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Abstract: Recent human-centered developments in the industrial field (Industry 5.0) lead companies
and stakeholders to ensure the wellbeing of their workers with assessments of upper limb perfor-
mance in the workplace, with the aim of reducing work-related diseases and improving awareness
of the physical status of workers, by assessing motor performance, fatigue, strain and effort. Such
approaches are usually developed in laboratories and only at times they are translated to on-field
applications; few studies summarized common practices for the assessments. Therefore, our aim
is to review the current state-of-the-art approaches used for the assessment of fatigue, strain and
effort in working scenarios and to analyze in detail the differences between studies that take place
in the laboratory and in the workplace, in order to give insights on future trends and directions.
A systematic review of the studies aimed at evaluating the motor performance, fatigue, strain and
effort of the upper limb targeting working scenarios is presented. A total of 1375 articles were found
in scientific databases and 288 were analyzed. About half of the scientific articles are focused on
laboratory pilot studies investigating effort and fatigue in laboratories, while the other half are set
in working places. Our results showed that assessing upper limb biomechanics is quite common
in the field, but it is mostly performed with instrumental assessments in laboratory studies, while
questionnaires and scales are preferred in working places. Future directions may be oriented to-
wards multi-domain approaches able to exploit the potential of combined analyses, exploitation of
instrumental approaches in workplace, targeting a wider range of people and implementing more
structured trials to translate pilot studies to real practice.

Keywords: upper limb; industrial; fatigue; strain; effort; evaluation; assessment; review

1. Introduction

The last decade has been characterized by a revolution in the industrial sector that
integrates several technologies to achieve high productivity and efficiency (Industry 5.0) [1].
The automatization of processes and the interaction between human and robot, the use
of devices, and the burden of work-related diseases lead to an increasing interest in the
physical and psychological state of the workers [2]. Moreover, the European Agency for
Safety and Health at Work conducts the European Survey of Enterprises on New and
Emerging Risks (ESENER) every four years beginning since 2009, highlighting the risks
related to the workplace and, also, the psychosocial risks [3]. Industry 5.0 aims at creating
a synergy between humans and autonomous machines [4], driving the transition to a
human-centered and sustainable industry [1]. These recent human-centered developments
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in the industrial field lead companies and stakeholders to ensure the wellbeing of the
industrial workers, prevent diseases and perform assessments in workplaces, assembly
lines and industries, and see this as a fundamental step to improve working conditions and
reduce work-related musculoskeletal disorders (WRMSD) [5]. This recent crucial step leads
to an investment of resources and research mutating techniques, sensors [6] and findings
from the bioengineering field, in order to apply it to the industry to enhance the industrial
environments in several ways. Following this line, factors such as upper limb fatigue, strain
and effort have been repeatedly measured and assessed for various purposes including, as
a main target, the customization of working cells and the design of supportive devices that
have effects on mental health protection, load reduction for multiple aims, including the
design of supportive devices, [7] and improvements in ergonomics [8], in order to reduce
work absenteeism [9] and increased well-being. These scenarios are frequently depicted
in recent research projects, where several human factors are involved, including humans
interaction with robots, physical and mental health monitoring in order to guarantee
workers with improved working conditions and promoting workers’ good mental health,
biomechanical parameters assessment [10,11], physiological measures [12], and ergonomics
improvement [13]. However, since these practices have been adopted only recently, and not
yet in a systematic way, we observed that often there is not a correspondence between tests
made in laboratory and those carried out in working environments in real factories, leading
to a gap between potential applications and those that are implemented in workplaces.
Fatigue, strain and effort are generally used to refer to the physical exertion needed to
perform an activity and to the associated perceived weakness and pain. Physical fatigue
describes a progressive decrease in physical performance due to a prolonged sustained
activity [14]; physical strain indicates an excessive physical workload during an activity
that can lead to an injury [15]; physical effort refers to the use of energy needed to perform
the activity [16]. Although these terms are distinct and may underlie slightly different
assessments, they have a wide area of intersection and, thus, we analyzed them together
in this work, referring to them with the acronym FSE (fatigue, strain and effort). Very
few comprehensive reviews are available that summarize common good practice and
golden standard guidelines to determine and assess workers’ FSE, and they are limited
to specific scopes and very targeted fields of research. The available reviews are usually
sectorial and have a more focused scope, and describe in detail specific fields, such as
exoskeleton-assisted work [17], fatigue monitoring with wearable systems [18] or physical
fatigue detection in construction workers [19].

Moreover, considering the large scope of industrial applications, a variety of studies,
investigations and setups were implemented, considering different protocols and scenar-
ios, as well as a variety of study designs and assessments, with very non-homogeneous
approaches. Previous reviews have already summarized some of the aspects related to
biomechanical fatigue in the industrial scenarios, focusing on the studies that investigated
the effect of job rotation and work-rest schemes, as well as work pace, cycle time and duty
cycle, on the upper limb muscle fatigue [20]. The effects of these work organization factors
on subjective fatigue or discomfort were also analyzed. Electromyography (EMG) was the
most used measurement, and no consistent results were found related to the effects of job
rotation on muscle activity and subjective measurements of fatigue.

This paper presents a systematic review of the studies and setups specifically aimed at
evaluating and assessing the motor performance of the upper limb in the industrial field.
First of all, the main topics addressed by the screened studies are presented, showing their
main focus on upper limb FSE. Then, a comprehensive comparison between laboratory
and working settings is reported, based on the systematic screening of many relevant
features including the type of enrolled participants, the type of motor task, the use of
support and interaction devices and the type of assessment used. Indeed, laboratory
settings can reproduce a working scenario in a controlled environment and they can be
used for the preliminary testing of devices and new methods of evaluation, allowing for
the use of technological instrumentations that provide objective measures to perform the
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biomedical assessment, such as kinematic parameters and EMG signals. However, real
working scenarios are different and the worker can be affected by multiple factors that
are not present in the simulated environment. Therefore, it is fundamental to directly
assess the workers on the workplace during their usual working activity in order to
monitor their physical state, so that the working experience can be improved, work-related
musculoskeletal disorders can be prevented, and human compliant working environments
can be arranged, improving ergonomics, workloads and sustainability. Therefore, we
wanted to analyze in detail the differences between laboratory and workplace studies, and
to investigate if the biomechanical assessments used in laboratories are being transferred to
real working scenarios. Finally, this review also provides critical comments on the current
state-of-the-art approaches and future trends and directions lying at the interdisciplinary
intersection between biomechanics, ergonomics and human-centered approaches for the
industrial field.

