Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and Effort from the Laboratory to the Industrial Working Place: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Research Strategy
2.2. Eligibility Criteria and Study Selection
- (A)
- To include the terms selected in the above reported query in the abstract and/or title and/or in the keywords.
- (B)
- To involve applications with biomechanical evaluations (in a broad sense, as this includes biomechanical models, EMG, and others).
- (C)
- To target laboratory or workplace scenarios, with a clear aim at industrial applications.
- (D)
- To be indexed in at least one of the screened databases.
- (E)
- To be a full journal article.
- (F)
- To be available in English.
2.3. Data Extraction and Synthesis
2.3.1. Main Topics and Findings
2.3.2. Setting
2.3.3. Type of Participants, Number of Participants, Anatomical Target
2.3.4. Tasks Type, Task Design, Task Support
2.3.5. Type of Assessments
3. Results
3.1. Study Selection
3.2. Assessing FSE: Main Findings
3.2.1. Basic Research on Biomechanical Assessments in Physiological Conditions of Fatigue
3.2.2. Influence of Task Conditions on Biomechanics
3.2.3. Musculoskeletal Diseases Risk Assessment
3.2.4. Effects of Ergonomic Interventions
3.2.5. Prevention and Beneficial Effects of Exoskeletons/Supporting Devices
3.2.6. Design and Validation of Assessment Methods
3.2.7. Protocols
3.2.8. Fatigue, Strain and Effort of the Upper Limb in Industrial Applications: Main Findings
3.3. Setting
3.4. Type of Participants, Number of Participants, Anatomical Target
3.4.1. Type of Participants
3.4.2. Number of Participants
3.4.3. Anatomical Target
3.5. Task Type, Task Design, Task Support
3.5.1. Task Type
3.5.2. Task Design
3.5.3. Task Support
3.6. Measurements and Data Analysis
4. Discussion
4.1. Summary of the Main Results
4.2. Rationale for a Top-Down Large Scope Screening on Fatigue, Strain and Effort
4.3. A Transition to a Human-Centered Perspective
4.4. Main Findings on FSE of the Upper Limb
4.5. Laboratory vs. Working Setting
4.6. Translating Biomechanical Assessments from Laboratory to the Workplace
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Brocal, F.; González, C.; Komljenovic, D.; Katina, P.F.; Sebastián, M.A.; Garciá-Alcaraz, J.L. Emerging risk management in industry 4.0: An approach to improve organizational and human performance in the complex systems. Complexity 2019, 2019, 2089763. [Google Scholar] [CrossRef] [Green Version]
- van den Heuvel, S.G.; Bakhuys Roozebom, M.C.; Eekhout, I.; Venema, A. Management of Psychosocial Risks in European Workplaces—Evidence from the Second European Survey of Enterprises on New and Emerging Risks (ESENER-2); Publications Office of the European Union: Luxembourg, 2018; Available online: https://osha.europa.eu/en/publications/management-psychosocial-risks-european-workplaces-evidence-second-european-survey (accessed on 1 March 2023).
- Nahavandi, S. Industry 5.0—A human-centric solution. Sustainability 2019, 11, 4371. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, G.; Peters, S.; Nielsen, K.; Nagler, E.; Karapanos, M.; Wallace, L.; Burke, L.; Dennerlein, J.; Wagner, G. Improving working conditions to promote worker safety, health, and wellbeing for low-wage workers: The workplace organizational health study. Int. J. Environ. Res. Public Health 2019, 16, 1449. [Google Scholar] [CrossRef] [Green Version]
- Scano, A.; Mira, R.M.; Cerveri, P.; Tosatti, L.M.; Sacco, M. Analysis of upper-limb and trunk kinematic variability: Accuracy and reliability of an RGB-D sensor. Multimodal Technol. Interact. 2020, 4, 14. [Google Scholar] [CrossRef]
- de Looze, M.P.; Bosch, T.; Krause, F.; Stadler, K.S.; O’Sullivan, L.W. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 2016, 59, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadir, B.A.; Broberg, O.; da Conceição, C.S. Current research and future perspectives on human factors and ergonomics in Industry 4.0. Comput. Ind. Eng. 2019, 137, 106004. [Google Scholar] [CrossRef]
- Brunner, B.; Igic, I.; Keller, A.C.; Wieser, S. Who gains the most from improving working conditions? Health-related absenteeism and presenteeism due to stress at work. Eur. J. Health Econ. 2019, 20, 1165–1180. [Google Scholar] [CrossRef] [Green Version]
- Ranavolo, A.; Chini, G.; Draicchio, F.; Silvetti, A.; Varrecchia, T.; Fiori, L.; Tatarelli, A.; Rosen, P.H.; Wischniewski, S.; Albrecht, P.; et al. Human-Robot Collaboration (HRC) Technologies for Reducing Work-Related Musculoskeletal Diseases in Industry 4.0. In Lecture Notes in Networks and Systems; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2022; Volume 223, pp. 335–342. [Google Scholar]
- Lavit Nicora, M.; Andre, E.; Berkmans, D.; Carissoli, C.; D’Orazio, T.; Fave, A.D.; Gebhard, P.; Marani, R.; Mira, R.M.; Negri, L.; et al. A human-driven control architecture for promoting good mental health in collaborative robot scenarios. In Proceedings of the 2021 30th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2021, Vancouver, BC, Canada, 8–12 August 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 285–291. [Google Scholar]
- Argyle, E.M.; Marinescu, A.; Wilson, M.L.; Lawson, G.; Sharples, S. Physiological indicators of task demand, fatigue, and cognition in future digital manufacturing environments. Int. J. Hum. Comput. Stud. 2021, 145, 102522. [Google Scholar] [CrossRef]
- Gualtieri, L.; Palomba, I.; Merati, F.A.; Rauch, E.; Vidoni, R. Design of human-centered collaborative assembly workstations for the improvement of operators’ physical ergonomics and production efficiency: A case study. Sustainability 2020, 12, 3606. [Google Scholar] [CrossRef]
- Abd-Elfattah, H.M.; Abdelazeim, F.H.; Elshennawy, S. Physical and cognitive consequences of fatigue: A review. J. Adv. Res. 2015, 6, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Argubi-Wollesen, A.; Wollesen, B.; Leitner, M.; Mattes, K. Human Body Mechanics of Pushing and Pulling: Analyzing the Factors of Task-related Strain on the Musculoskeletal System. Saf. Health Work 2017, 8, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Morel, P.; Ulbrich, P.; Gail, A. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control. PLoS Biol. 2017, 15, e2001323. [Google Scholar] [CrossRef] [PubMed]
- Crea, S.; Beckerle, P.; De Looze, M.; De Pauw, K.; Grazi, L.; Kermavnar, T.; Masood, J.; O’Sullivan, L.W.; Pacifico, I.; Rodriguez-Guerrero, C.; et al. Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces. Wearable Technol. 2021, 2, e11. [Google Scholar] [CrossRef]
- Moshawrab, M.; Adda, M.; Bouzouane, A.; Ibrahim, H.; Raad, A. Smart Wearables for the Detection of Occupational Physical Fatigue: A Literature Review. Sensors 2022, 22, 7472. [Google Scholar] [CrossRef]
- Anwer, S.; Li, H.; Antwi-Afari, M.F.; Umer, W.; Wong, A.Y.L. Evaluation of Physiological Metrics as Real-Time Measurement of Physical Fatigue in Construction Workers: State-of-the-Art Review. J. Constr. Eng. Manag. 2021, 147, 03121001. [Google Scholar] [CrossRef]
- Santos, J.; Baptista, J.S.; Monteiro, P.R.R.; Miguel, A.S.; Santos, R.; Vaz, M.A.P. The influence of task design on upper limb muscles fatigue during low-load repetitive work: A systematic review. Int. J. Ind. Ergon. 2014, 52, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Occhipinti, E. OCRA: A concise index for the assessment of exposure to repetitive movements of the upper limbs. Ergonomics 1998, 41, 1290–1311. [Google Scholar] [CrossRef]
- Crawford, J.O. The Nordic Musculoskeletal Questionnaire. Occup. Med. 2007, 57, 300–301. [Google Scholar] [CrossRef] [Green Version]
- Hignett, S.; McAtamney, L. Rapid Entire Body Assessment (REBA). Appl. Ergon. 2000, 31, 201–205. [Google Scholar] [CrossRef]
- McAtamney, L.; Nigel Corlett, E. RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 1993, 24, 91–99. [Google Scholar] [CrossRef]
- Stephens, J.P.; Vos, G.A.; Stevens, E.M.; Steven Moore, J. Test-retest repeatability of the Strain Index. Appl. Ergon. 2006, 37, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.S.; Garg, A. The strain index: A proposed method to analyze jobs for risk of distal upper extremity disorders. Am. Ind. Hyg. Assoc. J. 1995, 56, 443–458. [Google Scholar] [CrossRef]
- Lamooki, S.R.; Cavuoto, L.A.; Kang, J. Adjustments in Shoulder and Back Kinematics during Repetitive Palletizing Tasks. Sensors 2022, 22, 5655. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Lin, J.H.; Faber, G.S.; Buchholz, B.; Xu, X. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task. J. Electromyogr. Kinesiol. 2014, 24, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Anwer, S.; Li, H.; Antwi-Afari, M.F.; Umer, W.; Wong, A.Y.L. Cardiorespiratory and thermoregulatory parameters are good surrogates for measuring physical fatigue during a simulated construction task. Int. J. Environ. Res. Public Health 2020, 17, 5418. [Google Scholar] [CrossRef]
- Boubaker, K.; Colantoni, A.; Allegrini, E.; Longo, L.; Di Giacinto, S.; Monarca, D.; Cecchini, M. A model for musculoskeletal disorder-related fatigue in upper limb manipulation during industrial vegetables sorting. Int. J. Ind. Ergon. 2014, 44, 601–605. [Google Scholar] [CrossRef]
- Brandt, M.; Andersen, L.L.; Samani, A.; Jakobsen, M.D.; Madeleine, P. Inter-day reliability of surface electromyography recordings of the lumbar part of erector spinae longissimus and trapezius descendens during box lifting. BMC Musculoskelet. Disord. 2017, 18, 519. [Google Scholar] [CrossRef] [Green Version]
- Cè, E.; Doria, C.; Roveda, E.; Montaruli, A.; Galasso, L.; Castelli, L.; Mulè, A.; Longo, S.; Coratella, G.; D’Aloia, P.; et al. Reduced Neuromuscular Performance in Night Shift Orthopedic Nurses: New Insights From a Combined Electromyographic and Force Signals Approach. Front. Physiol. 2020, 11, 693. [Google Scholar] [CrossRef]
- Cudlip, A.C.; Holmes, M.W.R.; Callaghan, J.P.; Dickerson, C.R. The effects of shoulder abduction angle and wrist angle on upper extremity muscle activity in unilateral right handed push/pull tasks. Int. J. Ind. Ergon. 2018, 64, 102–107. [Google Scholar] [CrossRef]
- Dennerlein, J.T.; Ciriello, V.M.; Kerin, K.J.; Johnson, P.W. Fatigue in the Forearm Resulting From Low-Level Repetitive Ulnar Deviation. AIHA J. 2003, 64, 799. [Google Scholar] [CrossRef]
