Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp.
Abstract
:1. Introduction
2. Current Commercial Applications
2.1. Human Food and Nutrition
Pigment | Chlorella sp. | Spirulina sp. |
---|---|---|
Chlorophylls | 1.16–24.0 | 3.01–17.0 |
Chlorophyll-a | 0.25–18.3 | 2.7–10.8 |
Chlorophyll-b | 0.07–6.81 | 0.21–0.42 |
Pheophytins | 9.73–26.93 | 8.24–13.49 |
Pheophytin-a | 2.31–5.64 | nr |
Carotenoids | 0.24–8.21 | 0.23–6.5 |
Carotenes | nr | nr |
β-carotene | 0.007–7.18 | 0.02–2.5 |
Xanthophylls | nr | 2.5–4.7 |
Astaxanthin | 0.25–6.8 | 0.095–0.72 |
Canthaxanthin | 0.67–1.17 | 0.44–0.65 |
Lutein | 0.052–13.8 | 0.12–1.03 |
Violaxanthin | 0.010–0.037 | nr |
Zeaxanthin | 0.074–7.00 | 0.028–2.0 |
Phycobiliproteins | ||
Phycocyanin | Absent | 95–251 |
2.2. Aquaculture and Aquarists
2.3. Cosmetics and Skin Care
3. Emerging and Innovative Applications
3.1. Animal Feed
3.2. Agriculture
3.3. Pharmaceutical Drugs
3.4. Wound-Healing Dressings
3.5. Overcoming Hypoxia in Tissue Engineering and Cancer Therapies
3.5.1. Tissue Engineering
3.5.2. Anti-Cancer Therapy
3.6. Photosensitizers
3.6.1. Antimicrobial and Anticancer Photodynamic Therapy
3.6.2. Dye-Sensitized Solar Cells
3.7. Microrobots
3.8. Biofuels
3.9. Microalgae-Assisted Microbial Fuel Cells
3.10. Biopolymers
3.11. Bioremediation
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Company (Country) | Website | Chlorella | Spirulina |
---|---|---|---|
Europe | |||
Clos Sainte Aurore (France) | https://www.spirulinecsa.com/fr/ (accessed on 11 May 2023) | X | |
SPIFORM (France) | https://www.spiform.fr/ (accessed on 11 May 2023) | X | |
Spirulina La Capitelle (France) | https://spirulinelacapitelle.com/ (accessed on 12 May 2023) | X | |
AlgoSource (France) | https://algosource.com/ (accessed on 12 May 2023) | X | X |
Roquette Klötze GmbH & Co. KG (Germany) | https://www.algomed.de (accessed on 12 May 2023) | X | X |
BlueBioTech Group (Germany) | https://bluebiotech-international.com/en/ (accessed on 12 May 2023) | X | |
Sea & Sun Organic GmbH ((Germany) | https://www.sea-sun-organic.com/en/home/ (accessed on 13 May 2023) | X | |
Allmicroalgae Natural Products S.A. (Portugal) | https://www.allmicroalgae.com/en/ (accessed on 13 May 2023) | X | X |
Necton S.A. (Portugal) | https://phytobloom.com/ (accessed on 13 May 2023) | X | |
Aliga Microalgae (Denmark) + Duplaco B.V. | https://www.aliga.dk/ (accessed on 13 May 2023) | X | X |
Algalimento SL (Spain) | https://www.algalimento.com/ (accessed on 13 May 2023) | X | |
Givaudan SA (Switzerland) | https://www.givaudan.com/ (accessed on 21 May 2023) | X | |
Alver World SA (Switzerland) | https://www.alver.ch/ (accessed on 22 May 2023) | X | |
Algorigin (Switzerland) | https://eu.algorigin.com/ (accessed on 23 May 2023) | X | |
Phycom (Netherlands) | https://phycom.eu/ (accessed on 13 May 2023) | X | |
America | |||
Spirulina Viva (Mexico) | https://www.spirulinasource.com/slideshows/spirulina-viva/ (accessed on 23 May 2023) | X | |
Cyanotech Corporation (U.S.) | https://www.cyanotech.com/ (accessed on 13 May 2023) | X | |
STAUBER (U.S.) | https://www.stauberusa.com/ (accessed on 1 May 2023) | X | |
Pond Technologies Inc. (Canada) | https://pondtech.com/ (accessed on 12 May 2023) | X | |
Flora Manufacturing & Distributing Ltd. (Canada) | https://www.florahealth.com/ (accessed on 9 May 2023) | X | X |
Asia | |||
Aurospirul (India) | https://www.aurospirul.com/ (accessed on 13 May 2023) | X | |
Seagrass Tech Private Limited (India) | https://seagrasstech.com/ (accessed on 7 May 2023) | X | |
E.I.D.—Parry (India) Limited (India) | https://www.eidparry.com/ (accessed on 7 May 2023) | X | X |
DIC Corporation (Japan) | https://www.dic-global.com/en/ (accessed on 8 May 2023) | X | |
Sun Chlorella Corporation (Japan) | https://www.sunchlorella.com/ (accessed on 13 May 2023) | X | |