2. Materials and Methods

This research was designed to answer the main research question (RQ 0): “How have
biomechanical assessments of the upper limb in an industrial context been implemented
for assessing fatigue, strain and effort?”. RQ 0 is further split into the following research
questions, addressed for both the laboratory and working settings:

RQ (1) Which topics were addressed and which findings were obtained?
RQ (2) Which kind of setting was used for the studies?
RQ (3) What type and how many participants were targeted and which anatomical

target was assessed?
RQ (4) What type of motor tasks and protocol design were studied?
RQ (5) Which analysis techniques were employed?
We thus considered scientific articles that applied a biomechanical analysis, targeting

industrial applications, and we provided an overview of the main topics addressed, and the
setups considered for applications, exploring the data analysis techniques. The international
guidelines established by PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) [21,22] were used.

2.1. Bibliographic Research Strategy

With the above-mentioned aims, the following procedure was employed for the lit-
erature screening. A collection of articles was obtained by screening Scopus and Web
of Science (WOS), using a query based on the keywords: “shoulder”, “elbow”, “wrist”,
“upper limb”, “upper extremity”, “arm”, “fatigue”, “effort”, “strain”, “workplace”, “in-
dustry”, “industrial”, “assessment”, “index”, “evaluation”, “biomechanics”, “measure”,
“measurement” and all possible variants.

The formal logical query was (shoulder OR elbow OR wrist OR upper limb OR upper-
limb OR upper extremity OR arm) AND (fatigue OR strain OR effort) AND (worker OR
workplace OR industry OR industrial) AND (assessment OR index OR evaluation OR
biomechanics OR measure OR measurement).

2.2. Eligibility Criteria and Study Selection

In the eligibility phase, we selected the articles relevant to the aim of this review.
Screened articles had to satisfy all the following criteria:

(A) To include the terms selected in the above reported query in the abstract and/or title
and/or in the keywords.

(B) To involve applications with biomechanical evaluations (in a broad sense, as this
includes biomechanical models, EMG, and others).

(C) To target laboratory or workplace scenarios, with a clear aim at industrial applications.
(D) To be indexed in at least one of the screened databases.
(E) To be a full journal article.
(F) To be available in English.
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The eligibility criterium was “criterium A AND criterium B AND criterium C AND
criterium D AND criterium E AND criterium F”.

Lastly, some articles were also available before the year 2000. However, most of them
regarded the use of obsolete technologies and methods, thus we decided not to include
papers published before the year 2000. The screening was updated to the 31st of December
2022.

The selection process was performed with the papers screened one by one for inclusion
by two different groups (made of subgroups of the authors of the review) independently.
Each paper was screened by two different reviewers who blindly classified it as eligible or
non-eligible. This allowed for a reduction in the risk of bias in the selection process. Any
disagreement in the classification was settled by discussion between the two groups and a
consensus was reached in all cases.

2.3. Data Extraction and Synthesis

Our review of the literature was organized to summarize the state-of-the-art informa-
tion in the field by detailing the following categories:

2.3.1. Main Topics and Findings

This section aimed to summarize the main topics addressed in the works and in the
obtained results, answering the research question: “Which main topics were addressed
and which findings were obtained?”. Since the studies were based on specific design and a
wide variety of aims, we summarized the results dividing all the studies into categories.

Basic research on biomechanical assessments in physiological conditions of fatigue: includes
studies in which physiological effects of fatigue were investigated in order to find fatigue
indicators during working activities.

Influence of task conditions on biomechanics: includes studies that investigate how the
presence of external loads, and the type and speed of movements can affect the biomechan-
ics.

Musculoskeletal diseases risk assessment: includes studies that performed assessments
in a variety of workplaces and jobs, in order to investigate the risk of developing muscu-
loskeletal diseases (MSD).

Effects of ergonomic interventions: includes studies that proposed and evaluated inter-
ventions in order to mitigate and prevent pain and musculoskeletal injuries.

Prevention and beneficial effects of exoskeletons/supporting devices: includes studies that
examined the effects of the use of exoskeletons or other supporting devices on biomechanics.

Design and validation of assessment methods: includes studies that proposed and vali-
dated alternative methods and more objective measures in comparison to the traditional
scales and questionnaires.

Protocols: includes studies that proposed some protocols to be implemented in the
following years.

2.3.2. Setting

First of all, the studies were subdivided based on the setting, classified into “work-
place”, “laboratory”, “simulated” and “protocol”. Then, all further analyses were per-
formed dividing the selected papers in the following two categories: laboratory (that
included also simulated and protocol studies that were considered as pilot work not
performed on the field) and workplace.

2.3.3. Type of Participants, Number of Participants, Anatomical Target

This section characterized the participants that were enrolled in the studies, answering
the research question, “What type and how many participants were targeted and which
anatomical target was assessed?”, and it is subdivided into:
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Type of participants: this section answered the question: “Which type of participants
were enrolled?”. The type of participants enrolled in the studies were divided into “volun-
teers”, “workers” and “simulated subjects” (by simulated subjects, we mean those made
with biomechanical simulations and modelling).

Number of participants: this section specified the number of participants enrolled in
each of the studies, answering the question “How many participants were enrolled?”.

