
order to verify that the device detects different changes in the person’s condition, more specifically 
whether it detects an effort being made.  

Figure 1. Final application.  
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The output voltage of the designed circuit is connected to the ADC of a ZigBee board. There are 
two ZigBee boards: one for acquiring the data, and a second one to send it to the computer. This 
second board (the coordinator) also receives information about other devices and functions of the 
domotic application.  

This paper is divided into the following sections: first, the paper describes the state of the art. 
Secondly, a complete methodology with all the technologies involved in this system is described, and 
then the system design is explained, as well as the results obtained during the tests carried out on the 
system. This document ends with the conclusions and the discussions arising from the topic. 

2. State of the Art  

There exist different studies which try to detect people’s emotional states, including attempts to find 
out whether someone is suffering from stress or is not. Studies [11] and [12] use EEG to classify the 
different data acquired by brain activity. They extract different frequency features of the signals for 
their posterior classification with good results.  

Heart Rate Variability is another parameter used to measure stress levels [13]. To induce stress the 
authors in [14] propose using hyperventilation and talk preparation. Then, they present a method based 
on fuzzy logic to analyze the different data from HR and GSR. An ambulatory device is developed  
in [4] in order to evaluate stress in blind people. This device also includes the measurement of skin 
temperature, which is another parameter used to analyze stress [15].  

As regards Galvanic Skin Response (GSR), there are several studies which propose different 
methods of detecting stress levels by measuring skin conductance [16]. The study described in [17] has 
the objective of detecting sweat levels for the diagnosis of sudomotor dysfunction, something that can 
help in the diagnosis of diabetes. There are other medical applications based on skin conductance, such 
as epilepsy control: sweaty hands may be a warning signal of an epileptic attack [18]; or [19], as 
support of the diagnosis and treatment of bipolar disorder patients. 

By combining the sweat of the hands with the temperature of the skin, it is possible to develop a 
truth meter [20]; as when the person is lying, his hands are colder and skin resistance is lower. In this 
case it is not necessary to include an ADC because the variation of skin resistance happens at odd 
times so, with different resistances and transistors, it is possible to build a lie detector. 

In [10], different videos are shown to the participants in order to induce different emotions. The 
data acquired by GSR are classified by Immune Particle Swarm Optimization, obtaining a high 
average when classifying different emotions from the conductance of the skin. The study presented  
in [21] shows a method based on Support Vector Regression for recognizing emotions by combining 
different devices.  

Continuing with the differentiation of the emotional state, literature includes other studies like [22], 
where different devices are combined so that, by means of Cross-Correlation and Fisher, it is possible 
to distinguish six different kinds of emotions.  

In [23], applying a method based on Principal Component Analysis (PCA) to reduce the dimension 
of the GSR data is proposed, saving as much information as possible. The devices described above are 
also used in the analysis of different bio signals [24]. 
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3. Methods 

In order to develop GSR, it is necessary to use a mechanism to send the data via ZigBee as well as 
the corresponding algorithm to determine the stress level in accordance with the different tests. The 
different methods used in this first study can be seen below: 

3.1. Hardware 

We use Jennic JN-5148 boards (Figure 2) for data acquisition and its subsequent submission to the 
computer. These were chosen because of their ease of implementing a communication protocol 
between the coordinator board and the sensor board and because they are part of the ZigBee Alliance. 
Other devices like those used in [5] were not appropriate for developing a global domotic system. The 
resolution of the Analogic to Digital Converser is appropriate for the needs of the device.  

Figure 2. Jennic board 

 
 
The output signal of the (Vo) device is connected to pin 34 of the sensor board, while the reference 

signal is connected to number 40. Through the ZigBee communication protocol, the sensor board 
sends the data to the coordinator board, which, by means of a USB with a JWT terminal, sends the data 
to a computer. The weight and the size of these boards are quite small, so they can easily be 
implemented in the same kit as the device. 

3.2. Signal 

After doing some tests, it was seen that the Analogic Digital Converser saturates at 2.35 V. It is an 
ADC of 12 bits, so the resolution is: 2.354096 0.573  (1)

The galvanic skin response oscillates between 10 kΩ and 10 MΩ [25,26], as it can be seen in 
existing studies about the skin conductance obtained from different applied voltages [27,28]. After 
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initial contact with the subjects, we established an input tension of 1.8 V. We took measurements from 
our circuit, using different resistances that are within the range of skin resistance (Table 1). These 
values were chosen in order to know the theoretical behavior of the output voltage, depending on skin 
conductance. The different values of Rs (Table 1) are determined by the combination of different real 
resistances. 