- Earle-Richardson, G.; Jenkins, P.L.; Strogatz, D.; Bell, E.M.; May, J.J. Development and initial assessment of objective fatigue measures for apple harvest work. Appl. Ergon. 2006, 37, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Zhang, C.; Lv, J. Effects of vertical lifting distance on upper-body muscle fatigue. Int. J. Environ. Res. Public Health 2021, 18, 5468. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.A.; Allread, W.G.; Le, P.; Rose, J.; Marras, W.S. Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy. Hum. Factors 2013, 55, 1077–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fifolato, T.M.; Nardim, H.C.B.; do Carmo Lopes, E.R.; Suzuki, K.A.K.; da Silva, N.C.; de Souza Serenza, F.; Fonseca, M.C.R. Association between muscle strength, upper extremity fatigue resistance, work ability and upper extremity dysfunction in a sample of workers at a tertiary hospital. BMC Musculoskelet. Disord. 2021, 22, 508. [Google Scholar] [CrossRef]
- Côté, J.N.; Feldman, A.G.; Mathieu, P.A.; Levin, M.F. Effects of fatigue on intermuscular coordination during repetitive hammering. Motor Control 2008, 12, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Hostler, D.; Schwob, J.; Schlader, Z.J.; Cavuoto, L. Heat Stress Increases Movement Jerk During Physical Exertion. Front. Physiol. 2021, 12, 1750. [Google Scholar] [CrossRef]
- Hsieh, Y.J.; Cho, C.Y. Using risk factors, myoelectric signal, and finger tremor to distinguish computer users with and without musculoskeletal symptoms. Eur. J. Appl. Physiol. 2008, 104, 9–17. [Google Scholar] [CrossRef]
- Huang, C.K.; Siu, K.C.; Lien, H.Y.; Lee, Y.J.; Lin, Y.H. Scapular kinematics and muscle activities during pushing tasks. J. Occup. Health 2013, 55, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Iridiastadi, H.; Nussbaum, M.A. Muscle fatigue and endurance during repetitive intermittent static efforts: Development of prediction models. Ergonomics 2006, 49, 344–360. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, J.S.; Kim, D.J.; Im, S. Evaluation of fatigue patterns in individual shoulder muscles under various external conditions. Appl. Ergon. 2021, 91, 103280. [Google Scholar] [CrossRef] [PubMed]
- Li, K.W.; Li, W.; Yi, C. Muscular fatigue measurements for push-down tasks in ground demolitions. Hum. Factors Ergon. Manuf. Serv. Ind. 2021, 31, 76–85. [Google Scholar] [CrossRef]
- Luger, T.; Seibt, R.; Rieger, M.A.; Steinhilber, B. The role of motor learning on measures of physical requirements and motor variability during repetitive screwing. Int. J. Environ. Res. Public Health 2019, 16, 1231. [Google Scholar] [CrossRef] [Green Version]
- Madeleine, P. On functional motor adaptations: From the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck-shoulder region. Acta Physiol. 2010, 199, 1–46. [Google Scholar] [CrossRef]
- Maikala, R.V.; Bhambhani, Y.N. Comparisons of physiological and perceptual responses in healthy men and women during standardized arm cranking and task-specific pushing-pulling. Int. Arch. Occup. Environ. Health 2006, 79, 509–520. [Google Scholar] [CrossRef]
- Maiti, R.; Bagchi, T.P. Effect of different multipliers and their interactions during manual lifting operations. Int. J. Ind. Ergon. 2006, 36, 991–1004. [Google Scholar] [CrossRef]
- Moyen-Sylvestre, B.; Goubault, É.; Begon, M.; Côté, J.N.; Bouffard, J.; Dal Maso, F. Power Spectrum of Acceleration and Angular Velocity Signals as Indicators of Muscle Fatigue during Upper Limb Low-Load Repetitive Tasks. Sensors 2022, 22, 8008. [Google Scholar] [CrossRef]
- McDonald, A.C.; Mulla, D.M.; Keir, P.J. Muscular and kinematic adaptations to fatiguing repetitive upper extremity work. Appl. Ergon. 2019, 75, 250–256. [Google Scholar] [CrossRef] [PubMed]
- McDonald, A.C.; Mulla, D.M.; Keir, P.J. Using EMG Amplitude and Frequency to Calculate a Multimuscle Fatigue Score and Evaluate Global Shoulder Fatigue. Hum. Factors 2019, 61, 526–536. [Google Scholar] [CrossRef] [PubMed]
- McDonald, A.C.; Tse, C.T.F.; Keir, P.J. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part II: Recovery. J. Electromyogr. Kinesiol. 2016, 29, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.K.; Agnew, M.J. Analysis of individual and occupational risk factors on task performance and biomechanical demands for a simulated drilling task. Int. J. Ind. Ergon. 2010, 40, 584–591. [Google Scholar] [CrossRef]
- Merino, G.; da Silva, L.; Mattos, D.; Guimarães, B.; Merino, E. Ergonomic evaluation of the musculoskeletal risks in a banana harvesting activity through qualitative and quantitative measures, with emphasis on motion capture (Xsens) and EMG. Int. J. Ind. Ergon. 2019, 69, 80–89. [Google Scholar] [CrossRef]
- Ohashi, J.Y.; Blangsted, A.K.; Nielsen, P.K.; Jørgensen, K. The assessment of muscle strain with surface electromyograms during simulated mushroom picking. J. Hum. Ergol. 2008, 37, 13–22. [Google Scholar] [CrossRef]
- Renberg, J.; Nordrum Wiggen, Ø.; Stranna Tvetene, P.Ø.; Færevik, H.; Van Beekvelt, M.; Roeleveld, K. Effect of working position and cold environment on muscle activation level and fatigue in the upper limb during manual work tasks. Int. J. Ind. Ergon. 2020, 80, 103035. [Google Scholar] [CrossRef]
- Roquelaure, Y.; Dano, C.; Dusolier, G.; Fanello, S.; Penneau-Fontbonne, D. Biomechanical strains on the hand-wrist system during grapevine pruning. Int. Arch. Occup. Environ. Health 2002, 75, 591–595. [Google Scholar] [CrossRef]
- Salmanzadeh, H.; Doroodi, M. Analyzing surface electromyography signals to predict fatigue in Longissimus thoracis and Iliocostalis Cervicis muscles: A statistical model. Hum. Factors Ergon. Manuf. 2022, 32, 335–344. [Google Scholar] [CrossRef]
- Silva, L.; Dias, M.; Folgado, D.; Nunes, M.; Namburi, P.; Anthony, B.; Carvalho, D.; Carvalho, M.; Edelman, E.; Gamboa, H. Respiratory Inductance Plethysmography to Assess Fatigability during Repetitive Work. Sensors 2022, 22, 4247. [Google Scholar] [CrossRef]
- Goubault, E.; Martinez, R.; Bouffard, J.; Dowling-Medley, J.; Begon, M.; Dal Maso, F. Shoulder electromyography-based indicators to assess manifestation of muscle fatigue during laboratory-simulated manual handling task. Ergonomics 2022, 65, 118–133. [Google Scholar] [CrossRef]
- Sormunen, E.; Oksa, J.; Pienimäki, T.; Rissanen, S.; Rintamäki, H. Muscular and cold strain of female workers in meatpacking work. Int. J. Ind. Ergon. 2006, 36, 713–720. [Google Scholar] [CrossRef]
- Sormunen, E.; Rissanen, S.; Oksa, J.; Pienimaki, T.; Remes, J.; Rintamaki, H. Muscular activity and thermal responses in men and women during repetitive work in cold environments. Ergonomics 2009, 52, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, E.; Chroni, E.; Katsakiori, P.; Athanassiou, G. A quantitative approach to assess upper limb fatigue in the work field. Occup. Ergon. 2013, 11, 45–57. [Google Scholar] [CrossRef]
- Strøm, V.; Knardahl, S.; Stanghelle, J.K.; Røe, C. Pain induced by a single simulated office-work session: Time course and association with muscle blood flux and muscle activity. Eur. J. Pain 2009, 13, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Tse, C.T.F.; McDonald, A.C.; Keir, P.J. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part I: Fatigue. J. Electromyogr. Kinesiol. 2016, 29, 34–41. [Google Scholar] [CrossRef]
- Widia, M.; Dawal, S.Z.M. The effect of hand-held vibrating tools on muscle activity and grip strength. Aust. J. Basic Appl. Sci. 2011, 5, 198–211. [Google Scholar]
- Yung, M.; Bigelow, P.L.; Hastings, D.M.; Wells, R.P. Detecting within- and between-day manifestations of neuromuscular fatigue at work: An exploratory study. Ergonomics 2014, 57, 1562–1573. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, K.W.; Zhang, W.; Ma, L.; Chen, Z. Muscular fatigue and maximum endurance time assessment for male and female industrial workers. Int. J. Ind. Ergon. 2014, 44, 292–297. [Google Scholar] [CrossRef]
- Chihara, T.; Nozawa, A.; Seo, A. Formulation of perceived muscle fatigue based on elbow flexion task. Mech. Eng. J. 2016, 3, 15-00740. [Google Scholar] [CrossRef] [Green Version]
- Zadry, H.R.; Dawal, S.Z.M.; Taha, Z. Development of statistical models for predicting muscle and mental activities during repetitive precision tasks. Int. J. Occup. Saf. Ergon. 2016, 22, 374–383. [Google Scholar] [CrossRef]
- Zadry, H.R.; Md Dawal, S.Z.; Taha, Z. Combination of electromyography and electroencephalography measurements in designing repetitive task in industry. Adv. Sci. Lett. 2011, 4, 2498–2502. [Google Scholar] [CrossRef] [Green Version]
- Collier, B.R.; Holland, L.; McGhee, D.; Sampson, J.A.; Bell, A.; Stapley, P.J.; Groeller, H. Precision markedly attenuates repetitive lift capacity. Ergonomics 2014, 57, 1427–1439. [Google Scholar] [CrossRef]
- Alhaag, M.H.; Ramadan, M.Z.; Al-harkan, I.M.; Alessa, F.M.; Alkhalefah, H.; Abidi, M.H.; Sayed, A.E. Determining the fatigue associated with different task complexity during maintenance operations in males using electromyography features. Int. J. Ind. Ergon. 2022, 88, 103273. [Google Scholar] [CrossRef]
- Yu, N.; Hong, L.; Guo, J. Analysis of upper-limb muscle fatigue in the process of rotary handling. Int. J. Ind. Ergon. 2021, 83, 103109. [Google Scholar] [CrossRef]
- Werner, R.A.; Franzblau, A.; Gell, N.; Ulin, S.S.; Armstrong, T.J. Predictors of upper extremity discomfort: A longitudinal study of industrial and clerical workers. J. Occup. Rehabil. 2005, 15, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Maiti, R.; Ray, G.G. Manual lifting load limit equation for adult Indian women workers based on physiological criteria. Ergonomics 2004, 47, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Maciukiewicz, J.M.; Cudlip, A.C.; Chopp-Hurley, J.N.; Dickerson, C.R. Effects of overhead work configuration on muscle activity during a simulated drilling task. Appl. Ergon. 2016, 53, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; McGorry, R.W.; Banks, J.J. Exposures and physiological responses in power tool operations: Fastening vs. Unfastening threaded hardware. J. Occup. Environ. Hyg. 2010, 7, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Maikala, R.V.; McGorry, R.; Brunette, C. NIRS application in evaluating threaded-fastener driving assembly tasks. Int. J. Ind. Ergon. 2010, 40, 146–152. [Google Scholar] [CrossRef]
- Li, K.W.; Yu, R.F.; Han, X.L. Physiological and psychophysical responses in handling maximum acceptable weights under different footwear-floor friction conditions. Appl. Ergon. 2007, 38, 259–265. [Google Scholar] [CrossRef]