Anatomical target: this section answered: “Which upper limb segments were considered
in the paper?”, specifying the targeted upper limb segments for functional assessment in
“proximal joints” (shoulder and elbow), “distal joints” (wrist and hand) or “both”, in order
to better specify which upper limb joints were used in biomechanical evaluations.

2.3.4. Tasks Type, Task Design, Task Support

This section described the design of the studies in terms of the characteristic of the
motor tasks that were biomechanically analyzed, answering the research question “What
type of motor tasks and protocol design were studied?”. This section was further divided
into:

Task type: this section answered, “Which tasks were performed and analyzed?” and
described the type of movements that were performed. We classified them into five main
categories:

Lifting: studies in which participants were asked to lift weights as a primary task;
Postural: where participants were asked to hold a specific posture or train/test postural

capabilities;
Functional: participants were asked to perform functional tasks that allow them to

complete very specific goals;
Free: where participants could move freely in the environment, performing numerous

tasks, in general and without clear or stringent constrains;
Others: all task types not belonging to the previous groups.
Task design: answered the question, “What was the design of the task and protocol?”

and specifies the design of the task/protocol to be performed. We divided this section into
three main groups:

Repetitive: participants performed the same task repetitively;
Controlled: participants performed tasks in specific constrained conditions;
Free: participants were not performing tasks with specific constrained conditions.
Task support: answered, “What supports were used to execute the tasks?” and specified

which tools and devices were used to support the execution of the task. Supports were
classified in 5 groups:

Free: tasks were performed without the use of specific tools;
Tool/handle: tasks required specific tools to be performed;
Exoskeleton/support: participants performed the task wearing exoskeletons or sup-

porting devices;
Robot/end effector: tasks were performed in collaboration with a robotic end effector;
Others: tasks were performed with the use of devices not belonging to the previous

categories.

2.3.5. Type of Assessments

This section described which techniques and findings were used for the data anal-
ysis, answering the question: “Which analysis techniques have been employed?”. The
assessments were classified into:

EMG: the assessment included muscle activity signals measured with EMG;
Kinematics: kinematic parameters, such as articular angles, velocities and accelera-

tions, were used for the assessment;
Biomechanics/kinetics: biomechanical parameters, such as torques, power and energy,

were used for the assessment;
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Questionnaires/scales: the assessment was done mainly using questionnaires and scales,
such as the OCRA Checklist [23], the Nordic Musculoskeletal Questionnaire (NMQ) [24], the
Rapid Entire Body Assessment (REBA) [25] and others;

RULA: the Rapid Upper Limb Assessment [26] was used for the assessment; this
is a scale method developed for use in ergonomics investigations of workplaces where
work-related upper limb disorders are reported [27], and gives quantitative indexes based
on directed measurements of articular angles.

Strain index: the Strain Index [28] was used for the assessment. It is a job analysis
tool that uses both qualitative and quantitative methods to identify jobs that do and do
not expose workers to an increased risk of developing a distal upper extremity (DUE)
disorder [27].

Other measurements: other measures not included in the other categories, such as
heart rate, Near Infrared Spectroscopy (NIRS) and electroencephalography (EEG).

3. Results
3.1. Study Selection

As a result of the screening, 978 papers were found on Scopus and 930 on Web of
Science. The total number of articles was 1908 and, after duplicates removal, the number
of screened articles was 1375. Papers that were not in English and conference papers
were not considered. Due to non-adherence to the eligibility criteria, 79% of the papers
were excluded (n = 1087). Reasons for the exclusion were: the not-targeting of industrial
or workplace scenarios, but clinical or merely laboratory applications with not-foreseen
further applications in industrial scenarios; the absence of any quantitative method for
assessment, or data non-presented; the lack of crucial information, lack of data or evident
incompleteness in the data or methodology presentation; non-full-text studies. After the
screening phase, the number of papers identified as eligible, meeting all the selection criteria
and included in the review, was 288. In the next sections, the results of our research are
presented. The PRISMA flow chart summarizing all the steps for screening and inclusion is
presented in Figure 1.

3.2. Assessing FSE: Main Findings

In this section, we briefly report the main findings of the studies screened (see Table 1)
in the assessment of fatigue, strain or effort, or a combination of those. Due to their
variability in aims and purposes, we reported the main topics of investigation aggregated
according to categories that divided studies by topic, summarizing the main findings.
The categories were ordered to highlight the specific features of each research aim, from
basic research to practical applications, including protocols, application of ergonomic
assessments and use of supporting devices.

Table 1. Summary of the main findings, divided into categories related to the topic of the investiga-
tion.

Category N Articles Main Outcomes References

Basic research on
biomechanical assessments in
physiological conditions of
fatigue

48

• Fatigue has effects on joint kinematics, torques and
coordination

• Fatigue increases power spectrum of velocity and
acceleration

• Muscle fatigue can be detected with EMG signal
• Duration, complexity and precision of the task

increase muscle fatigue
• The EMG signal associated with the EEG alpha band

can identify mental and physical fatigue

[29–76]



Bioengineering 2023, 10, 445 7 of 35

Table 1. Cont.