Far East Bio-Tec. Co., Ltd. (FEBICO) (Taiwan) | https://www.febico.com/en/index.html (accessed on 8 May 2023) | X | X |
Taiwan Chlorella Manufacturing Company (Taiwan) | https://www.taiwanchlorella.com/ (accessed on 8 May 2023) | X | X |
Vedan Biotechnology Corporation (Taiwan) | https://vedanbio.en.taiwantrade.com/ (accessed on 2 May 2023) | X | X |
Taiwan Wilson Enterprise Inc. (Taiwan) | https://www.wilson-groups.com/ (accessed on 13 May 2023) | X | X |
Fuqing King Dnarmsa Spirulina Co., Ltd. (China) | X | X | |
C.B.N. Bio-engineering Co., Ltd. (China) | X | ||
Yunnan Green A Biological Project Co., Ltd. (China) | http://www.yngreena.com/ (accessed on 20 May 2023) | X | X |
Jiangshan Comp Spirulina Co., Ltd. (China) | X | ||
Inner Mongolia Rejuve Biotech Co., Ltd. (China) | X | ||
Zhejiang Binmei Biotechnology Co., Ltd. (China) | https://www.binmeibio.com/ (accessed on 5 May 2023) | X | |
Bluetec Naturals Co., Ltd. (China) | http://www.bluetecnaturals.com/ (accessed on 13 May 2023) | X | |
Tianjin Norland Biotech Co., Ltd. (China) | https://m.norlandbiotech.com/ (accessed on 20 May 2023) | X | X |
Hangzhou Ouqi Food Co., Ltd. (China) | X | ||
Ordos Xinyuli Spirulina Industry Group Co., Ltd. (China) | X | ||
Qingdao Haizhijiao Biotechnology Co., Ltd. (China) | http://qingdaohaizhijiao.globalchemmade.com/ (accessed on 1 May 2023) | X | X |
Nutragreenlife Biotechnology Co. Ltd. (China) | https://www.nutragreen-extracts.com/ (accessed on 1 May 2023) | X | X |
Xi’an Fengzu Biological Technology Co., Ltd. (China) | https://www.fzbiotech.com/ (accessed on 3 May 2023) | X | |
Dongtai City Spirulina Bio-engineering Co., Ltd. (China) | X | ||
Zhejiang Comp Spirulina Co., Ltd. (China) | X | ||
Gong Bih Enterprise Co., Ltd. (China) | http://www.gongbih.com/index.aspx?lang=en (accessed on 3 May 2023) | X | |
JUNE Spirulina (Myanmar) | https://www.junespirulina.com/ (accessed on 13 May 2023) | X | |
Oceania | |||
Plankton Australia Pty Limited (Australia) | http://www.planktonaustralia.com/ (accessed on 13 May 2023) | X |
References
- Abreu, A.P.; Morais, R.C.; Teixeira, J.A.; Nunes, J. A Comparison between Microalgal Autotrophic Growth and Metabolite Accumulation with Heterotrophic, Mixotrophic and Photoheterotrophic Cultivation Modes. Renew. Sustain. Energy Rev. 2022, 159, 112247. [Google Scholar] [CrossRef]
- Vieira, V.; Cadoret, V.; Acien, J.-P.; Benemann, F.G.; Vieira, V.V.; Cadoret, J.-P.; Acien, F.G.; Benemann, J. Clarification of Most Relevant Concepts Related to the Microalgae Production Sector. Processes 2022, 10, 175. [Google Scholar] [CrossRef]
- Benemann, J.R.; Woertz, I.; Lundquist, T. Autotrophic Microalgae Biomass Production: From Niche Markets to Commodities. Ind. Biotechnol. 2018, 14, 3–10. [Google Scholar] [CrossRef]
- Meticulous Market Research Pvt. Ltd. Chlorella Market by Technology (Open Pond), by Product Type (Extract, Capsules) by Source (Chlorella Vulgaris, Chlorella Pyrenoidosa or Sorokiniana) by Application (Nutraceutical, Food and Beverages, Animal Feed), Geography—Global Forecast to 20288; Meticulous Research: Maharashtra, India, 2022. [Google Scholar]
- Meticulous Market Research Pvt. Ltd. Spirulina Market by Product Type (Powder, Tablets, Capsules, Flakes, Phycocyanin), Distribution Channel (Business Channel, Consumer Channel), Application (Nutraceuticals, Food & Beverages, Animal Feed, Cos-Metics, Agriculture)—Global Forecast to 2030; Meticulous Research: Maharashtra, India, 2023. [Google Scholar]
- Allmicroalgae Cultivating Sustainable Microalgae Solutions—Allmicralgae. Available online: https://www.allmicroalgae.com/en/our-process-microalgae/ (accessed on 19 October 2022).
- Duplaco, B.V. Duplaco Netherlands—Sustainable Algae Farm. Available online: https://duplaco.com/ (accessed on 19 October 2022).
- Fermentalg Our Processes. Available online: https://www.fermentalg.com/science/processes/ (accessed on 4 May 2021).