Table 1. Different values of the resistances. 

Rs Vout 
10 k 1.755 V 

49.5 k 1.677 V 
100 k 1.587 V 
200 k 1.434 V 
560 k 1.054 V 
760 k 0.923 V 
1 M 0.813 V 

3.3 M 0.357 V 
9.93 M 0.136 V 

 
As the board’s ADC has a resolution of 0.573 mV and the minimum tension is 136 mV, an 

operational amplifier does not have to be included. We can also observe that the differences between 
some resistance values and others are higher than the ADC resolution. There are GSR devices which 
use an amplifier before the ADC [6]. 

3.3. Trials 

Different tests were conducted in order to verify the behavior of the GSR device: 

• In a calm state, trying to feel relaxed. 
• Trying to be nervous: at the second stage, we asked the subjects to think about something 

which makes him nervous or produces anxiety. 
• Taking in air and expelling it forcefully: the subject is relaxed and, after one minute, he is 

asked to take in air and expel it, trying to push himself as hard as possible. As the result of this, 
the nervous system indicates to the sweat glands that an effort has been made. 

• Mathematical operations: the subject is relaxed and, after one minute, the computer shows him 
different mathematical operations. The subject is asked to feed the different results into the 
computer. 

• Reading: after 90 seconds, the screen shows some words that the user has to read as fast as 
possible (Figure 3). 

• Another test where the computer shows different images to the subject was also used. Some of 
these pictures are “emotional” (they should affect the subject’s emotional state) and the others 
are “neutral” (they have no influence on the subject). It was supposed that the emotional ones 
would provide a response, but, after trying with some subjects, we have not included this 
because the results were insignificant. 
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Figure 3. Prototype and test. 

 
 

Table 2 shows the places where the different studies took place. The studies have been made at the 
subject’s home and office because GSR is intended to work in daily situations.  

Table 2. Places of the tests. 

User 1 Work User 9 Home 
User 2 Work User 10 Home 
User 3 Work User 11 Home 
User 4 Work User 12 Work 
User 5 Home User 13 Home 
User 6 Home User 14 Work 
User 7 Home User 15 Work 
User 8 Home User 16 Home 

3.4. Matlab 

In order to analyze and manipulate the different data, we use Matlab. 

3.5. WEKA 

To verify the different tests, we used the WEKA learning machine for testing the following 
methods: Bayesian Network, J48 and Sequential Minimal Optimization (SMO). They were chosen 
because there are studies that have obtained good results with them [29]. A Cross-Validation method 
was used to evaluate the different results.  

4. System Design 

We now present different diagrams showing the application’s system design.  

4.1. High Level Design 

The main application performs the operations on the Figure 4. 
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Figure 4. General diagram. 

 
 

The data acquisition and subsequent sending of information to the computer is done by two 
different boards, which are connected to each other via ZigBee (see Figure 5). 

Figure 5. Acquisition diagram. 

 
 
The device built performs the operations of the Figure 6: 

Figure 6. Device function. 

 
 
The GSR electrodes collect the skin resistance and, after this, the device can determine the person’s 

stress level. 
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4.2. Processing Stage 

At this stage (Figure 7) it is necessary to develop an algorithm which must be able to differentiate 
between the stress levels. 

Figure 7. Processing stage. 

 
 

We separate the data according to stress situations and relax situations.  

4.3. Low Level Design 

Hardware 

A person’s skin acts as a resistance to the passage of electrical current. By placing two electrodes on 
the fingers, we can calculate the Galvanic Skin Response (GSR). To find out this value, we use one 
resistance, as it can be seen in Figure 8, in series with the skin resistance, to form a voltage divider. 

Figure 8. Voltage divider. 

 2 2  (2) 

where Rs is the resistance of the skin. 
It can be observed that the Vo output tension is inversely proportional to the value of the skin 

resistance. The more stressed the person is, the more his hands will sweat, so his resistance will 
decrease. Therefore, we can conclude that the more stress the person is under, the higher output 
voltage will be. 
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It also includes a low-pass filter made by a capacitor and a resistance to filter the high frequencies. 
The resulting circuit in Figure 9. 