- Lee, T.H. Static lifting strengths at different exertion heights. Int. J. Ind. Ergon. 2004, 34, 263–269. [Google Scholar] [CrossRef]
- Lee, C.L.; Lu, S.Y.; Wu, C.Y. Rest period and object load effects on upper limb muscle strength recovery for manual load transfer. Int. J. Ind. Ergon. 2022, 89, 103274. [Google Scholar] [CrossRef]
- Lee, C.L.; Lu, S.Y.; Sung, P.C.; Liao, H.Y. Working height and parts bin position effects on upper limb muscular strain for repetitive hand transfer. Int. J. Ind. Ergon. 2015, 50, 178–185. [Google Scholar] [CrossRef]
- Kothiyal, K.; Kayis, B. Workplace layout for seated manual handling tasks: An electromyography study. Int. J. Ind. Ergon. 2001, 27, 19–32. [Google Scholar] [CrossRef]
- Jakob, M.; Liebers, F.; Behrendt, S. The effects of working height and manipulated weights on subjective strain, body posture and muscular activity of milking parlor operatives—Laboratory study. Appl. Ergon. 2012, 43, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Strasser, H.; Mueller, K.-W. Electromyographically Determined Muscle Strain Associated with the Direction of Manual Movements in the Horizontal Reach. In Assessement of the Ergonomic Quality of Hand-Held Tools and Computer Input Devices; IOS Press: Amsterdam, The Netherlands, 2007; Volume 1, pp. 57–65. ISBN 978-1-58603-788-8. [Google Scholar]
- Hattori, Y.; Ono, Y.; Shimaoka, M.; Hiruta, S.; Shibata, E.; Ando, S.; Hori, F.; Takeuchi, Y. Effects of box weight, vertical location and symmetry on lifting capacities and ratings on category scale in Japanese female workers. Ergonomics 2000, 43, 2031–2042. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Gao, L.; Wu, J.; Pelowski, M.; Liu, T. Assessing the brain ‘on the line’: An ecologically-valid assessment of the impact of repetitive assembly line work on hemodynamic response and fine motor control using fNIRS. Brain Cogn. 2019, 136, 103613. [Google Scholar] [CrossRef] [PubMed]
- Gooyers, C.E.; Stevenson, J.M. The impact of an increase in work rate on task demands for a simulated industrial hand tool assembly task. Int. J. Ind. Ergon. 2012, 42, 80–89. [Google Scholar] [CrossRef]
- Girish, N.; Iqbal, R.; Khanzode, V. Liftig capacity among indian manual materials handlers using progressive isoinertial lifting evaluation. J. Musculoskelet. Res. 2017, 20, 1750004. [Google Scholar] [CrossRef]
- Garg, A.; Hegmann, K.; Kapellusch, J. Short-cycle overhead work and shoulder girdle muscle fatigue. Int. J. Ind. Ergon. 2006, 36, 581–597. [Google Scholar] [CrossRef]
- Gagnon, M.; Larrivé, A.; Desjardins, P. Strategies of load tilts and shoulders positioning in asymmetrical lifting. A concomitant evaluation of the reference systems of axes. Clin. Biomech. 2000, 15, 478–488. [Google Scholar] [CrossRef]
- Eddy, M.; Moore, C.; Nimbarte, A. Evaluation of shoulder strain during multidirectional forceful arm exertions. Occup. Ergon. 2016, 13, 131–138. [Google Scholar] [CrossRef]
- Cort, J.A.; Stephens, A.; Potvin, J.R. A biomechanical and psychophysical examination of fastener initiations in automotive assembly. Int. J. Ind. Ergon. 2006, 36, 837–845. [Google Scholar] [CrossRef]
- Christensen, H.; Søgaard, K.; Pilegaard, M.; Olsen Engineer, H.B. The importance of the work/rest pattern as a risk factor in repetitive monotonous work. Int. J. Ind. Ergon. 2000, 25, 367–373. [Google Scholar] [CrossRef]
- Choi, H.S.; In, H. The effects of operating height and the passage of time on the end-point performance of fine manipulative tasks that require high accuracy. Front. Physiol. 2022, 13, 1628. [Google Scholar] [CrossRef] [PubMed]
- Southard, S.A.; Mirka, G.A. An evaluation of backpack harness systems in non-neutral torso postures. Appl. Ergon. 2007, 38, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Cavuoto, L.A.; Nussbaum, M.A. The influences of obesity and age on functional performance during intermittent upper extremity tasks. J. Occup. Environ. Hyg. 2014, 11, 583–590. [Google Scholar] [CrossRef]
- Bulbrook, B.D.; La Delfa, N.J.; McDonald, A.C.; Liang, C.; Callaghan, J.P.; Dickerson, C.R. Higher body mass index and body fat percentage correlate to lower joint and functional strength in working age adults. Appl. Ergon. 2021, 95, 103453. [Google Scholar] [CrossRef]
- Brambilla, C.; Malosio, M.; Reni, G.; Scano, A. Optimal Biomechanical Performance in Upper-Limb Gestures Depends on Velocity and Carried Load. Biology 2022, 11, 391. [Google Scholar] [CrossRef]
- Bosch, T.; Mathiassen, S.E.; Visser, B.; de Looze, M.D.; van Dieën, J.V. The effect of work pace on workload, motor variability and fatigue during simulated light assembly work. Ergonomics 2011, 54, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Babski-Reeves, K.; Calhoun, A. Muscle Activity and Posture Differences in the Sit and Stand Phases of Sit-to-Stand Workstation Use: A Comparison of Computer Configurations. IIE Trans. Occup. Ergon. Hum. Factors 2016, 4, 236–246. [Google Scholar] [CrossRef]
- Anton, D.; Shibley, L.D.; Fethke, N.B.; Hess, J.; Cook, T.M.; Rosecrance, J. The effect of overhead drilling position on shoulder moment and electromyography. Ergonomics 2001, 44, 489–501. [Google Scholar] [CrossRef]
- Al-Qaisi, S.; Aghazadeh, F. The effects of valve-handwheel height and angle on neck, shoulder, and back muscle loading. Int. J. Ind. Ergon. 2018, 64, 69–78. [Google Scholar] [CrossRef]
- Allen, J.L.; James, C.; Snodgrass, S.J. The effect of load on biomechanics during an overhead lift in the WorkHab Functional Capacity Evaluation. Work 2012, 43, 487–496. [Google Scholar] [CrossRef]
- Anwer, S.; Li, H.; Antwi-Afari, M.F.; Umer, W.; Mehmood, I.; Wong, A.Y.L. Effects of load carrying techniques on gait parameters, dynamic balance, and physiological parameters during a manual material handling task. Eng. Constr. Archit. Manag. 2022, 29, 3415–3438. [Google Scholar] [CrossRef]
- Skovlund, S.V.; Bláfoss, R.; Skals, S.; Jakobsen, M.D.; Andersen, L.L. The Importance of Lifting Height and Load Mass for Muscular Workload during Supermarket Stocking: Cross-Sectional Field Study. Int. J. Environ. Res. Public Health 2022, 19, 3030. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, A.; Mari, S.; Ranavolo, A.; Forzano, F.; Iavicoli, S.; Conte, C.; Draicchio, F. Kinematic and electromyographic assessment of manual handling on a supermarket greengrocery shelf. Work 2015, 51, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.J.; Yoo, W.G.; Kim, T.Y. Effects of different overhead work conditions on the neck and shoulder muscles. J. Phys. Ther. Sci. 2012, 24, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Roman-Liu, D.; Tokarski, T. Upper limb strength in relation to upper limb posture. Int. J. Ind. Ergon. 2005, 35, 19–31. [Google Scholar] [CrossRef]
- Potvin, J.R.; Christy Calder, I.; Cort, J.A.; Agnew, M.J.; Stephens, A. Maximal acceptable forces for manual insertions using a pulp pinch, oblique grasp and finger press. Int. J. Ind. Ergon. 2006, 36, 779–787. [Google Scholar] [CrossRef]
- Oyewole, S.A. Enhancing ergonomic safety effectiveness of repetitive job activities: Prediction of muscle fatigue in dominant and nondominant arms of industrial workers. Hum. Factors Ergon. Manuf. 2014, 24, 585–600. [Google Scholar] [CrossRef]
- Akanmu, A.; Olayiwola, J.; Olatunji, O.A. Musculoskeletal disorders within the carpentry trade: Analysis of timber flooring subtasks. Eng. Constr. Archit. Manag. 2020, 27, 2577–2590. [Google Scholar] [CrossRef]
- Allahyari, T.; Mortazavi, N.; Khalkhali, H.R.; Sanjari, M.A. Shoulder girdle muscle activity and fatigue in traditional and improved design carpet weaving workstations. Int. J. Occup. Med. Environ. Health 2016, 29, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, B.; Park, J.S.; Gold, J.; Punnett, L. Subjective ratings of upper extremity exposures: Inter-method agreement with direct measurement of exposures. Ergonomics 2008, 51, 1064–1077. [Google Scholar] [CrossRef]
- Cabeças, J.M. The risk of distal upper limb disorder in cleaners: A modified application of the Strain Index method. Int. J. Ind. Ergon. 2007, 37, 563–571. [Google Scholar] [CrossRef]
- Chaiklieng, S. Health risk assessment on musculoskeletal disorders among potato-chip processing workers. PLoS ONE 2019, 14, e0224980. [Google Scholar] [CrossRef]
- Chiasson, M.È; Imbeau, D.; Aubry, K.; Delisle, A. Comparing the results of eight methods used to evaluate risk factors associated with musculoskeletal disorders. Int. J. Ind. Ergon. 2012, 42, 478–488. [Google Scholar] [CrossRef]
- Coury, H.J.C.G.; Alfredo Léo, J.; Kumar, S. Effects of progressive levels of industrial automation on force and repetitive movements of the wrist. Int. J. Ind. Ergon. 2000, 25, 587–595. [Google Scholar] [CrossRef]
- Das, B.; Ghosh, T.; Gangopadhyay, S. Child work in agriculture in West Bengal, India: Assessment of musculoskeletal disorders and occupational health problems. J. Occup. Health 2013, 55, 244–258. [Google Scholar] [CrossRef] [Green Version]
- De Souza, J.A.C.; Filho, M.L.M. Ergonomics posture and movement analyses of supermarket checkout operators in the city of Cataguases, MG. Gest. Prod. 2017, 24, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Denbeigh, K.; Slot, T.R.; Dumas, G.A. Wrist postures and forces in tree planters during three tree unloading conditions. Ergonomics 2013, 56, 1599–1607. [Google Scholar] [CrossRef]
- Douphrate, D.I.; Fethke, N.B.; Nonnenmann, M.W.; Rodriguez, A.; Hagevoort, R.; Gimeno Ruiz de Porras, D. Full-shift and task-specific upper extremity muscle activity among US large-herd dairy parlour workers. Ergonomics 2017, 60, 1042–1054. [Google Scholar] [CrossRef]
- Douphrate, D.I.; Gimeno Ruiz de Porras, D.; Nonnenmann, M.W.; Hagevoort, R.; Reynolds, S.J.; Rodriguez, A.; Fethke, N.B. Effects of milking unit design on upper extremity muscle activity during attachment among U.S. large-herd parlor workers. Appl. Ergon. 2017, 58, 482–490. [Google Scholar] [CrossRef]
- Anand, M.V.; Vijayakumar, K.C.K.; Mohanraj, T. Evaluation of Shoulder Pain Among the Workers Involved in Ironing Process Using Surface Electromyography. J. Med. Imaging Health Inform. 2019, 10, 86–92. [Google Scholar] [CrossRef]
- Forcella, L.; Bonfiglioli, R.; Cutilli, P.; Antonucci, A.; Di Donato, A.; Siciliano, E.; Cortini, M.; Violante, F.S.; Boscolo, P. Occupational stress and biomechanical risk in a high fashion clothing company. Work 2012, 41, 2966–2970. [Google Scholar] [CrossRef] [Green Version]