- Phycom Phycom. Available online: https://phycom.eu/ (accessed on 19 October 2022).
- Roquette Klötze GmbH & Co. KG ALGOMED® Chlorella Naturally Grown in Germany. Available online: https://www.algomed.de/algenfarm/anbau/ (accessed on 19 October 2022).
- AlgoSource la Culture des Microalgues. Available online: https://algosource.com/la-culture-de-microalgues/ (accessed on 23 May 2023).
- Spiform la Production. Available online: https://www.spiform.fr/production/ (accessed on 23 May 2023).
- Cyanotech Corporation Spirulina Process—Cyanotech. Available online: https://www.cyanotech.com/spirulina/spirulina-process/ (accessed on 23 May 2023).
- Guiry, M.D. Chlorella Beyerinck [Beijerinck], 1890, Nom. Cons. AlgaeBase. Available online: https://www.algaebase.org/search/genus/detail/?genus_id=43426 (accessed on 7 November 2022).
- Champenois, J.; Marfaing, H.; Pierre, R. Review of the Taxonomic Revision of Chlorella and Consequences for Its Food Uses in Europe. J. Appl. Phycol. 2015, 27, 1845–1851. [Google Scholar] [CrossRef]
- Sili, C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II. Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2012; p. 760. [Google Scholar]
- Grosshagauer, S.; Kraemer, K.; Somoza, V. The True Value of Spirulina. J. Agric. Food Chem. 2020, 68, 4109–4115. [Google Scholar] [CrossRef] [PubMed]
- Wild, K.J.; Trautmann, A.; Katzenmeyer, M.; Steingaß, H.; Posten, C.; Rodehutscord, M. Chemical Composition and Nutritional Characteristics for Ruminants of the Microalgae Chlorella Vulgaris Obtained Using Different Cultivation Conditions. Algal Res. 2019, 38, 101385. [Google Scholar] [CrossRef]
- Sánchez-Bayo, A.; Morales, V.; Rodríguez, R.; Vicente, G.; Bautista, L.F. Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules 2020, 25, 2834. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Quek, S.-Y.; Staehler, K.; Nalder, T.; Packer, M.A. Changes in Oil Content, Lipid Class and Fatty Acid Composition of the Microalga Chaetoceros Calcitrans over Different Phases of Batch Culture. Aquac. Res. 2014, 45, 1634–1647. [Google Scholar] [CrossRef]
- Ötleş, S.; Pire, R. Fatty Acid Composition of Chlorella and Spirulina Microalgae Species. J. AOAC Int. 2001, 84, 1708–1714. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, Composition, Production, Processing and Applications of Chlorella Vulgaris: A Review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Spiform Sa Composition & Ses Bienfaits. Available online: https://www.spiform.fr/sa-composition-et-ses-bienfaits/ (accessed on 23 May 2023).
- Algenfarm Klötze GmbH & Co. KG Chlorella: Profile, Information, Things Worth Knowing. Available online: https://www.algomed.de/chlorella/ (accessed on 23 May 2023).
- Alfadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A.; Rohn, S.; Alfadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; et al. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.T.; Shariff, M.; Yusoff, F.; Goh, Y.M.; Banerjee, S. Applications of Microalga Chlorella Vulgaris in Aquaculture. Rev. Aquac. 2020, 12, 328–346. [Google Scholar] [CrossRef]
- Lupatini, A.L.; Colla, L.M.; Canan, C.; Colla, E. Potential Application of Microalga Spirulina Platensis as a Protein Source. J. Sci. Food Agric. 2017, 97, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Tiong, I.; Ru, K.; Sung, Y.Y.; Jusoh, M.; Effendy, M.; Wahid, A.; Nagappan, T.; Sung, Y. Chlorella Vulgaris: A Perspective on Its Potential for Combining High Biomass with High Value Bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Allmicroalgae Food Ingredients & Supplements. Available online: https://www.allmicroalgae.com/en/food-ingredients-supplements/ (accessed on 23 May 2023).
- Gentscheva, G.; Nikolova, K.; Panayotova, V.; Peycheva, K.; Makedonski, L.; Slavov, P.; Radusheva, P.; Petrova, P.; Yotkovska, I. Application of Arthrospira Platensis for Medicinal Purposes and the Food Industry: A Review of the Literature. Life 2023, 13, 845. [Google Scholar] [CrossRef]
- AlgoSource Spirugrass, Lipidic Fraction of Spirulina Biorefining. Available online: https://algosource.com/nutraceutics/spirugrass/?lang=en/ (accessed on 26 May 2023).
- AlgoSource Spirulysat, Aequous Bioactive Extract of Spirulina. Available online: https://algosource.com/nutraceutics/spirulysat/?lang=en/ (accessed on 26 May 2023).