Figure 9. General circuit. 

 
Rs = skin resistance, R1 = 330 k, R2 = 890 k, C1 = 100 nF. 

 
We will use a 1.5 V battery of as supply. The device, Figure 10, will have the following form: 

Figure 10. Device. 

 

5. Results  

We have conducted several tests in order to change the emotional state of the subjects. Knowing the 
moments when the person should be stressed and the ones where he should not, we can analyze each 
kind of data separately. We have used 16 subjects aged between 23 and 56 (eight women and eight 
men). The sample rate is 4 Hz. Once the data have been obtained, we have smoothed them with an 
average size-5 window. 

All the users have done the following tests: 

• Staying relaxed 
• Mathematical operations 
• Breathing deeply 
• Reading as fast as possible 
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Table 3 shows the output voltage averages for the different tests in those cases where the 
differences are better appreciated.  

Table 3. Average of different situations. 

Relax(V) Operations (V) Breathing (V) Reading (V) 
User 4 (25) 1.4068 1.6945 1.6476 1.6712 
User 5 (30) 1.1123 1.1383 1.1484 1.1426 
User 6 (27) 0.876 1.0381 0.9567 1.0609 
User 7 (24) 1.0011 1.0868 1.0786 1.1176 
User 8 (26) 0.8238 0.9904 0.8864 0.9975 
User 9 (26) 1.101 1.1145 1.1105 1.1439 

User 10 (27) 1.060 1.1197 1.0695 1.1022 
User 11 (55) 0.7096 0.7546 0.7840 0.8408 
User 12 (28) 1.0529 1.0685 1.0893 1.0856 
User 13 (23) 1.3699 1.5542 1.5599 1.6468 
User 14 (30) 0.8238 0.9904 0.8864 0.9975 

 
Following it can be seen the answers to different situations. Figures 11, 16 and 17 show the 

variation of the output voltage when the users are reading; Figures 12 and 15 represents the effort 
doing mathematical operations and Figures 13, 14 and 18 are the answer of the user breathing deeply.  

Figure 11. Output voltage of User 4 reading. 

 

Figure 12. Output voltage of User 5 doing mathematical operations. 
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Figure 13. Output voltage of User 13 breathing. 

 

Figure 14. Output voltage of User 6 breathing. 

 

Figure 15. Output voltage of User 10 doing mathematical operations. 

 

Figure 16. Output voltage of User 11 reading. 
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Figure 17. Output voltage of User 12 reading. 

 

Figure 18. Output voltage of User 14 breathing. 

 
 

It has been appreciated that when the participants were asked to relax, there was a decrease in the 
output voltage for that period of time. Figures 19–22 show the decreasing of the signal when the user is 
relaxed.  

Figure 19. Output voltage of User 9 being relaxed. 
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Figure 20. Output voltage of User 6 being relaxed. 

 

Figure 21. Output voltage of User 10 being relaxed. 

 

Figure 22. Output voltage of User 16 being relaxed. 

 
 
The Table 4 shows whether changes have been appreciated in these four tests for each user.  
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Table 4. Success of each test by subject.  
Reading Breathing Operations Relaxing 

User 1 YES YES YES YES 
User 2 NO YES YES YES 
User 3 YES YES YES YES 
User 4 YES YES YES YES 
User 5 NO YES YES YES 
User 6 YES YES YES YES 
User 7 NO YES NO YES 
User 8 YES NO NO YES 
User 9 YES NO YES YES 

User 10 NO YES YES YES 
User 11 YES YES NO YES 
User 12 YES YES YES NO 
User 13 NO YES NO YES 
User 14 YES NO YES YES 
User 15 NO NO YES YES 
User 16 YES YES YES YES 

Total success 10 12 12 15 
% success 62.5 75 75 93.75 

 
With this data, we obtained an average success rate of 76.56%. The users who had done some trials 

beforehand (Users 1, 2, 3 and 12), were more successful than the rest. Additionally, there are users 
who were asked to think of something that makes them nervous for a later comparison (Table 5): 

Table 5. Differences between trying to be relaxed and trying to be nervous. 
Relaxed(V) Nervous(V)

User 1 (26) 1.6118 1.7396
User 2 (26) 1.5535 1.5379
User 3 (24) 1.5576 1.6153
User 4 (25) 1.4068 1.3839
User 5 (30) 1.1123 1.1266

User 15 (26) 1.0902 1.1388
 
Figures 23 and 24 show the responses of User 1 and User 3, trying to be nervous and relaxed 

Figure 23. Output voltage of User 1 trying to be relaxed and nervous. 
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Figure 24. Output voltage of User 3 trying to be relaxed and nervous. 

