Surface Modification of Cyclic-Olefin-Copolymer (COC)-Based Microchannels for the Large-Scale Industrial Production of Droplet Microfluidic Devices
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Material Characterization
2.3. Surface Fluorination
2.4. Manufacturing Process of Large-Scale Droplet Microfluidic Devices
2.5. Liquid–Liquid Segmented Flow Experiments
3. Results and Discussion
3.1. Influence of Plasma Cleaning and Fluorination on the Surface Wettability of COC
3.2. Analysis of Molecular Compositions and Physical Morphologies of COC Surface Processed through Plasma Cleaning and Fluorination Treatment
3.3. Influence of the Fluorination Treatment of Inner Microchannel Surface on Microdroplet Generation
3.3.1. Microdroplet Generation in the COC Chip That Did Not Undergo Fluorination Treatment
3.3.2. Formation of Microdroplets in the COC Chip after Fluorination Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joensson, H.N.; Svahn, H.A. Droplet microfluidics—A tool for single-cell analysis. Angew. Chem. 2012, 51, 12176–12192. [Google Scholar] [CrossRef]
- Kobayashi, I.; Uemura, K.; Nakajima, M. Formulation of monodisperse emulsions using submicron-channel arrays. Colloids Surf. A Physicochem. Eng. Asp. 2007, 296, 285–289. [Google Scholar] [CrossRef]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Rios, A.; Zougagh, M.; Avila, M. Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories. Anal. Chim. Acta 2012, 740, 1–11. [Google Scholar] [CrossRef]
- Rosenfeld, L.; Lin, T.; Derda, R.; Tang, S.K. Review and analysis of performance metrics of droplet microfluidics systems. Microfluid. Nanofluidics 2014, 16, 921–939. [Google Scholar] [CrossRef]
- Barea, J.S.; Lee, J.; Kang, D.-K. Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. Micromachines 2019, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Baret, J.C. Surfactants in droplet-based microfluidics. Lab Chip 2012, 12, 422–433. [Google Scholar] [CrossRef]
- Burns, J.R.; Ramshaw, C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 2001, 1, 10–15. [Google Scholar] [CrossRef]
- Ohno, K.-I.; Tachikawa, K.; Manz, A. Microflfluidics: Applications for analytical purposes in chemistry and biochemistry. Electrophoresis 2008, 29, 4443–4453. [Google Scholar] [CrossRef]
- Belder, D. Microfluidics with Droplets. Angew. Chem. 2002, 44, 3521–3522. [Google Scholar] [CrossRef]
- Cunha, A.G.; Mougel, J.-B.; Cathala, B. Preparation of Double Pickering Emulsions Stabilized by Chemically Tailored Nanocelluloses. Langmuir 2014, 30, 9327–9335. [Google Scholar] [CrossRef]
- Vincent, M.E.; Liu, W.; Haney, E.B. Microflfluidic stochastic confifinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chem. Soc. Rev. 2010, 39, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Warren, N.J.; Fielding, L.A.; Armes, S.P.; Verstraete, P.; Smets, J. Preparation of Double Emulsions using Hybrid Polymer / Silica Particles: New Pickering Emulsififiers with Adjustable Surface Wettability. ACS Appl. Mater. Interfaces 2014, 6, 20219–20927. [Google Scholar] [CrossRef]
- Curcio, M.; Roeraade, J. Continuous Segmented-Flow Polymerase Chain Reaction for High-Throughput Miniaturized DNA Amplification. Anal. Chem. 2003, 75, 1–7. [Google Scholar] [CrossRef]
- Schaerli, Y.; Wootton, R.C.; Robinson, T.; Stein, V.; Dunsby, C.; Neil, M.A.; French, P.M.; DeMello, A.J.; Abell, C.; Hollfelder, F. Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets. Anal. Chem. 2009, 81, 302–306. [Google Scholar] [CrossRef]
- Agresti, J.J.; Antipov, E.; Abate, A.R.; Ahn, K.; Rowat, A.C.; Baret, J.C.; Marquez, M.; Klibanov, A.M.; Griffiths, A.D.; Weitz, D.A. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 2010, 107, 4004–4009. [Google Scholar] [CrossRef] [Green Version]
- Boedicker, J.Q.; Li, L.; Kline, T.R. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 2008, 8, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Brouzes, E.; Medkova, M.; Savenelli, N.; Marran, D.; Twardowski, M.; Hutchison, J.B.; Rothberg, J.M.; Link, D.R.; Perrimon, N.; Samuels, M.L. Droplet microfluidic technology for single-cell high throughput screening. Proc. Natl. Acad. Sci. USA 2009, 106, 14195–14200. [Google Scholar] [CrossRef] [Green Version]