- Bošković Cabrol, M.; Glišić, M.; Baltić, M.; Jovanović, D.; Silađi, Č.; Simunović, S.; Tomašević, I.; Raymundo, A. White and Honey Chlorella Vulgaris: Sustainable Ingredients with the Potential to Improve Nutritional Value of Pork Frankfurters without Compromising Quality. Meat Sci. 2023, 198, 109123. [Google Scholar] [CrossRef]
- Allmicroalgae Honey & White Chlorella Vulgaris. Available online: https://www.allmicroalgae.com/en/2020/05/19/honey-white-chlorella-vulgaris/ (accessed on 25 May 2023).
- Aliga Our Food Ingredients. Available online: https://www.aliga.dk/products (accessed on 4 June 2023).
- Alver World SA Golden Chlorella. Available online: https://www.alver.ch/golden-chlorella-en/ (accessed on 4 June 2023).
- Meticulous Research Phycocyanin Market by Form (Powder, Liquid), Grade (Food Grade Phycocyanin, Cosmetic Grade Phycocyanin, Reagent and Analytical Grade Phycocyanin), Application (Food and Beverages, Pharmaceuticals and Nutraceuticals), Geography—Global Forecast to 2030. Available online: https://www.meticulousresearch.com/product/phycocyanin-market-5126 (accessed on 25 May 2023).
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Enhancing Digestibility of Chlorella Vulgaris Biomass in Monogastric Diets: Strategies and Insights. Animals 2023, 13, 1017. [Google Scholar] [CrossRef]
- Hynstova, V.; Sterbova, D.; Klejdus, B.; Hedbavny, J.; Huska, D.; Adam, V. Separation, Identification and Quantification of Carotenoids and Chlorophylls in Dietary Supplements Containing Chlorella Vulgaris and Spirulina Platensis Using High Performance Thin Layer Chromatography. J. Pharm. Biomed. Anal. 2018, 148, 108–118. [Google Scholar] [CrossRef]
- Cha, K.H.; Lee, H.J.; Koo, S.Y.; Song, D.-G.; Lee, D.-U.; Pan, C.-H. Optimization of Pressurized Liquid Extraction of Carotenoids and Chlorophylls from Chlorella Vulgaris. J. Agric. Food Chem. 2010, 58, 793–797. [Google Scholar] [CrossRef]
- Orosa, M.; Valero, J.F.; Herrero, C.; Abalde, J. Comparison of the Accumulation of Astaxanthin in Haematococcus Pluvialis and Other Green Microalgae under N-Starvation and High Light Conditions. Biotechnol. Lett. 2001, 23, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- de-Bashan, L.E.; Bashan, Y.; Moreno, M.; Lebsky, V.K.; Bustillos, J.J. Increased Pigment and Lipid Content, Lipid Variety, and Cell and Population Size of the Microalgae Chlorella spp. When Co-Immobilized in Alginate Beads with the Microalgae-Growth-Promoting Bacterium Azospirillum Brasilense. Can. J. Microbiol. 2002, 48, 514–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, L.E.; Bashan, Y. Increased Growth of the Microalga Chlorella Vulgaris When Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum Brasilense. Appl. Environ. Microbiol. 2000, 66, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Lin, Y.; He, M.; Gong, Y.; Huang, J. Induced High-Yield Production of Zeaxanthin, Lutein, and β-Carotene by a Mutant of Chlorella Zofingiensis. J. Agric. Food Chem. 2018, 66, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; Sales, H.; Pontes, R.; Nunes, J.; Gouveia, I. Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants 2023, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Nerantzis, E. Microalgae for High-Value Compounds and Biofuels Production: A Review with Focus on Cultivation under Stress Conditions. Biotechnol. Adv. 2013, 31, 1532–1542. [Google Scholar]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- JBL PRONOVO Green Food. Available online: https://www.jbl.de/en/products/group/8893/pronovo-green-food?country=gb (accessed on 29 May 2023).
- sera GmbH Sera Spirulina Tabs Nature|Sera. Available online: https://www.sera.de/en/product/freshwater-aquarium/sera-spirulina-tabs-nature/ (accessed on 29 May 2023).