- Forcella, L.; Bonfiglioli, R.; Cutilli, P.; Siciliano, E.; Di Donato, A.; Di Nicola, M.; Antonucci, A.; Di Giampaolo, L.; Boscolo, P.; Violante, F.S. Analysis of occupational stress in a high fashion clothing factory with upper limb biomechanical overload. Int. Arch. Occup. Environ. Health 2012, 85, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B.T.; Lombardi, D.A.; Dale, A.M.; Franzblau, A.; Evanoff, B.A. Reliability of job-title based physical work exposures for the upper extremity: Comparison to self-reported and observed exposure estimates. Occup. Environ. Med. 2010, 67, 538–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, A.; Kapellusch, J.; Hegmann, K.; Wertsch, J.; Merryweather, A.; Deckow-Schaefer, G.; Malloy, E.J. The Strain Index (SI) and Threshold Limit Value (TLV) for Hand Activity Level (HAL): Risk of carpal tunnel syndrome (CTS) in a prospective cohort. Ergonomics 2012, 55, 396–414. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Kapellusch, J.M.; Hegmann, K.T.; Thiese, M.S.; Merryweather, A.S.; Wang, Y.C.; Malloy, E.J. The Strain Index and TLV for HAL: Risk of lateral epicondylitis in a prospective cohort. Am. J. Ind. Med. 2014, 57, 286–302. [Google Scholar] [CrossRef]
- Gerr, F.; Fethke, N.B.; Merlino, L.; Anton, D.; Rosecrance, J.; Jones, M.P.; Marcus, M.; Meyers, A.R. A prospective study of musculoskeletal outcomes among manufacturing workers: I. effects of physical risk factors. Hum. Factors 2014, 56, 112–130. [Google Scholar] [CrossRef]
- Glenday, J.D.; Steinhilber, B.; Jung, F.; Haeufle, D.F.B. Development of a musculoskeletal model of the wrist to predict frictional work dissipated due to tendon gliding resistance in the carpal tunnel. Comput. Methods Biomech. Biomed. Engin. 2021, 24, 973–984. [Google Scholar] [CrossRef]
- Granzow, R.F.; Schall, M.C.; Smidt, M.F.; Chen, H.; Fethke, N.B.; Huangfu, R. Characterizing exposure to physical risk factors among reforestation hand planters in the Southeastern United States. Appl. Ergon. 2018, 66, 1–8. [Google Scholar] [CrossRef]
- Gruevski, K.M.; Hodder, J.N.; Keir, P.J. Upper Extremity Muscle Activity during In-Phase and Anti-Phase Continuous Pushing Tasks. Hum. Factors 2017, 59, 1066–1077. [Google Scholar] [CrossRef]
- Gupta, A.D.; Mahalanabis, D. Study of hand function in a group of shoe factory workers engaged in repetitive work. J. Occup. Rehabil. 2006, 16, 675–684. [Google Scholar] [CrossRef]
- Andriani, P.; Tejamaya, M.; Widanarko, B.; Putri, A.A. Ergonomic assessment in metal-based small industries in Bogor Regency, Indonesia, 2019. Gac. Sanit. 2021, 35, S360–S363. [Google Scholar] [CrossRef]
- Harris, C.; Eisen, E.A.; Goldberg, R.; Krause, N.; Rempel, D. 1st place, PREMUS best paper competition: Workplace and individual factors in wrist tendinosis among blue-collar workers—The San Francisco study. Scand. J. Work. Environ. Health 2011, 37, 85–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holte, K.A.; Westgaard, R.H. Daytime trapezius muscle activity and shoulder-neck pain of service workers with work stress and low biomechanical exposure. Am. J. Ind. Med. 2002, 41, 393–405. [Google Scholar] [CrossRef]
- Holte, K.A.; Westgaard, R.H. Further studies of shoulder and neck pain and exposures in customer service work with low biochemical demands. Ergonomics 2002, 45, 887–909. [Google Scholar] [CrossRef]
- Hong, X.; Lee, Y.C.; Zhou, S. Musculoskeletal symptoms and associated factors among manual porcelain workers at different workstations: A cross-sectional study. Int. Arch. Occup. Environ. Health 2022, 95, 1845–1857. [Google Scholar] [CrossRef]
- Ijaz, M.; Ahmad, S.R.; Akram, M.; Khan, W.U.; Yasin, N.A.; Nadeem, F.A. Quantitative and qualitative assessment of musculoskeletal disorders and socioeconomic issues of workers of brick industry in Pakistan. Int. J. Ind. Ergon. 2020, 76, 102933. [Google Scholar] [CrossRef]
- Intranuovo, G.; De Maria, L.; Facchini, F.; Giustiniano, A.; Caputi, A.; Birtolo, F.; Vimercati, L. Risk assessment of upper limbs repetitive movements in a fish industry. BMC Res. Notes 2019, 12, 354. [Google Scholar] [CrossRef] [Green Version]
- Iram, H.; Kashif, M.; Sattar, M.; Bhatti, Z.M.; Dustgir, A.; Mehdi, Z. Ergonomic risk factors among computer office workers for complaints of arm, neck and shoulder and workstation evaluation. Work 2022, 73, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Jahromy, F.H.; Jahromy, S.A.M. Musculoskeletal Disorders Risk Level among Workers of Jahrom University of Medical Science: An Ergonomic Assessment. Ambient Sci. 2019, 6, 43–46. [Google Scholar] [CrossRef]
- Jain, R.; Meena, M.L.; Dangayach, G.S.; Bhardwaj, A.K. Association of risk factors with musculoskeletal disorders in manual-working farmers. Arch. Environ. Occup. Health 2018, 73, 19–28. [Google Scholar] [CrossRef]
- Jain, R.; Meena, M.L.; Dangayach, G.S.; Bhardwaj, A.K. Risk factors for musculoskeletal disorders in manual harvesting farmers of Rajasthan. Ind. Health 2018, 56, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Asadi, H.; Simons, M.C.; Breur, G.J.; Yu, D. Characterizing Exposure to Physical Risk Factors during Veterinary Surgery with Wearable Sensors: A Pilot Study. IISE Trans. Occup. Ergon. Hum. Factors 2022, 10, 151–160. [Google Scholar] [CrossRef]
- Jansen, K.; Esko, L.; Luik, M.; Viljasoo, V.; Ereline, J.; Gapeyeva, H.; Aibast, H.; Pääsuke, M. Workload assessment and its influence on a male tile layers working ability. Agron. Res. 2011, 9, 299–304. [Google Scholar]
- Jones, T.; Kumar, S. Comparison of ergonomic risk assessment output in a repetitive sawmill occupation: Trim-saw operator. Work 2008, 31, 367–376. [Google Scholar] [PubMed]
- Jones, T.; Kumar, S. Comparison of ergonomic risk assessment output in four sawmill jobs. Int. J. Occup. Saf. Ergon. 2010, 16, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Kallenberg, L.A.C.; Hermens, H.J.; Vollenbroek-Hutten, M.M.R. Distinction between computer workers with and without work-related neck-shoulder complaints based on multiple surface EMG parameters. Int. J. Ind. Ergon. 2006, 36, 921–929. [Google Scholar] [CrossRef]
- Kapellusch, J.M.; Garg, A.; Hegmann, K.T.; Thiese, M.S.; Malloy, E.J. The strain index and ACGIH TLV for HAL: Risk of trigger digit in the WISTAH prospective cohort. Hum. Factors 2014, 56, 98–111. [Google Scholar] [CrossRef]
- Keester, D.L.; Sommerich, C.M. Investigation of musculoskeletal discomfort, work postures, and muscle activation among practicing tattoo artists. Appl. Ergon. 2017, 58, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Banga, H.K.; Kumar, R.; Singh, S.; Singh, S.; Scutaru, M.L.; Pruncu, C.I. Ergonomic evaluation of workstation design using taguchi experimental approach: A case of an automotive industry. Int. J. Interact. Des. Manuf. 2021, 15, 481–498. [Google Scholar] [CrossRef]
- Kuta, Ł.; Ciez, J.; Golab, I. Assessment of workload on musculoskeletal system of milkers in mechanical milking through the use of Job Strain Index method. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2015, 15, 251. [Google Scholar]
- Landau, K.; Rademacher, H.; Meschke, H.; Winter, G.; Schaub, K.; Grasmueck, M.; Moelbert, I.; Sommer, M.; Schulze, J. Musculoskeletal disorders in assembly jobs in the automotive industry with special reference to age management aspects. Int. J. Ind. Ergon. 2008, 38, 561–576. [Google Scholar] [CrossRef]
- Macdonald, V.; Keir, P.J. Assessment of Musculoskeletal Disorder Risk with Hand and Syringe use in Chemotherapy Nurses and Pharmacy Assistants. IISE Trans. Occup. Ergon. Hum. Factors 2018, 6, 128–142. [Google Scholar] [CrossRef]
- Bakhsh, H.R.; Bakhsh, H.H.; Alotaibi, S.M.; Abuzaid, M.A.; Aloumi, L.A.; Alorf, S.F. Musculoskeletal disorder symptoms in saudi allied dental professionals: Is there an underestimation of related occupational risk factors? Int. J. Environ. Res. Public Health 2021, 18, 10167. [Google Scholar] [CrossRef]
- Marak, T.; Bhagat, D.; Borah, S. Musculoskeletal disorders of garo women workers engaged in tea-plucking activity: An ergonomic analysis. Indian J. Occup. Environ. Med. 2020, 24, 60–65. [Google Scholar] [CrossRef]
- Masci, F.; Rosecrance, J.; Mixco, A.; Cortinovis, I.; Calcante, A.; Mandic-Rajcevic, S.; Colosio, C. Personal and occupational factors contributing to biomechanical risk of the distal upper limb among dairy workers in the Lombardy region of Italy. Appl. Ergon. 2020, 83, 102796. [Google Scholar] [CrossRef] [PubMed]
- Masci, F.; Mixco, A.; Brents, C.A.; Murgia, L.; Colosio, C.; Rosecrance, J. Comparison of Upper Limb Muscle Activity among Workers in Large-Herd U.S. and Small-Herd Italian Dairies. Front. Public Health 2016, 4, 141. [Google Scholar] [CrossRef] [Green Version]
- Mathiassen, S.E.; Möller, T.; Forsman, M. Variability in mechanical exposure within and between individuals performing a highly constrained industrial work task. Ergonomics 2003, 46, 800–824. [Google Scholar] [CrossRef]
- Meyers, A.R.; Wurzelbacher, S.J.; Krieg, E.F.; Ramsey, J.G.; Crombie, K.; Christianson, A.L.; Luo, L.; Burt, S. Work-Related Risk Factors for Rotator Cuff Syndrome in a Prospective Study of Manufacturing and Healthcare Workers. Hum. Factors 2021, 00187208211022122. [Google Scholar] [CrossRef] [PubMed]
- Mixco, A.; Masci, F.; Brents, C.A.; Rosecrance, J. Upper Limb Muscle Activity among Workers in Large-Herd Industrialized Dairy Operations. Front. Public Health 2016, 4, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, G. Risk factors for the prevalence of the upper limb and neck work-related musculoskeletal disorders among poultry slaughter workers. J. Musculoskelet. Res. 2012, 15, 1250005. [Google Scholar] [CrossRef]
- Mohammadipour, F.; Pourranjbar, M.; Naderi, S.; Rafie, F. Work-related Musculoskeletal Disorders in Iranian Office Workers: Prevalence and Risk Factors. J. Med. Life 2018, 11, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, H.; Jalali, M.; Moussavi-Najarkola, S.A.; Farhadi, S.; Kangavari, M.; Ghanbari Sartang, A. Ergonomic Risk Assessment of Distal Upper Extremities by Job Strain Index in Carpet Weavers. Health Scope 2018, 7, e64182. [Google Scholar] [CrossRef] [Green Version]
- Mork, P.J.; Westgaard, R.H. The influence of body posture, arm movement, and work stress on trapezius activity during computer work. Eur. J. Appl. Physiol. 2007, 101, 445–456. [Google Scholar] [CrossRef]