- Mazutis, L.; Baret, J.C.; Treacy, P.; Skhiri, Y.; Araghi, A.F.; Ryckelynck, M.; Taly, V.; Griffiths, A.D. Multi-step microfluidic droplet processing: Kinetic analysis of an in vitro translated enzyme. Lab Chip 2009, 9, 2902–2908. [Google Scholar] [CrossRef]
- Nunes, P.S.; Ohlsson, P.D.; Ordeig, O.; Kutter, J.P. Cyclic Olefin Polymers: Emerging Materials For Lab-On-A-Chip Applications. Microfluid Nanofluid 2010, 9, 145–161. [Google Scholar] [CrossRef]
- Aghvami, S.A.; Opathalage, A.; Zhang, Z.K.; Ludwig, M.; Heymann, M.; Norton, M.; Wilkins, N.; Fraden, S. Rapid Prototyping of Cyclic Olefin Copolymer (COC) Microfluidic Devices. Sens. Actuators B 2017, 274, 940–949. [Google Scholar] [CrossRef]
- Koh, C.G.; Tan, W.; Zhao, M.Q.; Ricco, A.J.; Fan, Z.H. Integrating Polymerase Chain Reaction, Valving, and Electrophoresis in a Plastic Device for Bacterial Detection. Anal. Chem. 2003, 75, 4591–4598. [Google Scholar] [CrossRef]
- Roy, S.; Yue, C.Y.; Lam, Y.C. Influence of plasma surface treatment on thermal bonding and flow behavior in Cyclic Olefin Copolymer (COC) based microfluidic devices. Vacuum 2011, 85, 1102–1104. [Google Scholar] [CrossRef]
- Roy, S.; Yue, C.Y.; Lam, Y.C.; Wang, Z.Y.; Hu, H. Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices. Sens. Actuators B 2010, 150, 537–549. [Google Scholar] [CrossRef]
- Subramanian, B.; Kim, N.; Lee, W.; Spivak, D.A.; Nikitopoulos, D.E.; McCarley, R.L.; Soper, S.A. Surface Modification of Droplet Polymeric Microfluidic Devices for the Stable and Continuous Generation of Aqueous Droplets. Langmuir 2011, 27, 7949–7957. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Jing, G.; Zhang, M.; Liu, B.; Zhu, X.; Wang, B.; Fu, M.; Zhu, L.; Cheng, J.; Guo, Y. One-step bonding and hydrophobic surface modification method for rapid fabrication of polycarbonate-based droplet microfluidic chips. Sens. Actuators B Chem. 2019, 282, 60–68. [Google Scholar] [CrossRef]
- Long, H.; Hu, S.; Wang, Y.Q.; Li, B.; Zheng, J. Polymer surface modification with lasers. In Seventh International Conference on Laser and Laser Information Technologies; Vladislav, Y.P., Vladimir, S.G., Eds.; SPIE: Bellingham, WA, USA, 2002; Volume 4644, pp. 127–132. [Google Scholar]
- Ahn, C.; Kim, S.; Chao, H.; Murugesan, S.; Beaucage, G. Surface modification of cyclicolefinic copolymers for bio-MEMS microfluidic devices. MRS Online Proc. Libr. 2002, 729, 131–136. [Google Scholar] [CrossRef]
Sample | Description | ||
---|---|---|---|
C-C/C-H (%) | C-O/C=O (%) | C-F/CF2/CF3 (%) | |
COC | 87.6 | 12.4 | / |
COC-O | 81.86 | 18.14 | / |
COC-O10 min-F | 77.94 | 14.06 | 8.00 |
O/W-Parameter | Test Data | |||
---|---|---|---|---|
The Total Number of Microdroplets | CV Values | The Percentages of Effective Microdroplets | The Number of Effective Microdroplets | |
48/44 kPa | 14,937 | 0.0291 | 90.55% | 13,525 |
48/46 kPa | 14,500 | 0.0286 | 92.41% | 13,400 |
48/48 kPa | 16,075 | 0.0287 | 92.14% | 14,812 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Zhang, H.; Yan, Z.; Wei, X.; Zhang, Z.; Chen, X. Surface Modification of Cyclic-Olefin-Copolymer (COC)-Based Microchannels for the Large-Scale Industrial Production of Droplet Microfluidic Devices. Bioengineering 2023, 10, 763. https://doi.org/10.3390/bioengineering10070763
Guan Y, Zhang H, Yan Z, Wei X, Zhang Z, Chen X. Surface Modification of Cyclic-Olefin-Copolymer (COC)-Based Microchannels for the Large-Scale Industrial Production of Droplet Microfluidic Devices. Bioengineering. 2023; 10(7):763. https://doi.org/10.3390/bioengineering10070763
Chicago/Turabian StyleGuan, Yefeng, Huiru Zhang, Zhibin Yan, Xue Wei, Zhuo Zhang, and Xuelian Chen. 2023. "Surface Modification of Cyclic-Olefin-Copolymer (COC)-Based Microchannels for the Large-Scale Industrial Production of Droplet Microfluidic Devices" Bioengineering 10, no. 7: 763. https://doi.org/10.3390/bioengineering10070763
APA StyleGuan, Y., Zhang, H., Yan, Z., Wei, X., Zhang, Z., & Chen, X. (2023). Surface Modification of Cyclic-Olefin-Copolymer (COC)-Based Microchannels for the Large-Scale Industrial Production of Droplet Microfluidic Devices. Bioengineering, 10(7), 763. https://doi.org/10.3390/bioengineering10070763