- Siddik, M.A.B.; Sørensen, M.; Islam, S.M.M.; Saha, N.; Rahman, M.A.; Francis, D.S. Expanded Utilisation of Microalgae in Global Aquafeeds. Rev. Aquac. 2023, 1–28, early view. [Google Scholar] [CrossRef]
- Alagawany, M.; Taha, A.E.; Noreldin, A.; El-Tarabily, K.A.; Abd El-Hack, M.E. Nutritional Applications of Species of Spirulina and Chlorella in Farmed Fish: A Review. Aquaculture 2021, 542, 736841. [Google Scholar] [CrossRef]
- Napolitano, G.; Venditti, P.; Agnisola, C.; Quartucci, S.; Fasciolo, G.; Muscari Tomajoli, M.T.; Geremia, E.; Catone, C.M.; Ulgiati, S. Towards Sustainable Aquaculture Systems: Biological and Environmental Impact of Replacing Fishmeal with Arthrospira Platensis (Nordstedt) (Spirulina). J. Clean. Prod. 2022, 374, 133978. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Zhang, P. Effect of Spirulina Meal Supplementation on Growth Performance and Feed Utilization in Fish and Shrimp: A Meta-Analysis. Aquac. Nutr. 2022, 2022, 8517733. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; El-Ashram, S.; Yilmaz, S.; Naiel, M.A.E.; Abdul Kari, Z.; Hamid, N.K.A.; Dawood, M.A.O.; Nowosad, J.; Kucharczyk, D. The Effectiveness of Arthrospira Platensis and Microalgae in Relieving Stressful Conditions Affecting Finfish and Shellfish Species: An Overview. Aquac. Rep. 2022, 24, 101135. [Google Scholar] [CrossRef]
- de Carvalho, C.C.; Caramujo, M.J. Carotenoids in Aquatic Ecosystems and Aquaculture: A Colorful Business with Implications for Human Health. Front. Mar. Sci. 2017, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, D.; He, N.; Khoo, K.S.; Ng, E.-P.; Chew, K.W.; Ling, T.C. Application Progress of Bioactive Compounds in Microalgae on Pharmaceutical and Cosmetics. Chemosphere 2022, 291, 132932. [Google Scholar] [CrossRef]
- Yarkent, Ç.; Gürlek, C.; Oncel, S.S. Potential of Microalgal Compounds in Trending Natural Cosmetics: A Review. Sustain. Chem. Pharm. 2020, 17, 100304. [Google Scholar] [CrossRef]
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Ikeda, I.K.; Sydney, E.B.; Sydney, A.C.N. Potential Application of Spirulina in Dermatology. J. Cosmet. Dermatol. 2022, 21, 4205–4214. [Google Scholar] [CrossRef]
- Luca, M.; Pappalardo, I.; Limongi, A.R.; Viviano, E.; Radice, R.P.; Todisco, S.; Martelli, G.; Infantino, V.; Vassallo, A. Lipids from Microalgae for Cosmetic Applications. Cosmetics 2021, 8, 52. [Google Scholar] [CrossRef]
- Estée Lauder Inc. Perfectionist Pro Multi-Zone Wrinkle Concentrate with Niacinamide + Chlorella | Estée Lauder Official Site. Available online: https://www.esteelauder.com/product/693/97390/product-catalog/skincare/targeted-treatment/perfectionist-pro/multi-zone-wrinkle-concentrate-with-niacinamide-chlorella?size=0.85_oz (accessed on 26 May 2023).
- Thalgo Activ Refining Blocker—Nutrition—Thalgo, Silhouette Shape & Correct, Marine-Based Slimming and Firming Products, Thalgo Spas and Salons. Available online: https://www.thalgo.co.uk/body/marine-slimming/nutrition/vt17023-activ-refining-blocker/ (accessed on 26 May 2023).
- Thalgo Energising Booster Concentrate—Spiruline Boost—Thalgo, Face, Marine-Based Beauty Products and Treatments, Thalgo Spas and Salons. Available online: https://www.thalgo.co.uk/face/spiruline-boost/vt19005-energising-booster-concentrate/ (accessed on 26 May 2023).
- Thalgo Energising Anti-Pollution Gel-Cream—Spiruline Boost—Thalgo, Face, Marine-Based Beauty Products and Treatments, Thalgo Spas and Salons. Available online: https://www.thalgo.co.uk/face/spiruline-boost/vt19006-energising-anti-pollution-gel-cream/ (accessed on 26 May 2023).
- Thalgo Energising Detoxifying Serum—Spiruline Boost—Thalgo, Face, Marine-Based Beauty Products and Treatments, Thalgo Spas and Salons. Available online: https://www.thalgo.co.uk/face/spiruline-boost/vt19007-energising-detoxifying-serum/ (accessed on 26 May 2023).
- Thalgo Energy Booster Shot Mask—Spiruline Boost—Thalgo, Face, Marine-Based Beauty Products and Treatments, Thalgo Spas and Salons. Available online: https://www.thalgo.co.uk/face/spiruline-boost/vt19025-energy-booster-shot-mask/ (accessed on 26 May 2023).
- Institut Esthederm INTENSIVE SPIRULINE SÉRUM. Available online: https://www.esthederm.fr/intensive-spiruline-serum-05v641002.html (accessed on 26 May 2023).
- Institut Esthederm INTENSIVE SPIRULINE CRÈME. Available online: https://www.esthederm.fr/intensive-spiruline-creme-05v641102.html (accessed on 26 May 2023).
- Nuxe Merveillance® LIFT | NUXE. Available online: https://www.nuxe.com/collections/merveillance-lift.list (accessed on 26 May 2023).
- Algenist BLUE ALGAE VITAMIN CTM Dark Spot Correcting Peel|Algenist®. Available online: https://www.algenist.com/products/blue-algae-vitamin-c-dark-spot-correcting-peel?_pos=1&_sid=a93ec2a8f&_ss=r (accessed on 26 May 2023).
- Algenist BLUE ALGAE VITAMIN CTM. Available online: https://www.algenist.com/pages/blue-algae-vitamin-c (accessed on 26 May 2023).