Category N Articles Main Outcomes References

Influence of task conditions
on biomechanics 39

• Loads increase the muscular workload and fatigue
and pain, and decrease the endurance time

• Direction and height of movement have significant
effects on muscular strain and body posture

• Higher work pace decreases the oxygen saturation
and increases muscle activity

[77–115]

MSD risk assessment 92

• Association between physical risk factors at work
and MSD

• REBA, RULA, Strain index, OCRA checklist can
identify working posture at risk for development of
MSD

• Repetitive movements and high workloads increase
the risk of MSD

• Ergonomic interventions are needed to reduce the
risk of developing MSD

[116–207]

Effects of ergonomic
interventions 47

• New ergonomic tools/workstations improve
postures and comfort with respect to traditional or
commercial ones and reduce the risk of MSD
occurrence and musculoskeletal complaints

• Better working conditions result in a higher
productivity

• Ergonomics interventions improve working
postures, decreasing the occurrence of MSDs

• Physical exercise programs can reduce muscle
activity and musculoskeletal complaints

• Ergonomic interventions can reduce physical and
mental fatigue

[208–254]

Prevention and beneficial
effects of
exoskeletons/supporting
devices

30

• Exoskeletons reduce the muscles’ effort, joint load
and global fatigue in overhead activities

• Onset of muscular fatigue is delayed
• Supporting device reduces the effects of fatigue on

kinematics
• Exoskeleton reduces the oxygen consumption and

heart rate

[255–284]

Design and validation of
assessment methods 28

• SI is specific for distal upper limb evaluation, while
OCRA evaluates the whole upper limb

• IMU, Kinects and EMG can be used to measure
physical demand in workplace assessments

• New scales and methods are validated comparing
the results with traditional scales or assessments by
experts

[285–312]

Protocols 4

• New intervention programs are proposed to reduce
MSD risk

• A biomechanical assessment based on
questionnaires and kinematic measures is proposed

[313–316]
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3.2.1. Basic Research on Biomechanical Assessments in Physiological Conditions of Fatigue

The physiological effects of fatigue during repetitive movements, overhead tasks
and posture maintenance have been investigated in order to find indicators that can be
used to identify fatigue during working activities. Joint angles and torques, especially at
shoulder level, significantly reduce with fatigue [29,30]. Moreover, fatigue influences joint
coordination that has to compensate for kinematic changes to maintain the trajectory of
the end effector [31]. Systematic changes were found also on the power spectrum of the
angular velocity and the acceleration of the shoulder and trunk [32]. Muscle fatigue is often
detected with EMG signals, since spectral features such as the mean power frequency, the
median frequency and the maximum voluntary contraction decrease with fatigue [33,34],
clearly allowing the use of EMG as a biomarker for fatigue. Finally, the EMG signal
can be associated with the EEG alpha band for the identification of mental and physical
fatigue [35,36]. EMG and EEG signal coupling may provide a complete characterization of
both the mental and physical state of the worker [317]. Indeed, physical and mental fatigue
can be correlated in specific tasks, since the complexity and precision of the task increase
fatigue [37].
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3.2.2. Influence of Task Conditions on Biomechanics

During working activities, workers usually interact with objects and tools, and perform
movement in various directions. The presence of external loads and the direction of
movements can affect the biomechanics and, consequently, induce fatigue. Moreover,
in industrial assembly lines or interacting with devices, the work pace and movement
velocity may be constrained and uncomfortable for the worker. Therefore, some studies
investigated how biomechanics is affected by the task conditions, such as the presence
of external loads, velocity and direction of movement, in order to provide ergonomic
recommendations for new workstations. In general, additional, external loads increase the
muscular workload and pain, and decrease the endurance time [81,101], suggesting that
light tools should be preferred. The direction and height of the movement have significant
effects on the muscular strain and body posture, increasing the overall discomfort, pain
and fatigue [82]. Therefore, workstations should be designed in order to improve working
postures, maintaining a posture that is as neutral as possible [96]. Finally, the work pace
may affect the development of FSE. In fact, fast movements without rest decrease the
oxygen saturation and muscle activity [90] and, therefore, a slow pace with rest should be
preferred.

3.2.3. Musculoskeletal Diseases Risk Assessment

Assessments during working activities were performed in a variety of workplaces
and jobs, in order to investigate the risk of developing musculoskeletal diseases (MSD). In
fact, physical risk factors at work and musculoskeletal disorders are associated with the
increase of MSD [141]. The characterization of physical risk exposures of workers is needed
in order to design tools and interventions capable of mitigating and, especially, preventing
the development of MSD. Usually, scales and questionnaires such as REBA, RULA, SI and
the OCRA checklist are used for risk evaluations since they can be administrated quickly
on a large cohort of participants and they do not need specific architectures and equipment.
However, some studies employed instrumental techniques, such as EMG, for the evaluation
of the muscle activity during work and its correlation with MSD development [185]. Almost
all the working activities analyzed resulted in having a high risk of MSD development,
from industry and manual workers to office works, since these activities lead to high effort
and strain. Moreover, repetitive activities [142] and high workloads [187] increase the
risks of MSD. Therefore, ergonomic interventions are needed in order to correct working
postures and to reduce pain and the risk of MSD [149].

3.2.4. Effects of Ergonomic Interventions

Since most of the working activities are classified as being at high risk for MSD de-
velopment, ergonomic interventions are needed in order to mitigate and prevent pain
and musculoskeletal injuries. Some studies investigate if and how ergonomic tools and
workstations can improve working postures and decrease the risk of MSD with respect
to commercial and traditional ones, which are not tailored for specific needs. In gen-
eral, ergonomic tools and workstations improved postures and comfort and reduced the
strain, effort and, consequently, the risk of MSD occurrence and musculoskeletal com-
plaints [243,251]. Better working conditions also resulted in increased productivity and
quality [253]. However, workers may need time to familiarize with the new tools [249].
Moreover, ergonomic educational training making the worker aware of the risks and physi-
cal exercise programs showed improved working postures, reducing muscle activity and
musculoskeletal complaints [214,239]. These interventions improve both physical and
mental health [250] and are thus beneficial for workers [318].
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3.2.5. Prevention and Beneficial Effects of Exoskeletons/Supporting Devices

Repetitive tasks and posture maintenance (especially in overhead tasks) are one
of the main causes of neck and back pain, and of joint load. Several exoskeletons and
supportive devices, generally not actuated, have been developed to assist movements and
postures during working activities. Exoskeletons reduce the muscles’ effort and joint load
in the shoulder, arm and lower back [273,278], and this effect was proven in laboratory
scenarios [258,272] and in preliminary campaigns conducted on field workers [263,265].
Thus, supporting devices reduce the EMG activity and fatigue, limiting the effects on joint
torques and kinematics [270]. Moreover, the onset of muscular fatigue is delayed [280] and
the oxygen consumption and heart rate are reduced [256]. Finally, the perceived effort and
physical pain is reduced, improving the overall comfort of the worker [266,276].