 
 
User 4 was a special case: after doing the stage where she had to think about something that makes 

her nervous, she had said that she could not do so. We then told her that the next stage was 
mathematical operations, something which made her nervous (Figure 25). Therefore, we decided 
repeat the acquisitions: 

Figure 25. Output voltage of User 4 trying to be relaxed and nervous. 

 
 
Figures 26 and 27 show additional situations tested by the GSR: 

Figure 26. Output voltage of User 4 before and after drinking coffee. 
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After drinking coffee, User 1 presents a higher output voltage. 

Figure 27. Output voltage of User 4 in the morning. 

 
 
While User 4 was relaxed, she became nervous, which is why an increment in output voltage can be 

appreciated. 
Figure 28 represents the following three situations: 

• Upon arrival at the department, done fairly quickly (blue). 
• After a while, much more calmly (green). 
• In the afternoon, thinking about something she had to do, and that made her nervous (red). 

Figure 28. Output voltage of User 1 in different situations. 

 
 

In order to verify the different tests, we introduced the different data to WEKA machine learning, 
using BayesNet, J48 and SMO. There separated those measurements which are supposed to represent 
an effort from those where the user was relaxed. The data have been processed individually for each 
participant due to the fact that each one has got different thresholds. Cross-Validation was used to test 
the different classifiers. Below, in Table 6, we present the different results: 
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Figure 34. User 9 J48 ROC curve. 

 
 
Below is a comparative graph (Figure 35) with the results obtained from the different subjects, 

showing the averages when relaxed and when in situations requiring effort: 

Figure 35. Average comparison between being relaxed and making an effort. 

 

Table 8 contains the different voltages between relaxing situations and effort situations: 

Table 8. Difference between being relaxed and effort situations. 
Calm (V) Effort (V) Diference (%) 

User 1 1.6118 1.7396 7.929 
User 2 1.6216 1.6309 0.5735 
User 3 1.5576 1.6153 3.70445 
User 4 1.4068 1.6711 18.7873 
User 5 1.1123 1.1431 2.7690 
User 6 0.876 1.0186 16.2747 
User 7 1.0011 1.0943 9.3131 
User 8 0.8238 0.9581 16.3025 
User 9 1.101 1.123 1.9952 

User 10 1.060 1.0971 3.5129 
User 11 0.7096 0.7931 11.7718 
User 12 1.0529 1.0811 2.6814 
User 13 1.3699 1.587 15.84548 
User 14 0.8238 0.9581 16.3023 
User 15 1.0902 1.1388 4.4499 
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We did more trials for Users 2, 3, 4, 5 and 13 in order to determine whether they are stressed or not. 
In these trials they were asked to feel both relaxed and nervous. After talking to them, they concluded 
that most of them were not able to make themselves nervous (Figures 36–40). Because of this, the 
measurements were not treated as they were supposed to be, but as according to how the participant 
felt. The results are reflected in Tables 9–13. 

Table 9. Results of the different methods for User 2. 

User 2 
Trial 1: stressed 

BayesNet J48 SMO 
Relative absolute error 0.95% 0.00% 0.00% 

Correctly classified 100.00% 100.00% 100.00% 
Incorrectly classified 0.00% 0.00% 0.00% 

Table 10. Results of the different methods for User 3. 

User 3 
Trial 1: stressed and relaxed 
BayesNet J48 SMO 

Relative absolute error 30.29% 43.61% 21.35% 
Correctly classified 85.55% 85.55% 89.37% 

Incorrectly classified 14.45% 14.45% 10.63% 
Trial 2: relaxed 

BayesNet J48 SMO 
Relative absolute error 38.05% 42.40% 29.87% 

Correctly classified 84.00% 84.00% 90.90% 
Incorrectly classified 16.00% 16.00% 9.10% 

Table 11. Results of the different methods for User 4. 