- AlgoSource SPIRUDERM®—SPIRULINA EXTRACT. Available online: https://algosource.com/cosmetics/spiruderm-spirulina-extract/?lang=en (accessed on 26 May 2023).
- Algova Chlorella Pulver—Futterzusatz Für Pferde, Hunde & Katzen. Available online: https://algova.com/en/Chlorella-Powder-Feed-Additive/CHV0005K (accessed on 27 May 2023).
- Algova Spirulina Pulver—Futterzusatz. Available online: https://algova.com/en/Spirulina-Powder-Feed-Additive/SPP0005K (accessed on 27 May 2023).
- Altmann, B.A.; Rosenau, S. Spirulina as Animal Feed: Opportunities and Challenges. Foods 2022, 11, 965. [Google Scholar] [CrossRef]
- El-Shall, N.A.; Jiang, S.; Farag, M.R.; Azzam, M.; Al-Abdullatif, A.A.; Alhotan, R.; Dhama, K.; Hassan, F.U.; Alagawany, M. Potential of Spirulina Platensis as a Feed Supplement for Poultry to Enhance Growth Performance and Immune Modulation. Front. Immunol. 2023, 14, 1072787. [Google Scholar] [CrossRef]
- El Basuini, M.F.; Khattab, A.A.A.; Hafsa, S.H.A.; Teiba, I.I.; Elkassas, N.E.M.; El-Bilawy, E.H.; Dawood, M.A.O.; Atia, S.E.S. Impacts of Algae Supplements (Arthrospira & Chlorella) on Growth, Nutrient Variables, Intestinal Efficacy, and Antioxidants in New Zealand White Rabbits. Sci. Rep. 2023, 13, 7891. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, Soil and Plants: A Critical Review of Microalgae as Renewable Resources for Agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- González-Pérez, B.K.; Rivas-Castillo, A.M.; Valdez-Calderón, A.; Gayosso-Morales, M.A. Microalgae as Biostimulants: A New Approach in Agriculture. World J. Microbiol. Biotechnol. 2022, 38, 4. [Google Scholar] [CrossRef]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Suchithra, M.R.; Muniswami, D.M.; Sri, M.S.; Usha, R.; Rasheeq, A.A.; Preethi, B.A.; Dineshkumar, R. Effectiveness of Green Microalgae as Biostimulants and Biofertilizer through Foliar Spray and Soil Drench Method for Tomato Cultivation. S. Afr. J. Bot. 2022, 146, 740–750. [Google Scholar] [CrossRef]
- Refaay, D.A.; El-Marzoki, E.M.; Abdel-Hamid, M.I.; Haroun, S.A. Effect of Foliar Application with Chlorella Vulgaris, Tetradesmus Dimorphus, and Arthrospira Platensis as Biostimulants for Common Bean. J. Appl. Phycol. 2021, 33, 3807–3815. [Google Scholar] [CrossRef]
- La Bella, E.; Baglieri, A.; Rovetto, E.I.; Stevanato, P.; Puglisi, I. Foliar Spray Application of Chlorella Vulgaris Extract: Effect on the Growth of Lettuce Seedlings. Agronomy 2021, 11, 308. [Google Scholar] [CrossRef]
- Martini, F.; Beghini, G.; Zanin, L.; Varanini, Z.; Zamboni, A.; Ballottari, M. The Potential Use of Chlamydomonas Reinhardtii and Chlorella Sorokiniana as Biostimulants on Maize Plants. Algal Res. 2021, 60, 102515. [Google Scholar] [CrossRef] [PubMed]
- Gitau, M.M.; Farkas, A.; Balla, B.; Ördög, V.; Futó, Z.; Maróti, G. Strain-Specific Biostimulant Effects of Chlorella and Chlamydomonas Green Microalgae on Medicago Truncatula. Plants 2021, 10, 1060. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Duraimurugan, M.; Sharmiladevi, N.; Lakshmi, L.P.; Rasheeq, A.A.; Arumugam, A.; Sampathkumar, P. Microalgal Liquid Biofertilizer and Biostimulant Effect on Green Gram (Vigna radiata L.) an Experimental Cultivation. Biomass Convers. Biorefinery 2022, 12, 3007–3027. [Google Scholar] [CrossRef]
- Arahou, F.; Lijassi, I.; Wahby, A.; Rhazi, L.; Arahou, M.; Wahby, I. Spirulina-Based Biostimulants for Sustainable Agriculture: Yield Improvement and Market Trends. Bioenergy Res. 2022. [Google Scholar] [CrossRef]
- Dmytryk, A.; Samoraj, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Bioactive Fatty Acids and Compounds from Spirulina (Arthrospira) Platensis: Potential as Biostimulants for Plant Growth. Sustain. Chem. Pharm. 2022, 30, 100899. [Google Scholar] [CrossRef]
- Ismaiel, S.A.R.; Khedr, F.G.; Metwally, A.G.; Soror, A.F.S. Effect of Biostimulants on Soil Characteristics, Plant Growth and Yield of Pea (Pisum sativum L.) under Field Conditions. Plant Sci. Today 2022, 9, 650–657. [Google Scholar] [CrossRef]