3.2.6. Design and Validation of Assessment Methods

A variety of assessment methods can be used for the evaluation of fatigue and strain
during work. The most employed methods are scales, but other alternative methods and
more objective measures are proposed and validated with comparisons to the traditional
scales and questionnaires. The reliability of scales and the accordance between different
methods were assessed, finding that the Strain Index is more specific for the distal up-
per limb evaluation, while the OCRA checklist allows for the assessment of the whole
upper limb [308]. SI was also found to be more effective than RULA and REBA in non-
fixed tasks [309]. Furthermore, the usability and reliability of technologies that allow for
quantitative assessments were tested. The use of inertial measurement units (IMU) or
Kinect cameras for fatigue assessments allow for the detection of kinematic changes in
long-duration manual tasks [286]. These methods are easy-to-use in real time and could
assist ergonomists in risk evaluations on site [306]. Moreover, the EMG signal can provide
measures for detecting muscular fatigue and they can be correlated to kinematic and kinetic
parameters to evaluate the global fatigue [293].

3.2.7. Protocols

Some studies proposed protocols to be implemented in following studies. Three
studies proposed new ergonomic intervention programs whose validity and efficacy will
be tested with questionnaires and scales. Mathiassen et al. [313], instead, described an
on-site biomechanical assessment, based on questionnaires and measurements of postures,
movements and heart rate.

3.2.8. Fatigue, Strain and Effort of the Upper Limb in Industrial Applications:
Main Findings

We divided the papers into three groups depending on the main design and findings
related to the assessment of fatigue, strain and effort. It is documented that FSE are a
burden for the industrial field and for workers, as it was reported that three out of five
workers in the European Union had MSD complaints due to their working activity [319].
On the basis of such epidemiologic data, some studies assumed that the effects of FSE are
in most of the cases present and they are working to reduce such effects [258,273]. FSE are
not directly measured, but rather technologies, protocols, devices, exoskeletons, methods,
ergonomic platforms or interventions aim at reducing or preventing the effects of FSE.
Therefore, often the assessments are based on differential measures and the main focus is
on the reduction in the effects of FSE. Some studies, instead, directly measure when FSE
are found. Most of the studies reported that fatigue is found in industrial tasks in working
places [150,167] but also in simulated environments [29,32]. In a limited number of studies,
the effects of FSE were not observed or they were under the limit for high risk of MSD
development [117,136]. All the effects are summarized in Figure 2 of each of the categories
of the study.
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Figure 2. Main findings on FSE. For each category, papers were classified based on the main findings
related to FSE. Papers showing differential effects of ergonomic interventions or supporting devices
on FSE were classified in blue; papers that found FSE were classified in green; papers that measured
but did not find FSE were classified in yellow.

FSE are present in almost all the working activities, and represent a burden in the work-
ing scenario. Therefore, the assessment of FSE is important for preserving and improving
workers’ health.

3.3. Setting

The setting categories used in this review paper were: workplace, laboratory, simu-
lated and protocol studies. A total of 50% of the works were performed in a laboratory
environment; 47% of the works were performed directly in the workplace (or considering
data relative to the workplace). Few studies were suggested/approved protocols (not yet
implemented) or simulated studies. A visual representation of the settings is reported in
Figure 3. The selected studies split almost equally into two groups: those made in labora-
tory environments, and those performed in working places. All the following assessments
are based on the separation and comparison of these two groups clearly identified in the
setting section. Simulated and protocol studies were considered as laboratory studies, since
they do not involve workers and/or volunteers directly in the workplace.

As shown in Figure 4, studies based on human-centered approaches for biomechanics
of the upper limb in the industrial field are not new, even if the trend shows an increase in
the papers published in the field in the last years (the screened papers are updated until the
31st of December 2022, with few papers already available and scheduled for publication for
the year 2023). Interestingly, more recently, there has been an increase in the works based
on laboratory settings, while the number of on-site works has stabilized. This trend could
suggest that the interest is more focused on laboratory research activity than the translation
of the assessments in the workplace. However, this finding should be commented in light



Bioengineering 2023, 10, 445 12 of 35

of the fact that in the last three years, the restrictions due to COVID-19 may have impacted
the on-field research.
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Figure 4. Temporal distribution (number of scientific articles published per year) of the screened
scientific articles from the year 2000 to December 2022, for laboratory settings (blue), working places
(red) and overall (grey). Some scientific articles that were already accepted and will be published in
2023 are available.

3.4. Type of Participants, Number of Participants, Anatomical Target
3.4.1. Type of Participants

In the papers analyzed in this review, the cohorts of participants involved during the
experimental sessions could be divided into 3 macro-categories: (i) volunteers, (ii) on-field
workers and (iii) simulated subjects. In particular, 71% of the laboratory studies enrolled
volunteers that did not have working experience related to the topic of the study and
only 23% enrolled workers. In a minor number of laboratory studies (6%), the data
were simulated starting from real recordings with biomechanical models (as in Brambilla
et al. [109]) or completely simulated. Conversely, 99% of the workplace papers had enrolled
workers. The categories of participants are graphically summarized in Figure 5. These
results validate the choice to separate the laboratory and working places as they enrolled
participants from different cohorts.
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Figure 5. Distribution of selected papers based on the cohort of participants enrolled in the laboratory
setting (on the left) and in the workplace setting (on the right). Participants were classified as
workers, volunteers and simulated.