- Bergsten, E.L.; Mathiassen, S.E.; Kwak, L.; Vingård, E. Daily shoulder pain among flight baggage handlers and its association with work tasks and upper arm postures on the same day. Ann. Work Expo. Health 2017, 61, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Mosaly, P.R. Multifactor association of job, individual and psychosocial factors in prevalence of distal upper extremity disorders and quantification of job physical exposure. Int. J. Ind. Ergon. 2016, 55, 40–45. [Google Scholar] [CrossRef]
- Moussavi-najarkola, S.A. Application of the Strain Index (SI) Method for the Evaluation of Risk Factors Featuring Distal Upper Extremity (DUE) Musculoskeletal Disorders in a Textile Factory. Pakistan J. Med. Health Sci. 2008, 2, 42–45. [Google Scholar]
- Mukhopadhyay, P.; Srivastava, S. Evaluating ergonomic risk factors in non-regulated stone carving units of Jaipur. Work 2010, 35, 87–99. [Google Scholar] [CrossRef]
- Mulla, D.M.; McDonald, A.C.; Keir, P.J. Joint moment trade-offs across the upper extremity and trunk during repetitive work. Appl. Ergon. 2020, 88, 103142. [Google Scholar] [CrossRef]
- Naik, G.; Khan, M.R. Prevalence of MSDs and Postural Risk Assessment in Floor Mopping Activity Through Subjective and Objective Measures. Saf. Health Work 2020, 11, 80–87. [Google Scholar] [CrossRef]
- Nordander, C.; Hansson, G.Å.; Ohlsson, K.; Arvidsson, I.; Balogh, I.; Strömberg, U.; Rittner, R.; Skerfving, S. Exposure-response relationships for work-related neck and shoulder musculoskeletal disorders—Analyses of pooled uniform data sets. Appl. Ergon. 2016, 55, 70–84. [Google Scholar] [CrossRef]
- Nordander, C.; Hansson, G.Å.; Rylander, L.; Asterland, P.; BystrÖm, J.U.; Ohlsson, K.; Balogh, I.; Skerfving, S. Muscular rest and gap frequency as emg measures of physical exposure: The impact of work tasks and individual related factors. Ergonomics 2000, 43, 1904–1919. [Google Scholar] [CrossRef]
- Nwe, Y.Y.; Toyama, S.; Akagawa, M.; Yamada, M.; Sotta, K.; Tanzawa, T.; Kikuchi, C.; Ogiwara, I. Workload assessment with Ovako Working Posture Analysis System (OWAS) in Japanese vineyards with focus on pruning and berry thinning operations. J. Japanese Soc. Hortic. Sci. 2012, 81, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Oksa, J.; Hosio, S.; Mäkinen, T.; Lindholm, H.; Rintamäki, H.; Rissanen, S.; Latvala, J.; Vaara, K.; Oksa, P. Muscular, cardiorespiratory and thermal strain of mast and pole workers. Ergonomics 2014, 57, 669–678. [Google Scholar] [CrossRef]
- Østensvik, T.; Veiersted, K.B.; Nilsen, P. A method to quantify frequency and duration of sustained low-level muscle activity as a risk factor for musculoskeletal discomfort. J. Electromyogr. Kinesiol. 2009, 19, 283–294. [Google Scholar] [CrossRef]
- Bhatt, H.; Sidhu, M.K. Physiological stress assessment of female workers at kitchen workstation. Work 2012, 41, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Østensvik, T.; Veiersted, K.B.; Nilsen, P. Association between numbers of long periods with sustained low-level trapezius muscle activity and neck pain. Ergonomics 2009, 52, 1556–1567. [Google Scholar] [CrossRef]
- Ou, Y.K.; Liu, Y.; Chang, Y.P.; Lee, B.O. Relationship between musculoskeletal disorders and work performance of nursing staff: A comparison of hospital nursing departments. Int. J. Environ. Res. Public Health 2021, 18, 7085. [Google Scholar] [CrossRef]
- Poochada, W.; Chaiklieng, S. Ergonomic Risk Assessment among Call Center Workers. Procedia Manuf. 2015, 3, 4613–4620. [Google Scholar] [CrossRef] [Green Version]
- Pourmahabadian, M.; Saraji, J.N.; Aghabeighi, M.; Saddeghi-Naeeni, H. Risk assessment of developing distal upper extremity disorders by strain index method in an assembling electronic industry. Acta Med. Iran. 2005, 43, 347–354. [Google Scholar]
- Proto, A.R.; Zimbalatti, G. Risk assessment of repetitive movements in olive growing: Analysis of annual exposure level assessment models with the OCRA checklist. J. Agric. Saf. Health 2015, 21, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.N.A.; Razak, N.S.A.; Hassan, M.F.; Adzila, S.; Ngali, M.Z.; Salleh, S.M. Quantifying exposure to risk factors among office workers using ROSA method. Adv. Sci. Lett. 2017, 23, 7597–7600. [Google Scholar] [CrossRef]
- Rodrigues, M.S.A.; Leite, R.D.V.; Lelis, C.M.; Chaves, T.C. Differences in ergonomic and workstation factors between computer office workers with and without reported musculoskeletal pain. Work 2017, 57, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Sanmugum, S.; Karuppiah, K. Sivasankar Ergonomic risk assessment on selected hot-work workers at company XXX. Malaysian J. Public Health Med. 2020, 20, 176–185. [Google Scholar] [CrossRef]
- Sakthi Nagaraj, T.; Jeyapaul, R.; Mathiyazhagan, K. Evaluation of ergonomic working conditions among standing sewing machine operators in Sri Lanka. Int. J. Ind. Ergon. 2019, 70, 70–83. [Google Scholar] [CrossRef]
- Sjøgaard, G.; Søgaard, K.; Hermens, H.J.; Sandsjö, L.; Läubli, T.; Thorn, S.; Vollenbroek-Hutten, M.M.R.; Sell, L.; Christensen, H.; Klipstein, A.; et al. Neuromuscular assessment in elderly workers with and without work related shoulder/neck trouble: The NEW-study design and physiological findings. Eur. J. Appl. Physiol. 2006, 96, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Borah, S. Physiological Workload of Hill Farm Women of Meghalaya, India Involved in Firewood Collection. Procedia Manuf. 2015, 3, 4984–4990. [Google Scholar] [CrossRef] [Green Version]
- Slack, P.S.; Coulson, C.J.; Ma, X.; Webster, K.; Proops, D.W. The effect of operating time on surgeons’ muscular fatigue. Ann. R. Coll. Surg. Engl. 2008, 90, 651–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielholz, P.; Bao, S.; Howard, N.; Silverstein, B.; Fan, J.; Smith, C.; Salazar, C. Reliability and validity assessment of the hand activity level threshold limit value and strain index using expert ratings of mono-task jobs. J. Occup. Environ. Hyg. 2008, 5, 250–275. [Google Scholar] [CrossRef]
- Subramaniam, S.; Murugesan, S.; Jayaraman, S. Assessment of shoulder and low back muscle activity of male kitchen workers using surface electromyography. Int. J. Occup. Med. Environ. Health 2018, 31, 81–90. [Google Scholar] [CrossRef]
- Subramaniam, S.; Raju, N.; Jeganathan, K.; Periyasamy, M. Evaluation of vibrant muscles over the shoulder region among workers of the hand screen printing industry. Int. J. Occup. Saf. Ergon. 2018, 24, 278–285. [Google Scholar] [CrossRef]
- Tahernejad, S.; Choobineh, A.; Razeghi, M.; Abdoli-Eramaki, M.; Parsaei, H.; Daneshmandi, H.; Seif, M. Investigation of office workers’ sitting behaviors in an ergonomically adjusted workstation. Int. J. Occup. Saf. Ergon. 2022, 28, 2346–2354. [Google Scholar] [CrossRef]
- Widiyawati, S.; Lukodono, R.P.; Lustyana, A.T.; Pradana, I.A. Investigation of the risk of daily officer work posture based on rapid upper limb assessment (rula) method. Int. J. Hum. Mov. Sport. Sci. 2020, 8, 24–31. [Google Scholar] [CrossRef]
- Yayli, D.; Caliskan, E. Comparison of Ergonomic Risk Analysis Methods for Working Postures of Forest Nursery Workers. Eur. J. For. Eng. 2019, 5, 18–24. [Google Scholar] [CrossRef]
- Yazdanirad, S.; Pourtaghi, G.; Raei, M.; Ghasemi, M. Development of modified rapid entire body assessment (MOREBA) method for predicting the risk of musculoskeletal disorders in the workplaces. BMC Musculoskelet. Disord. 2022, 23, 82. [Google Scholar] [CrossRef] [PubMed]
- Yung, M.; Lang, A.E.; Stobart, J.; Kociolek, A.M.; Milosavljevic, S.; Trask, C. The combined fatigue effects of sequential exposure to seated whole body vibration and physical, mental, or concurrent work demands. PLoS ONE 2017, 12, e0188468. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.R.; He, L.H.; Wu, S.S.; Li, J.Y.; Ye, K.P.; Wang, S. Quantify work load and muscle functional activation patterns in neck-shoulder muscles of female sewing machine operators using surface electromyogram. Chin. Med. J. 2011, 124, 3731–3737. [Google Scholar] [CrossRef]
- Bruno Garza, J.L.; Eijckelhof, B.H.W.; Johnson, P.W.; Raina, S.M.; Rynell, P.W.; Huysmans, M.A.; van Dieën, J.H.; van der Beek, A.J.; Blatter, B.M.; Dennerlein, J.T. Observed differences in upper extremity forces, muscle efforts, postures, velocities and accelerations across computer activities in a field study of office workers. Ergonomics 2012, 55, 670–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wu, X.; Gao, J.; Chen, J.; Xv, X. Simulation and ergonomic evaluation of welders’ standing posture using Jack software. Int. J. Environ. Res. Public Health 2019, 16, 4354. [Google Scholar] [CrossRef] [Green Version]
- Zolfaghari Nejhad, N.; Khavanin, A.; Vosoughi, S. The Effect of Simultaneous Postural Stress and Noise Exposure on Strain Index Number Among the Machinery Women Aged 25–30 Years old in Gas Supply Parts Manufactories. Health Scope 2015, 4, 23602. [Google Scholar] [CrossRef] [Green Version]
- Yoon, T.L.; Min, J.H.; Kim, H.N. Effect of using an 8-figure shoulder brace on posture and muscle activities during the performance of dental hygiene procedures. Int. J. Environ. Res. Public Health 2020, 17, 8494. [Google Scholar] [CrossRef]
- Wolf, P.; Rausch, J.; Hennes, N.; Potthast, W. The effects of joint angle variability and different driving load scenarios on maximum muscle activity—A driving posture simulation study. Int. J. Ind. Ergon. 2021, 84, 103161. [Google Scholar] [CrossRef]
- Nelson, J.E.; Treaster, D.E.; Marras, W.S. Finger motion, wrist motion and tendon travel as a function of keyboard angles. Clin. Biomech. 2000, 15, 489–498. [Google Scholar] [CrossRef]
- Motamedzadeh, M.; Jalali, M.; Golmohammadi, R.; Faradmal, J.; Zakeri, H.R.; Nasiri, I. Ergonomic risk factors and musculoskeletal disorders in bank staff: An interventional follow-up study in Iran. J. Egypt. Public Health Assoc. 2021, 96, 34. [Google Scholar] [CrossRef] [PubMed]
- Motamedzade, M.; Mohseni, M.; Golmohammadi, R.; Mahjoob, H. Ergonomics intervention in an Iranian television manufacturing industry. Work 2011, 38, 257–263. [Google Scholar] [CrossRef] [PubMed]
- McGorry, R.W.; Maikala, R.V.; Lin, J.H.; Rivard, A. Oxygenation kinetics of forearm muscles as a function of handle diameter during a repetitive power grip force task. Int. J. Ind. Ergon. 2009, 39, 465–470. [Google Scholar] [CrossRef]
- Lowe, B.D.; Shaw, P.B.; Wilson, S.R.; Whitaker, J.R.; Witherspoon, G.J.; Hudock, S.D.; Barrero, M.; Ray, T.K.; Wurzelbacher, S.J. Evaluation of a Workplace Exercise Program for Control of Shoulder Disorders in Overhead Assembly Work. J. Occup. Environ. Med. 2017, 59, 563–570. [Google Scholar] [CrossRef]