- Saadat, E.; Ghorbanzadeh, N.; Farhangi, M.B.; Fazeli Sangani, M. Potential Application of Chlorella sp. Biomass Cultivated in Landfill Leachate as Agricultural Fertilizer. Arch. Agron. Soil Sci. 2023, 69, 1193–1208. [Google Scholar] [CrossRef]
- Viegas, C.; Gouveia, L.; Gonçalves, M. Evaluation of Microalgae as Bioremediation Agent for Poultry Effluent and Biostimulant for Germination. Environ. Technol. Innov. 2021, 24, 102048. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.D.A.A.; Pedro, A.C.; Rubio, F.T.V.; Branco, I.G.; Haminiuk, C.W.I. Functional Properties of Bioactive Compounds from Spirulina spp.: Current Status and Future Trends. Food Chem. Mol. Sci. 2022, 5, 100134. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.R.O.B.; Silva, G.M.; Silva, A.L.F.; Lima, L.R.A.; Bezerra, R.P.; Marques, D.A.V. Bioactive Compounds of Arthrospira spp. (Spirulina) with Potential Anticancer Activities: A Systematic Review. ACS Chem. Biol. 2021, 16, 2057–2067. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Li, J.; Zhong, H.; Xie, J.; Zhang, P.; Lu, Q.; Li, J.; Xu, P.; Chen, P.; Leng, L.; et al. Anti-Oxidation Properties and Therapeutic Potentials of Spirulina. Algal Res. 2021, 55, 102240. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Z.; Gerken, H.; Liu, Z.; Jiang, Y.; Chen, F. Chlorella Zofingiensis as an Alternative Microalgal Producer of Astaxanthin: Biology and Industrial Potential. Mar. Drugs 2014, 12, 3487–3515. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, K.; Kowshik, J.; Kishore, T.K.K.; Baba, A.B.; Nagini, S. Astaxanthin Inhibits NF-ΚB and Wnt/β-Catenin Signaling Pathways via Inactivation of Erk/MAPK and PI3K/Akt to Induce Intrinsic Apoptosis in a Hamster Model of Oral Cancer. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 4433–4444. [Google Scholar] [CrossRef]
- Gardeva, E.; Toshkova, R.; Minkova, K.; Gigova, L. Cancer Protective Action of Polysaccharide, Derived from Red Microalga Porphyridium Cruentum —A Biological Background. Biotechnol. Biotechnol. Equip. 2009, 23, 783–787. [Google Scholar] [CrossRef]
- Khavari, F.; Saidijam, M.; Taheri, M.; Nouri, F. Microalgae: Therapeutic Potentials and Applications. Mol. Biol. Rep. 2021, 48, 4757–4765. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Li, H.; Wei, Z.; Lv, K.; Gao, C.; Liu, Y.; Zhao, L. Isolation, Structures and Biological Activities of Polysaccharides from Chlorella: A Review. Int. J. Biol. Macromol. 2020, 163, 2199–2209. [Google Scholar] [CrossRef] [PubMed]
- Raya, I.; Anshar, A.M.; Mayasari, E.; Dwiyana, Z.; Asdar, M. Chorella Vulgaris and Spirulina Platensis : Concentration of Protein, Docosahexaenoic Acid Chorella (DHA), Eicosapentaenoic Acid (EPA) and Variation Concentration of Maltodextrin via Microencapsulation Method. Int. J. Appl. Chem. 2016, 12, 539–548. [Google Scholar]
- Santos-Sánchez, N.F.; Valadez-Blanco, R.; Hernández-Carlos, B.; Torres-Ariño, A.; Guadarrama-Mendoza, P.C.; Salas-Coronado, R. Lipids Rich in ω-3 Polyunsaturated Fatty Acids from Microalgae. Appl. Microbiol. Biotechnol. 2016, 100, 8667–8684. [Google Scholar] [CrossRef]
- Andrade, A.F.; Porto, A.L.F.; Bezerra, R.P. Photosynthetic Microorganisms and Their Bioactive Molecules as New Product to Healing Wounds. Appl. Microbiol. Biotechnol. 2022, 106, 497–504. [Google Scholar] [CrossRef]
- Samarakoon, K.; Jeon, Y.-J. Bio-Functionalities of Proteins Derived from Marine Algae—A Review. Food Res. Int. 2012, 48, 948–960. [Google Scholar] [CrossRef]
- Dawiec-Liśniewska, A.; Podstawczyk, D.; Bastrzyk, A.; Czuba, K.; Pacyna-Iwanicka, K.; Okoro, O.V.; Shavandi, A. New Trends in Biotechnological Applications of Photosynthetic Microorganisms. Biotechnol. Adv. 2022, 59, 107988. [Google Scholar] [CrossRef]