3.4.2. Number of Participants

Considering the sample size, most of the laboratory studies involved less than
20 participants and only 10 papers involved more than 50 participants; the median number
of participants was 14 and the 95th percentile was 68. In the workplace setting, most of the
studies involved a high number of participants (>50) and 16 papers included more than
500 participants, with a maximum of 3141; the median number of participants was 62 and
the 95th percentile was 560. Eight studies did not clearly declare the number of participants
or presented protocols in which no participants were involved. A summary of the number
of involved participants described in this section is reported in Figure 6.
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Figure 6. Distribution of the number of participants for a laboratory setting (blue) and for a workplace
setting (red). The points indicate the value for each article and the black line is the median value. The
number of participants (3141) of one workplace study is not shown in the figure for visualization
purposes.
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Figure 7 summarizes the sample size for both the laboratory and workplace papers. In
a laboratory setting, most of papers included less than 20 participants (31% of the papers
had less than 10 participants, 45% had a number of participants between 10 and 20); 18%
of the studies included between 20 and 50 participants, while only 6% included more
than 50 participants and none considered more than 500. The workplace design, instead,
included various numbers of participants, uniformly distributed. The participants were
less than 10 in 13% of the papers, between 10 and 20 in 17% of the cases and between
20 and 50 in 14% of the papers. About 56% of the studies included more than 50 partici-
pants, in particular: 18% involved between 50 and 100 participants, 26% between 100 and
500 participants, and 12% more than 500 participants.
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Figure 7. Sample size distribution in the laboratory setting (on the left) and in the workplace setting
(on the right). The sample size was divided in six groups: n ≤ 10, 10 < n ≤ 20, 20 < n ≤ 50,
50 < n ≤ 100, 100 < n ≤ 500 and n > 500.

3.4.3. Anatomical Target

In Figure 8, a detailed representation of the anatomical targets for the considered
studies were reported. In the laboratory studies, 35% reported an analysis in proximal
joints, 10% reported an analysis mainly on distal joints, while most of the studies (55%)
reported an analysis on both the anatomical targets. In the workplace studies, 17% reported
a proximal analysis, 10% reported a distal analysis, and the majority (73%) reported an
analysis on both the proximal and distal targets. There was a tendency toward extending
the analyses to the whole upper limb in the workplace studies in order to perform a
comprehensive assessment of the workers, while the laboratory studies showed more
targeted investigations.
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Figure 8. Anatomical targets considered in the laboratory setting (on the left) and in the workplace
setting (on the right).

3.5. Task Type, Task Design, Task Support
3.5.1. Task Type

Task type is reported in Figure 9. In the laboratory papers, most of the studies analyzed
functional tasks (52%), followed by lifting tasks (20%) and postural tasks (14%); only 3% of
the laboratory studies reported free movements. On the contrary, 38% of the workplace
studies reported free movements and 43% functional movements. Only 3% of these papers
regarded lifting tasks and 13% postural ones. In laboratory scenarios, the tasks generally
reproduce specific movements of the working activities and, therefore, they could be
precisely classified into categories. In workplace settings, instead, the tasks are functional
movements when the participant performs only a specific task, while in the other cases, the
workers perform multiple activities that are a combination of different functional subtasks.
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Figure 9. Percentage of the task types for the laboratory setting (on the left) and for the workplace
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3.5.2. Task Design

Partially correlated with the task type, the task design showed that the laboratory stud-
ies were equally divided into repetitive (49%) and controlled (49%) movements that are by
nature subject to experimental limitations, and only 2% of them considered unconstrained
movements that represent more realistic working conditions in most of the cases. In the
workplace studies, most of the studies (55%) considered unconstrained movements, 38% of
the studies were based on a controlled design, and only 7% were conducted in repetitive
conditions. The task design is reported in Figure 10.
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3.5.3. Task Support

Supports are intended in a broad sense and they include devices and robots, but
also tools and handles. Various kinds of task support were employed in the screened
studies. Since most of the laboratory studies regarded the interaction with the environment
and simulation of controlled tasks, 42% of them required tools and handles, including
screwdrivers, hand supports, and others; 38% were based on free movements, while other
supports (3%), end effector (EE) robots (1%) and exoskeletons (16%) were found in the
other cases. In the workplace studies, participants usually performed their work during the
entire workday, therefore the majority of them (75%) reported free movements, 20% used
tools, while only 3% employed exoskeletons. The task support is reported in Figure 11.
In the laboratory setting, there is a higher employment of tools and exoskeletons since
new technologies, as new specific tools or supporting devices, are tested in a controlled
environment, while in workplace scenarios, movements are generally free (as described in
the task type), representing the whole working activity with multiple and various tasks.
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3.6. Measurements and Data Analysis

Several approaches were employed in the screened studies as shown in Figure 12.
Some instrumental approaches were based on the EMG and kinematics, but also model-
based approaches often included biomechanics and kinetics, with human models or
recorded forces. Other approaches were based on scales and questionnaires. Some papers
merged two or more of these approaches, even though usually sensors-based measures
are used together as well as scales/questionnaires methods. Interestingly, the type of
assessment differs consistently between the laboratory and workplace settings. In laborato-
ries, EMG and kinematics are the most used methods to assess the biomechanics, effort,
fatigue and strain, employed in more than 50% of the studies; on the contrary, in workplace
settings, questionnaires and scales are by far the most employed ones (more than 80% of
the studies).
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Figure 12. Assessment methods used in the considered studies. Some studies used more than one
assessment (overall percentage could exceed 100%). In the upper panel, the number of studies
that employed the considered assessment methods is reported for both laboratory ((left panel), in
blue) and workplace settings ((right panel), in red). In the lower panel, the percentages of papers
employing the assessment methods are shown in blue for laboratory and in red for workplace
scenarios.