User 4 
Trial 1: stressed and relaxed 
BayesNet J48 SMO 

Relative absolute error 29.43% 40.73% 24.91% 
Correctly classified 85.35% 79.63% 87.54% 

Incorrectly classified 14.65% 20.37% 12.46% 
Trial 2: relaxed 

BayesNet J48 SMO 
Relative absolute error 0.21% 7.84% 0.00% 

Correctly classified 100.00% 96.17% 100.00% 
Incorrectly classified 0.00% 3.83% 0.00% 

 



Sensors 2012, 12  
 

 

6095

Table 12. Results of the different methods for User 5. 

User 5 
Trial 1: relaxed 

BayesNet J48 SMO 
Relative absolute error 0.00% 0.00% 0.00% 

Correctly classified 100.00% 100.00% 100.00% 
Incorrectly classified 0.00% 0.00% 0.00% 

Trial 2: relaxed 
BayesNet J48 SMO 

Relative absolute error 0.12% 0.00% 0.00% 
Correctly classified 100.00% 100.00% 100.00% 

Incorrectly classified 0.00% 0.00% 0.00% 

Table 13. Results of the different methods for User 13. 

User 13 
Trial 1: stressed and relaxed 
BayesNet J48 SMO 

Relative absolute error 32.50% 35.11% 40.94% 
Correctly classified 86.96% 86.96% 79.46% 

Incorrectly classified 13.04% 13.04% 20.54% 
Trial 2: relaxed 

BayesNet J48 SMO 
Relative absolute error 42.17% 45.61% 51.85% 

Correctly classified 71.43% 71.43% 71.43% 
Incorrectly classified 28.57% 28.57% 28.57% 

 
Table 14 shows the classification average. 

Table 14. Classification average of the different methods. 

BayesNet 90.37% 
J48 89.30% 
SMO 90.97% 

Figure 36. Output voltage of User 2 at the prediction stage. 
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Figure 37. Output voltage of User 3 at the prediction stage, nervous-relaxed.  

 

Figure 38. Output voltage of User 4 at the prediction stage, nervous-relaxed. 

 

Figure 39. Output voltage of User 5 at the prediction stage, relax 1. 

 

Figure 40. Output voltage of User 13 at the prediction stage, nervous-relaxed. 

 



Sensors 2012, 12  
 

 

6097

We have established the following limit to differentiate being relaxed from being nervous for an 
initial study:  0.6 0.42  (3)

We have separated the data in windows of 10 seconds, overlapping 5 seconds. If the average is 
higher than the limit, the result is 1, if is lower, the result is −1 (Figures 41–46). These are the results: 

Figure 41. State of the User 2 at the prediction stage. 

 

Figure 42. State of the User 3 at the prediction stage, nervous-relaxed. 

 

Figure 43. State of the User 3 at the prediction stage, relaxed. 
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Figure 44. State of the User 4 at the prediction stage, nervous-relaxed. 

 

Figure 45. State of the User 5 at the prediction stage, relaxed 1. 

 

Figure 46. State of the User 13 at the prediction stage, nervous-relaxed. 

 

6. Discussion 

The main part of this study involved the design of a device which is able to detect skin resistance in 
different situations. It also includes an initial threshold between being stressed and being relaxed, but it 
is not the algorithm that is going to be implemented in the final application. 

With the different graphs, it can be observed that signals increase or decrease depending on the 
effort or the mental situation of the user. User 4, User 2, and User 3 had done some previous tests 
before these results. This may be the explanation for why they present more clarity in their graphs.  
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The main problem is that, for the moment, we cannot differentiate being stressed from making an 
effort. This is clearly seen in User 13’s last graph, where a laugh presents a similar response to feeling 
stressed. Apart from the reflected trials, we also collected data while the user was playing different 
games, such as Tetris or PacMan. However, significant results were not obtained, so they are not 
included in this study. There are other studies [30] which have used different games in longer tests, and 
they have obtained good results. 

7. Conclusions 

The GSR device detects whether there has been an effort or a different situation from being relaxed 
with a success rate of 90.97%. It has been observed that participants who had done some trials before 
obtained the highest difference; so the average could be higher if the user is familiarized with the 
device. The next stage is to design an algorithm in order to establish the threshold between different 
emotional situations because this first algorithm does not distinguish between being stressed or making 
an effort. Two tasks lying ahead of us are: 

• Improving the algorithm to establish more reliable thresholds; 
• Using different tests for the calibration state: conducting tests that last longer [17,30]. 
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