- Lowe, B.D.; Albers, J.; Hudock, S.D. A biomechanical assessment of hand/arm force with pneumatic nail gun actuation systems. Int. J. Ind. Ergon. 2014, 44, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Muralidhar, M. Analysis for prevalence of carpal tunnel syndrome in shocker manufacturing workers. Adv. Prod. Eng. Manag. 2016, 11, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Krüger, K.; Petermann, C.; Pilat, C.; Schubert, E.; Pons-Kühnemann, J.; Mooren, F.C. Preventive strength training improves working ergonomics during welding. Int. J. Occup. Saf. Ergon. 2015, 21, 150–157. [Google Scholar] [CrossRef]
- Koleini Mamaghani, N.; Shimomura, Y.; Iwanaga, K.; Katsuura, T. Effects of strap support in a hand-held device on the muscular activity in female workers assessed by electromyography and subjective rating. Ergonomics 2009, 52, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Otieno, W.; Campbell-Kyureghyan, N. Influence of Jackhammer Weight on Grip Pressure, Muscle Activity, and Hand–Arm Vibration of the Operator. IISE Trans. Occup. Ergon. Hum. Factors 2017, 5, 12–22. [Google Scholar] [CrossRef]
- Stenlund, B.; Lindbeck, L.; Karlsson, D. Significance of house painters’ work techniques on shoulder muscle strain during overhead work. Ergonomics 2002, 45, 455–468. [Google Scholar] [CrossRef]
- Hess, J.A.; Kincl, L.D.; Davis, K. The impact of drywall handling tools on the low back. Appl. Ergon. 2010, 41, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Hedegaard, M.; Støttrup, N.; Sørensen, F.F.; Langer, T.H.; Samani, A. Evaluation of five steering input devices in terms of muscle activity, upper body kinematics and steering performance during heavy machine simulator driving. Int. J. Ind. Ergon. 2019, 72, 137–145. [Google Scholar] [CrossRef]
- Harris-Adamson, C.; Chen, B.; Janowitz, I.; Rempel, D.M. Ergonomic evaluation of an alternative tool for cake decorating. Int. J. Ind. Ergon. 2017, 57, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Gaudez, C.; Wild, P.; Aublet-Cuvelier, A. A better way of fitting clips? A comparative study with respect to physical workload. Appl. Ergon. 2015, 51, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, M.; Delisle, A.; Desjardins, P. Biomechanical differences between best and worst performances in repeated free asymmetrical lifts. Int. J. Ind. Ergon. 2002, 29, 73–83. [Google Scholar] [CrossRef]
- Gagnon, M. The efficacy of training for three manual handling strategies based on the observation of expert and novice workers. Clin. Biomech. 2003, 18, 601–611. [Google Scholar] [CrossRef]
- Fischer, S.L.; Dickerson, C.R. Applying psychophysics to prevent overexposure: On the relationships between acceptable manual force, joint loading, and perception. Int. J. Ind. Ergon. 2014, 44, 266–274. [Google Scholar] [CrossRef]
- Earle-Richardson, G.; Jenkins, P.L.; Strogatz, D.; Bell, E.M.; Sorensen, J.A.; May, J.J. Orchard evaluation of ergonomically modified apple bucket. J. Agromed. 2006, 11, 95–105. [Google Scholar] [CrossRef]
- Earle-Richardson, G.; Jenkins, P.L.; Strogatz, D.; Bell, E.M.; Freivalds, A.; Sorensen, J.A.; May, J.J. Electromyographic assessment of apple bucket intervention designed to reduce back strain. Ergonomics 2008, 51, 902–919. [Google Scholar] [CrossRef]
- Drinkaus, P.; Sesek, R.; Bloswick, D.; Bernard, T.; Walton, B.; Joseph, B.; Reeve, G.; Counts, J.H. Comparison of ergonomic risk assessment outputs from Rapid Upper Limb Assessment and the Strain Index for tasks in automotive assembly plants. Work 2003, 21, 165–172. [Google Scholar]
- Singh, A.K.; Meena, M.L.; Chaudhary, H. Assessment of low-cost tool intervention among carpet alignment workers exposed to hand-arm vibration and shift in hearing threshold. Int. J. Hum. Factors Ergon. 2018, 5, 189. [Google Scholar] [CrossRef]
- Ding, Y.; Cao, Y.; Duffy, V.G.; Zhang, X. It is Time to Have Rest: How do Break Types Affect Muscular Activity and Perceived Discomfort During Prolonged Sitting Work. Saf. Health Work 2020, 11, 207–214. [Google Scholar] [CrossRef]
- Denadai, M.S.; Alouche, S.R.; Valentim, D.P.; Padula, R.S. An ergonomics educational training program to prevent work-related musculoskeletal disorders to novice and experienced workers in the poultry processing industry: A quasi-experimental study. Appl. Ergon. 2021, 90, 103234. [Google Scholar] [CrossRef]
- Dempsey, P.G.; McGorry, R.W.; O’Brien, N.V. The effects of work height, workpiece orientation, gender, and screwdriver type on productivity and wrist deviation. Int. J. Ind. Ergon. 2004, 33, 339–346. [Google Scholar] [CrossRef]
- de Barros, F.C.; Moriguchi, C.S.; Chaves, T.C.; Andrews, D.M.; Sonne, M.; de Oliveira Sato, T. Usefulness of the Rapid Office Strain Assessment (ROSA) tool in detecting differences before and after an ergonomics intervention. BMC Musculoskelet. Disord. 2022, 23, 526. [Google Scholar] [CrossRef]
- Da Col, S.; Kim, E.; Sanna, A. Human performance and mental workload in augmented reality: Brain computer interface advantages over gestures. Brain-Comput. Interfaces 2022, 9, 211–225. [Google Scholar] [CrossRef]
- Colim, A.; Morgado, R.; Carneiro, P.; Costa, N.; Faria, C.; Sousa, N.; Rocha, L.A.; Arezes, P. Lean manufacturing and ergonomics integration: Defining productivity and wellbeing indicators in a human–robot workstation. Sustainability 2021, 13, 1931. [Google Scholar] [CrossRef]
- Chien, T.I.; Liang, H.W.; Lee, Y.F.; Liu, F.Y.; Hsu, C.K.; Liu, S.T.; Lee, M.S.M.; Wei, P.F. Evaluation of Newly Developed Easy-Open Assistive Devices for Pneumatic Tube System Carriers for the Reduction of Work-Related Musculoskeletal Disorders. Biomed Res. Int. 2021, 2021, 8853602. [Google Scholar] [CrossRef]
- Cabeças, J.M.; Milho, R.J. The efforts in the forearm during the use of anti-vibration gloves in simulated work tasks. Int. J. Ind. Ergon. 2011, 41, 289–297. [Google Scholar] [CrossRef]
- Brandt, M.; Madeleine, P.; Samani, A.; Ajslev, J.Z.N.; Jakobsen, M.D.; Sundstrup, E.; Andersen, L.L. Effects of a participatory ergonomics intervention with wearable technical measurements of physical workload in the construction industry: Cluster randomized controlled trial. J. Med. Internet Res. 2018, 20, e10272. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, N.; Chakrabarti, D. Ergonomic basket design to reduce cumulative trauma disorders in tea leaf plucking operation. Work 2012, 41, 1234–1238. [Google Scholar] [CrossRef] [Green Version]
- Sesto, M.E.; Radwin, R.G.; Best, T.M.; Richard, T.G. Upper limb mechanical changes following short duration repetitive eccentric exertions. Clin. Biomech. 2004, 19, 921–928. [Google Scholar] [CrossRef]
- Berrio, S.; Barrero, L.H. Effect of Time Elapsed since Last Pruner Maintenance on Upper-Extremity Biomechanics during Manual Flower Cutting. J. Agromed. 2018, 23, 166–175. [Google Scholar] [CrossRef]
- Berrio, S.; Barrero, L.H.; Quintana, L.A. A field experiment comparing mechanical demands of two pruners for flower cutting. Work 2012, 41, 1342–1345. [Google Scholar] [CrossRef] [Green Version]
- Bazazan, A.; Dianat, I.; Feizollahi, N.; Mombeini, Z.; Shirazi, A.M.; Castellucci, H.I. Effect of a posture correction–based intervention on musculoskeletal symptoms and fatigue among control room operators. Appl. Ergon. 2019, 76, 12–19. [Google Scholar] [CrossRef]
- Ashok, P.; Madhan Mohan, G.; Manojkumar, S. An ergonomic evaluation of workers in the winding section of the pump manufacturing industry. Work 2022, 72, 1455–1467. [Google Scholar] [CrossRef]
- Anton, D.; Rosecrance, J.C.; Gerr, F.; Merlino, L.A.; Cook, T.M. Effect of concrete block weight and wall height on electromyographic activity and heart rate of masons. Ergonomics 2005, 48, 1314–1330. [Google Scholar] [CrossRef]
- Alabdulkarim, S.; Nussbaum, M.A.; Rashedi, E.; Kim, S.; Agnew, M.; Gardner, R. Impact of task design on task performance and injury risk: Case study of a simulated drilling task. Ergonomics 2017, 60, 851–866. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.J.; Zhang, Z.H.; Li, D.P.; Wu, Z.Z.; Bai, R.; Meng, G. Ergonomic and efficiency analysis of conventional apple harvest process. Int. J. Agric. Biol. Eng. 2019, 12, 210–217. [Google Scholar] [CrossRef]
- Santiago, R.J.; Baptista, J.S.; Magalhães, A.; Costa, J.T. Impact of a 10-min typing task in the development of trapezius myalgia: A preliminary observational study. Int. J. Occup. Saf. Ergon. 2022, 29, 115–120. [Google Scholar] [CrossRef]
- Safarian, M.H.; Rahmati-Najarkolaei, F.; Yaghoubi, M. A Comparison of the Effects of Ergonomic, Organization, and Education Interventions on Reducing Musculoskeletal Disorders in Office Workers. Health Scope, 2018; in press. [Google Scholar] [CrossRef] [Green Version]
- Roquelaure, Y.; D’Espagnac, F.; Delamarre, Y.; Penneau-Fontbonne, D. Biomechanical assessment of new hand-powered pruning shears. Appl. Ergon. 2004, 35, 179–182. [Google Scholar] [CrossRef]
- Ozalp, T.; Babalik, F.C. Ergonomic evaluation of screwdriver handles under different working conditions. Occup. Ergon. 2005, 5, 187–203. [Google Scholar] [CrossRef]
- Nogueira, H.C.; Silva, L.C.D.C.B.; Coury, H.J.C.G.; Barbieri, D.F.; Oliveira, A.B. Can experience modulate handler responses to boxes designed to decrease musculoskeletal load? Ergonomics 2017, 60, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Antwi-Afari, M.F.; Li, H.; Anwer, S.; Li, D.; Yu, Y.; Mi, H.Y.; Wuni, I.Y. Assessment of a passive exoskeleton system on spinal biomechanics and subjective responses during manual repetitive handling tasks among construction workers. Saf. Sci. 2021, 142, 105382. [Google Scholar] [CrossRef]
- Blanco, A.; Catalan, J.M.; Martinez, D.; Garcia-Perez, J.V.; Garcia-Aracil, N. The Effect of an Active Upper-Limb Exoskeleton on Metabolic Parameters and Muscle Activity during a Repetitive Industrial Task. IEEE Access 2022, 10, 16479–16488. [Google Scholar] [CrossRef]
- Iranzo, S.; Piedrabuena, A.; Iordanov, D.; Martinez-Iranzo, U.; Belda-Lois, J.M. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant. Appl. Ergon. 2020, 87, 103120. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A. A Follow-Up Study of the Effects of An Arm Support Exoskeleton on Physical Demands and Task Performance During Simulated Overhead Work. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 163–174. [Google Scholar] [CrossRef]