4. Discussion
4.1. Summary of the Main Results

In this systematic review, we screened a large number of studies that performed biome-
chanical assessments to identify FSE in a working scenario. First, we found that a wide
variety of topics were addressed by the screened studies: from the identification of physio-
logical markers of fatigue, to the influence of task conditions on the biomechanics; from the
MSD risk assessment during working activities to the design and definition of ergonomic
interventions and to the testing of the effects of supporting devices, such as exoskeletons.
In most of the studies, the working activities had high risk of MSD development and
ergonomic interventions were needed. However, few works proposed practical solutions to
solve such issues and concentrate more on assessment, while recent literature is leveraging
on the validation of novel technologies. Moreover, several differences between studies
taking place in laboratories and in workplaces were found. In a laboratory setting, healthy
volunteers were principally included, performing movements in a controlled environment.
In a workplace setting, instead, workers performing their usual working activities were
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analyzed, allowing for a more realistic assessment. However, this scenario limited the
application of technologies that could provide the quantitative assessment of fatigue, and,
therefore, scales and questionnaires were the most employed methods. In the laboratories,
instead, EMG and kinematic measures were used for the assessment.

4.2. Rationale for a Top-Down Large Scope Screening on Fatigue, Strain and Effort

In this systematic review, we analyzed papers in which biomechanical assessments
were used or analyzed for evaluating or assessing motor performance, fatigue, effort
and strain in applications aimed at industrial scenarios, separating laboratory studies
from those performed in the workplace. The integration of biomechanical assessments
and physiological signals can be useful for the evaluation of fatigue, effort and strain in
industrial scenarios, allowing for the investigation of the motor system, ergonomics and of
mental health in their complexity, configuring a multi-disciplinary field of research at the
intersection between several fields such as industry, biomechanics, ergonomic assessment,
and medicine [320]. In our sample of articles, a wide variety of scenarios and assessments
were found. The range of applications was very wide and non-homogeneous; while
on one hand this variability complicated our analysis, on the other hand it allowed to
perform a wide summary that allows for the generalization of trends in the field, and
provide a comprehensive top-down view of the assessments available. Our large screening
provides a comprehensive view of the actual context in which biomechanical assessments
are performed in working applications and which are the following advancements that
are needed for monitoring workers’ states during working activities. We summarized
the results achieved so far, with an attempt to coordinate the available achievements and
findings into homogeneous groups.

4.3. A Transition to a Human-Centered Perspective

From the distribution of selected papers over the years, 288 related studies emerged in
our screening and they are in a growing trend, suggesting that the topic will expand further
in the next years. Indeed, most studies were published in the last decade with a remarkable
increase in number in the last 10 years. Increasing the mental health and the wellbeing of
workers is becoming more and more of an emerging topic to improve the industrial field
in a human-centered perspective [11]. The recent human-centered developments in the
industrial field lead to a high level of automatization in order to increase the productivity
and efficiency. In this way, human operators may face an increased complexity in their
daily tasks with a higher physical and mental demand [321]. Therefore, the physical safety
of workers is of primary importance [322] and the wellbeing of the industrial workers
and the prevention of diseases with biomechanical assessments are a fundamental step to
improve working conditions and reduce work-related musculoskeletal disorders [5]. This
recent crucial step leads towards the investment of resources and research results mutating
techniques, sensors and findings from the bioengineering field, in order to apply them to
the industry to enhance the industrial environments in several ways.

These aspects can explain why the use of biomechanical analyses, or biomechanical-
related measurements are rapidly becoming an emerging topic even outside of the medical
field. This finding may also indicate that the human factor requires strong theoretical and
technological improvements for adapting methods and technologies from bioengineering
and mechanical engineering for use in the industrial field, thus fostering laboratory inves-
tigations. This human-centered revolution includes the introduction of assistive devices
and exoskeletons that are topical for many applications in the field [17]; at the moment, it
is limited mainly to devices but is growing also in the direction of employment of tech-
niques for motor control [323,324], bio-signal analysis with advanced techniques from
bioengineering [325], bio-inspired control [326], fatigue detection and others.



Bioengineering 2023, 10, 445 20 of 35

4.4. Main Findings on FSE of the Upper Limb

Given the high variability in the aims, the studies were divided based on the main topic
of their findings. One category included all the papers that investigated the physiological
effects of FSE during the simulated and constrained movements. They found that the
presence of FSE can be detected by changes in the kinematics [32], dynamics [30] and also
in the EMG signal [33]. Papers that analyzed the influence of the movement conditions,
such as the presence of external loads [101], velocity and direction of movement [82],
on biomechanics providing ergonomic recommendations for preventing fatigue, strain
and effort were grouped in another category. As in the previous category, these articles
directly measured and detected FSE and provided recommendations that could be used for
improving the workstation design. The largest category consisted of papers that assessed
the risk of MSD development, identifying most of the working activities as having a
high risk, since the FSE exceeded the recommended threshold limits. These assessments
were performed mainly with scales and questionnaires [193,202], but in some cases also
kinematics and EMG signals were used [135,167]. Very few studies did not find FSE in the
working tasks [117,136]. Another group of studies identified ergonomic interventions, such
as new ergonomic workstations [243], tools [229] or training programs [239] that could be
implemented in order to improve the working postures and reduce FSE. Other studies
proposed exoskeletons or supporting devices in order to reduce the FSE, especially in
prolonged posture maintenance and overhead working tasks [259,263] that require high
loads on the neck, back and shoulder [261]. Another category included papers that design
and validate alternative methods for assessing FSE during working activities, such as
marker-less systems [286,306] or EMG measures [293]. Finally, few papers described new
protocols for assessing FSE or for implementing intervention programs.