- Latella, C.; Tirupachuri, Y.; Tagliapietra, L.; Rapetti, L.; Schirrmeister, B.; Bornmann, J.; Gorjan, D.; Camernik, J.; Maurice, P.; Fritzsche, L.; et al. Analysis of Human Whole-Body Joint Torques During Overhead Work With a Passive Exoskeleton. IEEE Trans. Human-Mach. Syst. 2022, 52, 1060–1068. [Google Scholar] [CrossRef]
- Lavallée-Bourget, M.H.; Campeau-Lecours, A.; Tittley, J.; Bielmann, M.; Bouyer, L.J.; Roy, J.S. The use of a three-dimensional dynamic arm support prevents the development of muscle fatigue during repetitive manual tasks in healthy individuals. PLoS ONE 2022, 17, e0266390. [Google Scholar] [CrossRef] [PubMed]
- Maurice, P.; Ivaldi, S.; Babic, J.; Camernik, J.; Gorjan, D.; Schirrmeister, B.; Bornmann, J.; Tagliapietra, L.; Latella, C.; Pucci, D.; et al. Objective and Subjective Effects of a Passive Exoskeleton on Overhead Work. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Missiroli, F.; Lotti, N.; Xiloyannis, M.; Sloot, L.H.; Riener, R.; Masia, L. Relationship Between Muscular Activity and Assistance Magnitude for a Myoelectric Model Based Controlled Exosuit. Front. Robot. AI 2020, 7, 190. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, I.; Aprigliano, F.; Parri, A.; Cannillo, G.; Melandri, I.; Sabatini, A.M.; Violante, F.S.; Molteni, F.; Giovacchini, F.; Vitiello, N.; et al. Evaluation of a spring-loaded upper-limb exoskeleton in cleaning activities. Appl. Ergon. 2023, 106, 103877. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, I.; Molteni, F.; Giovacchini, F.; Vitiello, N.; Crea, S.; Scano, A.; Guanziroli, E.; Moise, M.; Morelli, L.; Chiavenna, A.; et al. An experimental evaluation of the proto-mate: A novel ergonomic upper-limb exoskeleton to reduce workers’ physical strain. IEEE Robot. Autom. Mag. 2020, 27, 54–65. [Google Scholar] [CrossRef]
- Pacifico, I.; Parri, A.; Taglione, S.; Sabatini, A.M.; Violante, F.S.; Molteni, F.; Giovacchini, F.; Vitiello, N.; Crea, S. Exoskeletons for workers: A case series study in an enclosures production line. Appl. Ergon. 2022, 101, 103679. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Toxiri, S.; Chini, G.; Natali, C.D.; Caldwell, D.G.; Ortiz, J. Shoulder-sideWINDER (Shoulder-side Wearable INDustrial Ergonomic Robot): Design and Evaluation of Shoulder Wearable Robot with Mechanisms to Compensate for Joint Misalignment. IEEE Trans. Robot. 2022, 38, 1460–1471. [Google Scholar] [CrossRef]
- De Bock, S.; Ampe, T.; Rossini, M.; Tassignon, B.; Lefeber, D.; Rodriguez-Guerrero, C.; Roelands, B.; Geeroms, J.; Meeusen, R.; De Pauw, K. Passive shoulder exoskeleton support partially mitigates fatigue-induced effects in overhead work. Appl. Ergon. 2023, 106, 103903. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Hong, G.B.; Lee, S. Fatigue problems in remote pointing and the use of an upper-arm support. Int. J. Ind. Ergon. 2012, 42, 293–303. [Google Scholar] [CrossRef]
- Pinho, J.P.; Forner-Cordero, A. Shoulder muscle activity and perceived comfort of industry workers using a commercial upper limb exoskeleton for simulated tasks. Appl. Ergon. 2022, 101, 103718. [Google Scholar] [CrossRef] [PubMed]
- Tetteh, E.; Hallbeck, M.S.; Mirka, G.A. Effects of passive exoskeleton support on EMG measures of the neck, shoulder and trunk muscles while holding simulated surgical postures and performing a simulated surgical procedure. Appl. Ergon. 2022, 100, 103646. [Google Scholar] [CrossRef]
- Van Engelhoven, L.; Poon, N.; Kazerooni, H.; Rempel, D.; Barr, A.; Harris-Adamson, C. Experimental Evaluation of a Shoulder-Support Exoskeleton for Overhead Work: Influences of Peak Torque Amplitude, Task, and Tool Mass. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 250–263. [Google Scholar] [CrossRef]
- Visser, B.; De Korte, E.; Van Der Kraan, I.; Kuijer, P. The effect of arm and wrist supports on the load of the upper extremity during VDU work. Clin. Biomech. 2000, 15, S34–S38. [Google Scholar] [CrossRef]
- Xiloyannis, M.; Chiaradia, D.; Frisoli, A.; Masia, L. Physiological and kinematic effects of a soft exosuit on arm movements. J. Neuroeng. Rehabil. 2019, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Yang, L.; Qu, S. Development of an ergonomic wearable robotic device for assisting manual workers. Int. J. Adv. Robot. Syst. 2021, 18, 17298814211046745. [Google Scholar] [CrossRef]
- Yoo, I.G.; Yoo, W.G. The effect of a new neck support tying method using Thera-Band on cervical ROM and shoulder muscle pain after overhead work. J. Phys. Ther. Sci. 2013, 25, 843–844. [Google Scholar] [CrossRef] [Green Version]
- Ziaei, M.; Choobineh, A.; Ghaem, H.; Abdoli-Eramaki, M. Evaluation of a passive low-back support exoskeleton (Ergo-Vest) for manual waste collection. Ergonomics 2021, 64, 1255–1270. [Google Scholar] [CrossRef] [PubMed]
- Luger, T.; Seibt, R.; Cobb, T.J.; Rieger, M.A.; Steinhilber, B. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Appl. Ergon. 2019, 80, 152–160. [Google Scholar] [CrossRef] [PubMed]
- De Bock, S.; Rossini, M.; Lefeber, D.; Rodriguez-Guerrero, C.; Geeroms, J.; Meeusen, R.; De Pauw, K. An Occupational Shoulder Exoskeleton Reduces Muscle Activity and Fatigue During Overhead Work. IEEE Trans. Biomed. Eng. 2022, 69, 3008–3020. [Google Scholar] [CrossRef]
- Du, Z.; Yan, Z.; Huang, T.; Bai, O.; Huang, Q.; Zhang, T.; Han, B. Development and Experimental Validation of a Passive Exoskeletal Vest. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1941–1950. [Google Scholar] [CrossRef]
- Eilertsen, M.; Merryweather, A.; Roundy, S. Characterization of load reduction while lifting drywall using an unpowered drywall lifting device. Work 2018, 60, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Garosi, E.; Mazloumi, A.; Jafari, A.H.; Keihani, A.; Shamsipour, M.; Kordi, R.; Kazemi, Z. Design and ergonomic assessment of a passive head/neck supporting exoskeleton for overhead work use. Appl. Ergon. 2022, 101, 103699. [Google Scholar] [CrossRef]
- Gillette, J.C.; Stephenson, M.L. Electromyographic Assessment of a Shoulder Support Exoskeleton During on-Site Job Tasks. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Grazi, L.; Trigili, E.; Proface, G.; Giovacchini, F.; Crea, S.; Vitiello, N. Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers with Motorized Tuning of Assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2276–2285. [Google Scholar] [CrossRef] [PubMed]
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.W. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Appl. Ergon. 2018, 68, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Spielholz, P.; Howard, N.; Silverstein, B. Quantifying repetitive hand activity for epidemiological research on musculoskeletal disorders—Part I: Individual exposure assessment. Ergonomics 2006, 49, 361–380. [Google Scholar] [CrossRef]
- Beltran Martinez, K.; Nazarahari, M.; Rouhani, H. K-score: A novel scoring system to quantify fatigue-related ergonomic risk based on joint angle measurements via wearable inertial measurement units. Appl. Ergon. 2022, 102, 103757. [Google Scholar] [CrossRef] [PubMed]
- Kiermayer, C.; Hoehne-Hückstädt, U.M.; Brielmeier, M.; Brütting, M.; Ellegast, R.; Schmidt, J. Musculoskeletal load in and highly repetitive actions of animal facility washroom employees. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 665–674. [Google Scholar] [PubMed]
- Kim, J.H.; Vaughan, A.; Kincl, L. Characterization of Musculoskeletal Injury Risk in Dungeness Crab Fishing. J. Agromedicine 2022, 28, 309–320. [Google Scholar] [CrossRef]
- Klussmann, A.; Liebers, F.; Gebhardt, H.; Rieger, M.A.; Latza, U.; Steinberg, U. Risk assessment of manual handling operations at work with the key indicator method (KIM-MHO)—Determination of criterion validity regarding the prevalence of musculoskeletal symptoms and clinical conditions within a cross-sectional study. BMC Musculoskelet. Disord. 2017, 18, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y.K.; Lee, S.J.; Lee, K.S.; Kim, G.R.; Kim, D.M. Development of an ergonomics checklist for investigation of work-related whole-body disorders in farming—AWBA: Agricultural whole-body assessment. J. Agric. Saf. Health 2015, 21, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lin, J.H.; Bao, S. Inter-rater reliability of an inertial measurement unit sensor-based posture-matching method: A pilot study. Int. J. Ind. Ergon. 2020, 80, 259–265. [Google Scholar] [CrossRef]
- McKinnon, C.D.; Ehmke, S.; Kociolek, A.M.; Callaghan, J.P.; Keir, P.J. Wrist Posture Estimation Differences and Reliability Between Video Analysis and Electrogoniometer Methods. Hum. Factors 2021, 63, 1284–1294. [Google Scholar] [CrossRef]
- Menychtas, D.; Glushkova, A.; Manitsaris, S. Analyzing the kinematic and kinetic contributions of the human upper body’s joints for ergonomics assessment. J. Ambient Intell. Humaniz. Comput. 2020, 11, 6093–6105. [Google Scholar] [CrossRef] [Green Version]
- Nath, N.D.; Akhavian, R.; Behzadan, A.H. Ergonomic analysis of construction worker’s body postures using wearable mobile sensors. Appl. Ergon. 2017, 62, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Boyer, J.; Tessler, J.; Casey, J.; Schemm, L.; Gore, R.; Punnett, L. Inter-rater reliability of PATH observations for assessment of ergonomic risk factors in hospital work. Ergonomics 2009, 52, 820–829. [Google Scholar] [CrossRef]
- Peppoloni, L.; Filippeschi, A.; Ruffaldi, E.; Avizzano, C.A. A novel wearable system for the online assessment of risk for biomechanical load in repetitive efforts. Int. J. Ind. Ergon. 2016, 52, 1–11. [Google Scholar] [CrossRef]
- Chen, J.; Mitrouchev, P.; Coquillart, S.; Quaine, F. Disassembly task evaluation by muscle fatigue estimation in a virtual reality environment. Int. J. Adv. Manuf. Technol. 2017, 88, 1523–1533. [Google Scholar] [CrossRef]
- Peternel, L.; Schøn, D.T.; Fang, C. Binary and Hybrid Work-Condition Maps for Interactive Exploration of Ergonomic Human Arm Postures. Front. Neurorobot. 2021, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Plantard, P.; Muller, A.; Pontonnier, C.; Dumont, G.; Shum, H.P.H.; Multon, F. Inverse dynamics based on occlusion-resistant Kinect data: Is it usable for ergonomics? Int. J. Ind. Ergon. 2017, 61, 71–80. [Google Scholar] [CrossRef]
- Poitras, I.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.S. Validity of wearable sensors at the shoulder joint: Combining wireless electromyography sensors and inertial measurement units to perform physical workplace assessments. Sensors 2019, 19, 1885. [Google Scholar] [CrossRef] [Green Version]
- Rosecrance, J.; Paulsen, R.; Murgia, L. Risk assessment of cheese processing tasks using the Strain Index and OCRA Checklist. Int. J. Ind. Ergon. 2017, 61, 142–148. [Google Scholar] [CrossRef]
- Shanahan, C.J.; Vi, P.; Salas, E.A.; Reider, V.L.; Hochman, L.M.L.; Moore, A.E. A comparison of RULA, REBA and Strain Index to four psychophysical scales in the assessment of non-fixed work. Work 2013, 45, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Sharotry, A.; Jimenez, J.A.; Mediavilla, F.A.M.; Wierschem, D.; Koldenhoven, R.M.; Valles, D. Manufacturing Operator Ergonomics: A Conceptual Digital Twin Approach to Detect Biomechanical Fatigue. IEEE Access 2022, 10, 12774–12791. [Google Scholar] [CrossRef]
- Waddell, D.E.; Wyvill, C.; Gregor, R.J. Upper extremity kinetics in poultry processing: A comparison between two different cutting tasks. J. Appl. Biomech. 2003, 19, 169–177. [Google Scholar] [CrossRef]
- Cann, A.P.; Connolly, M.; Ruuska, R.; MacNeil, M.; Birmingham, T.B.; Vandervoort, A.A.; Callaghan, J.P. Inter-rater reliability of output measures for a posture matching assessment approach: A pilot study with food service workers. Ergonomics 2008, 51, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.K.; Nimbarte, A.D.; Hsiao, H.; Gopalakrishnan, B.; Jaridi, M. A biomechanical shoulder strain index based on stabilizing demand of shoulder joint. Ergonomics 2018, 61, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Douwes, M.; Boocock, M.; Coenen, P.; van den Heuvel, S.; Bosch, T. Predictive validity of the Hand Arm Risk assessment Method (HARM). Int. J. Ind. Ergon. 2014, 44, 328–334. [Google Scholar] [CrossRef]
- Fan, Z.J.; Bao, S.; Silverstein, B.A.; Howard, N.L.; Smith, C.K.; Bonauto, D.K. Predicting work-related incidence of lateral and medial epicondylitis using the strain index. Am. J. Ind. Med. 2014, 57, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Ghaneh-Ezabadi, S.; Abdoli-Eramaki, M.; Arjmand, N.; Abouhossein, A.; Zakerian, S.A. The Validity and Inter-Rater Reliability of a Video-Based Posture-Matching Tool to Estimate Cumulative Loads on the Lower Back. J. Biomed. Phys. Eng. 2022, 12, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Hellig, T.; Mertens, A.; Brandl, C. The interaction effect of working postures on muscle activity and subjective discomfort during static working postures and its correlation with OWAS. Int. J. Ind. Ergon. 2018, 68, 25–33. [Google Scholar] [CrossRef]
- Hubaut, R.; Guichard, R.; Greenfield, J.; Blandeau, M. Validation of an Embedded Motion-Capture and EMG Setup for the Analysis of Musculoskeletal Disorder Risks during Manhole Cover Handling. Sensors 2022, 22, 436. [Google Scholar] [CrossRef]
- Kapellusch, J.M.; Bao, S.S.; Malloy, E.J.; Thiese, M.S.; Merryweather, A.S.; Hegmann, K.T. Validation of the Revised Strain Index for Predicting Risk of Incident Carpal Tunnel Syndrome in a Prospective Cohort. Ergonomics 2021, 64, 1369–1378. [Google Scholar] [CrossRef]
- Mathiassen, S.E.; Bolin, M.; Olofsdotter, G.; Johansson, E. Equal health at work? Protocol for an observational study of work organisation, workload and musculoskeletal complaints among women and men in grocery retail. BMJ Open 2020, 10, e032409. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.G.; Chiavegato, L.D.; Valentim, D.P.; Da Silva, P.R.; Padula, R.S. Resistance training program for fatigue management in the workplace: Exercise protocol in a cluster randomized controlled trial. BMC Public Health 2016, 16, 1218. [Google Scholar] [CrossRef] [Green Version]
- Shaw, W.S.; Besen, E.; Pransky, G.; Boot, C.R.L.; Nicholas, M.K.; McLellan, R.K.; Tveito, T.H. Manage at work: A randomized, controlled trial of a self-management group intervention to overcome workplace challenges associated with chronic physical health conditions. BMC Public Health 2014, 14, 515. [Google Scholar] [CrossRef] [Green Version]
- Trøstrup, J.; Mikkelsen, L.R.; Frost, P.; Dalbøge, A.; Høybye, M.T.; Casper, S.D.; Jørgensen, L.B.; Klebe, T.M.; Svendsen, S.W. Reducing shoulder complaints in employees with high occupational shoulder exposures: Study protocol for a cluster-randomised controlled study (The Shoulder-Café Study). Trials 2019, 20, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, C.; Pirovano, I.; Mira, R.M.; Rizzo, G.; Scano, A.; Mastropietro, A. Combined use of emg and eeg techniques for neuromotor assessment in rehabilitative applications: A systematic review. Sensors 2021, 21, 7014. [Google Scholar] [CrossRef] [PubMed]
- Leijten, F.R.M.; van den Heuvel, S.G.; van der Beek, A.J.; Ybema, J.F.; Robroek, S.J.W.; Burdorf, A. Associations of Work-Related Factors and Work Engagement with Mental and Physical Health: A 1-Year Follow-up Study Among Older Workers. J. Occup. Rehabil. 2015, 25, 86–95. [Google Scholar] [CrossRef] [PubMed]
- De Kok, J.; Vroonhof, P.; Snijders, J.; Roullis, G.; Clarke, M.; Peereboom, K.; van Dorst, P.; Isusi, I. Work-Related Musculoskeletal Disorders: Prevalence, Costs and Demographics in the EU; Publications Office of the European Union: Luxembourg, 2019; Available online: https://osha.europa.eu/en/publications/msds-facts-and-figures-overview-prevalence-costs-and-demographics-msds-europe (accessed on 1 March 2023).
- Koenig, A.C.; Riener, R. The human in the loop. In Neurorehabilitation Technology, 2nd ed.; Springer International Publishing: New York, NY, USA, 2016; pp. 161–181. ISBN 9783319286037. [Google Scholar]
- Longo, F.; Nicoletti, L.; Padovano, A. Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 2017, 113, 144–159. [Google Scholar] [CrossRef]
- Pedrocchi, N.; Vicentini, F.; Malosio, M.; Tosatti, L.M. Safe human-robot cooperation in an industrial environment. Int. J. Adv. Robot. Syst. 2013, 10, 27. [Google Scholar] [CrossRef]
- Caporaso, T.; Grazioso, S.; Panariello, D.; Di Gironimo, G.; Lanzotti, A. Understanding the Human Motor Control for User-Centered Design of Custom Wearable Systems: Case Studies in Sports, Industry, Rehabilitation. In Proceedings of the Lecture Notes in Mechanical Engineering, Modena, Italy, 9–10 September 2019; Springer Science and Business Media Deutschland GmbH, 2020; pp. 753–764. Available online: https://link.springer.com/chapter/10.1007/978-3-030-31154-4_64 (accessed on 1 March 2023).
- Grazioso, S.; Caporaso, T.; Palomba, A.; Nardella, S.; Ostuni, B.; Panariello, D.; Di Gironimo, G.; Lanzotti, A. Assessment of upper limb muscle synergies for industrial overhead tasks: A preliminary study. In Proceedings of the 2019 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2019—Proceedings, Naples, Italy, 4–6 June 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 89–92. [Google Scholar]
- Scano, A.; Mira, R.M.; D’Avella, A. Mixed matrix factorization: A novel algorithm for the extraction of kinematic-muscular synergies. J. Neurophysiol. 2022, 127, 529–547. [Google Scholar] [CrossRef]
- Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol. 2013, 31, 287–294. [Google Scholar] [CrossRef]
- McKay, J.; Pickup, L.; Atkinson, S.; McNab, D.; Bowie, P. Human factors in general practice—Early thoughts on the educational focus for specialty training and beyond. Educ. Prim. Care 2016, 27, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Bassey Etuknwa, A.; Humpheries, S. A Systematic Review on the Effectiveness of Ergonomic Training Intervention in Reducing the Risk of Musculoskeletal Disorder. J. Nurs. Health Stud. 2018, 3. [Google Scholar] [CrossRef]
- Faucett, J.; Garry, M.; Nadler, D.; Ettare, D. A test of two training interventions to prevent work-related musculoskeletal disorders of the upper extremity. Appl. Ergon. 2002, 33, 337–347. [Google Scholar] [CrossRef]
- Turja, J.; Kaleva, S.; Kivistö, M.; Seitsamo, J. Effects of early support intervention on workplace ergonomics—A two-year followup study. Work 2012, 41, 809–811. [Google Scholar] [CrossRef] [PubMed]
- McFarland, T.; Fischer, S. Considerations for Industrial Use: A Systematic Review of the Impact of Active and Passive Upper Limb Exoskeletons on Physical Exposures. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 322–347. [Google Scholar] [CrossRef] [Green Version]
Category | N Articles | Main Outcomes | References |
---|---|---|---|
Basic research on biomechanical assessments in physiological conditions of fatigue | 48 |
| [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76] |
Influence of task conditions on biomechanics | 39 |
| [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115] |
MSD risk assessment | 92 |
| [116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207] |
Effects of ergonomic interventions | 47 |
| [208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254] |
Prevention and beneficial effects of exoskeletons/supporting devices | 30 |
| [255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284] |
Design and validation of assessment methods | 28 |
| [285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312] |
Protocols | 4 |
| [313,314,315,316] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brambilla, C.; Lavit Nicora, M.; Storm, F.; Reni, G.; Malosio, M.; Scano, A. Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and Effort from the Laboratory to the Industrial Working Place: A Systematic Review. Bioengineering 2023, 10, 445. https://doi.org/10.3390/bioengineering10040445
Brambilla C, Lavit Nicora M, Storm F, Reni G, Malosio M, Scano A. Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and Effort from the Laboratory to the Industrial Working Place: A Systematic Review. Bioengineering. 2023; 10(4):445. https://doi.org/10.3390/bioengineering10040445
Chicago/Turabian StyleBrambilla, Cristina, Matteo Lavit Nicora, Fabio Storm, Gianluigi Reni, Matteo Malosio, and Alessandro Scano. 2023. "Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and Effort from the Laboratory to the Industrial Working Place: A Systematic Review" Bioengineering 10, no. 4: 445. https://doi.org/10.3390/bioengineering10040445
APA StyleBrambilla, C., Lavit Nicora, M., Storm, F., Reni, G., Malosio, M., & Scano, A. (2023). Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and Effort from the Laboratory to the Industrial Working Place: A Systematic Review. Bioengineering, 10(4), 445. https://doi.org/10.3390/bioengineering10040445