From this analysis, two research lines emerged: one consisted of the investigation of
FSE from a physiological point of view and in their identification during working activities;
the other one proposed and tested technologies and instruments aimed at reducing and
preventing FSE. It is important to foster the research on mechanisms and factors influencing
the development of FSE. However, since the majority of the working activity resulted in
tasks with the presence of fatigue and at high risk of MSD development, the development of
new ergonomic solutions to be actuated in order to reduce and prevent FSE should become
of primary interest. Moreover, in the human-centered perspective of Industry 5.0, the safety
and physical state of the worker has become a primary driver for future developments
in the field [5]. In this scenario, new methods and technologies need to be implemented
with practical applications [8]. Moreover, raising awareness and promoting education
among workers on the risks of MSDs is an important element for improving their physical
health [327]. Studies demonstrated that educational training reduced the biomechanical
exposure and the musculoskeletal symptoms in the neck and upper limbs [328,329]. Fi-
nally, early ergonomic interventions may prevent the development of MSDs and pain in
workers [330].

4.5. Laboratory vs. Working Setting

We found that studies in laboratories and workplaces are about of the same number,
with an unexpected recent trend promoting laboratory investigations. This result could
indicate a higher interest in the research activity or in testing new devices and methods in-
stead of assessments in the workplaces, and a consequent push toward novel technological
innovation. Another factor that may explain the increase in laboratory studies in recent
years is related to the restrictions due to COVID-19 pandemics, that limited the working
activities and also on-site assessments. Moreover, we found that many studies taking place
in laboratories were observational or pilot studies—mainly focused on preliminary works
in which novel experimental setups or concept designs were tested on a limited number
of participants. Only some papers presented structured, comprehensive investigations
that evaluated the fatigue, effort and strain in detail in large cohorts of people with the
aim of extracting results that could be generalized to a large sample of people. On the
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contrary, in workplace settings many more studies assessed large cohorts of participants,
but they employed fairly rapid and subject-dependent assessments (such as questionnaires
or scales). One study could screen the impressive number of 3141 participants [181]. In
particular, the studies taking place in the laboratory included principally only healthy par-
ticipants performing constrained movements in order to examine the physiological effects
of fatigue or to test new devices. This partially limits the range of application of the results,
since the assessments are not fully adherent to real workers’ activities; on the contrary,
they show a major technological push to introduce new techniques and technologies to
comply to the requirements of the field. In workplace settings, only workers were recruited
and they performed their usual working activity. However, the real working scenario
reduced the availability of a detailed biomechanical assessment since some technologies
cannot be easily used in uncontrolled environments. In fact, ~80% of the studies in the
workplace setting employed scales and questionnaires for the assessment. However, these
kinds of assessment are not completely objective since they may depend on the subjec-
tive sensations of the worker and also on the rater that administers the scale. Detailed
instrumental analyses were instead performed mainly in the studies with participants.
The high number of the pilot and observational studies indicated that the use of complex
approaches and techniques was found mainly in the studies that aimed at exploring novel
research purposes rather than deepening topics in detail with generalization objectives.
This is understandable considering the feasibility of some approaches that require complex
setups for data gathering, which are not always compatible with working activities, high
costs, invasive setups or time-consuming procedures. Consequently, it arose from the
literature that there is a relevant trade-off between the papers that deal with a large number
of workers, and especially working scenarios, and the assessments that were performed.
It followed that more time-consuming techniques were mostly employed in preliminary
studies for evaluating how some protocols or assessments are accepted by workers or are
useful to determine their level of FSE.

4.6. Translating Biomechanical Assessments from Laboratory to the Workplace

From the screening of the papers, the studies taking place in laboratories were princi-
pally observational or were pilot studies in which new tools and supporting devices were
tested or some biomarkers for FSE were identified [29,32,33]. Future directions should
foresee more structured and comprehensive studies involving large cohorts of participants,
developed starting from pilot studies already available so that more reliable conclusions
can be drawn. The laboratory studies enrolling healthy participants should be used as a
benchmark for assessing the physical state of the worker and for identifying the pathologi-
cal changes occurring in disorders that may occur for workers [93]. Moreover, we foresee
for future developments that the environment will be less and less controlled, focusing
in more detail on the real interaction of workers with their workplaces. This should be
mixed with detailed biomechanical assessments also including kinematic, EMG, kinetic
and dynamic measurements that can better complement and specify with more detail—and
continuously monitor—the findings of the scales/questionnaire’s assessments. Indeed, the
laboratory research should be translated into the real working scenario, using objective
measures for the assessments, instead of scales only [307].

Another relevant issue not always reported in the studies is how the findings and
the assessments can relevantly enter into the working practice. In laboratory settings, the
proposed tools and experimentations show some biomarkers for fatigue and strain; there
should be suggested methods and devices for reducing the workload in simulated working
tasks or in quasi-static postures [272]. However, the application to the real working scenario
may show different results and, therefore, it is necessary to apply the new technologies
in the workplace to assess the real efficacy [331]. In the workplace setting, instead, lots of
studies showed that many activities performed during work required high strain and effort
and workers might develop musculoskeletal disorders related to their job. However, very
few works suggest how these situations can be changed and how the effects of ergonomic
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interventions are generally verified with scales. Future directions should design solutions
for improving the worker’s wellbeing and validate their efficacy not only in a controlled
laboratory environment but also in the real workplace.

5. Conclusions

In this systematic review, we provided a wide screening of studies that performed
biomechanical assessments in order to identify fatigue, strain and effort during work. First
of all, we found that a wide variety of topics are addressed when performing biomechanical
assessments in industrial scenarios. The studies suggested that most of the working activ-
ities are at high risk of MSD development and that ergonomic interventions are needed.
However, few works proposed changes that can be done with ergonomic workstations
and the use of supporting devices. Moreover, we found that in laboratory settings, the
studies included principally healthy volunteers that performed movements in a controlled
environment that replicated the workplace. In workplace settings, instead, workers were
recruited and assessed during their usual working activity. This allows for a real assess-
ment but limits the application of technologies that provide a quantitative assessment of
fatigue. Therefore, in a human-centered perspective, the translation of new technological
assessments into the real practice is needed to improve the comprehension and devise new
ways to protect the physical and mental health of the worker.
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