- Martins, R.; Mouro, C.; Pontes, R.; Nunes, J.; Gouveia, I. Natural Deep Eutectic Solvent Extraction of Bioactive Pigments from Spirulina Platensis and Electrospinning Ability Assessment. Polymers 2023, 15, 1574. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Ramani, M.; Paray, B.A.; Pasupuleti, M.; Al-Sadoon, M.K.; Alagumuthu, T.S.; Al-Mfarij, A.R.; Arshad, A.; Mala, K.; Arockiaraj, J. Arthrospira Platensis Transglutaminase Derived Antioxidant Peptide-Packed Electrospun Chitosan/ Poly (Vinyl Alcohol) Nanofibrous Mat Accelerates Wound Healing, In Vitro, via Inducing Mouse Embryonic Fibroblast Proliferation. Colloids Surf. B Biointerfaces 2020, 193, 111124. [Google Scholar] [CrossRef]
- Jung, S.M.; Min, S.K.; Lee, H.C.; Kwon, Y.S.; Jung, M.H.; Shin, H.S. Spirulina -PCL Nanofiber Wound Dressing to Improve Cutaneous Wound Healing by Enhancing Antioxidative Mechanism. J. Nanomater. 2016, 2016, 6135727. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Kim, H.J.; Jang, J.Y.; Shin, H.S. Development of Coaxial Alginate-PCL Nanofibrous Dressing for Controlled Release of Spirulina Extract. J. Biomater. Sci. Polym. Ed. 2018, 29, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Reza Farahpour, M.; Amjadi, S.; Mohammadi, M.; Hamishehkar, H. Nanoliposomal Peptides Derived from Spirulina Platensis Protein Accelerate Full-Thickness Wound Healing. Int. J. Pharm. 2023, 630, 122457. [Google Scholar] [CrossRef] [PubMed]
- Refai, H.; El-Gazar, A.A.; Ragab, G.M.; Hassan, D.H.; Ahmed, O.S.; Hussein, R.A.; Shabana, S.; Waffo-Téguo, P.; Valls, J.; Al-Mokaddem, A.K.; et al. Enhanced Wound Healing Potential of Spirulina Platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model. Mar. Drugs 2023, 21, 149. [Google Scholar] [CrossRef] [PubMed]
- Edirisinghe, S.L.; Rajapaksha, D.C.; Nikapitiya, C.; Oh, C.; Lee, K.-A.; Kang, D.-H.; De Zoysa, M. Spirulina Maxima Derived Marine Pectin Promotes the In Vitro and In Vivo Regeneration and Wound Healing in Zebrafish. Fish. Shellfish. Immunol. 2020, 107, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, P.; Li, A.; Jin, X.; Zhang, Z.; Lv, H. Chlorella sp.-Ameliorated Undesirable Microenvironment Promotes Diabetic Wound Healing. Acta Pharm. Sin. B 2023, 13, 410–424. [Google Scholar] [CrossRef]
- Agarwal, A.; Kumar, A.; Garg, P.; Chakraborty, A.; Verma, R.; Sarwat, M.; Gupta, A.; Sasmal, P.K.; Verma, Y.K.; Chowdhury, C.; et al. Algal Biomass-Loaded Hydrogel Scaffolds as a Biomimetic Platform with Antibacterial and Wound Healing Activities. ACS Appl. Polym. Mater. 2022, 4, 5800–5812. [Google Scholar] [CrossRef]
- Melo, R.G.; Andrade, A.F.; Bezerra, R.P.; Viana Marques, D.D.A.; Silva, V.A.; Paz, S.T.; Lima Filho, J.L.; Porto, A.L.F. Hydrogel-Based Chlorella Vulgaris Extracts: A New Topical Formulation for Wound Healing Treatment. J. Appl. Phycol. 2019, 31, 3653–3663. [Google Scholar] [CrossRef]
- He, R.; Zhou, D.; Xiao, L.; Li, Y. Chlorella Vulgaris Extract-Decorated Gold Nanoparticle Hybridized Antimicrobial Hydrogel as a Potential Dressing. Gels 2022, 9, 11. [Google Scholar] [CrossRef]
- Machmud, E.; Ruslin, M.; Waris, R.; Asse, R.A.; Qadafi, A.M.; Achmad, H. Effect of the Application of Chlorella Vulgaris Ointment to the Number of Fibroblast Cells as an Indicator of Wound Healing in the Soft Tissue of Pig Ears. Pesquisa Brasileira em Odontopediatria e Clínica Integrada 2020, 20, e5012. [Google Scholar] [CrossRef]
- Cui, H.; Su, Y.; Wei, W.; Xu, F.; Gao, J.; Zhang, W. How Microalgae Is Effective in Oxygen Deficiency Aggravated Diseases? A Comprehensive Review of Literature. Int. J. Nanomed. 2022, 17, 3101–3122. [Google Scholar] [CrossRef]
- Agarwal, T.; Costantini, M.; Maiti, T.K. Recent Advances in Tissue Engineering and Anticancer Modalities with Photosynthetic Microorganisms as Potent Oxygen Generators. Biomed. Eng. Adv. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Bloch, K.; Papismedov, E.; Yavriyants, K.; Vorobeychik, M.; Beer, S.; Vardi, P. Photosynthetic Oxygen Generator for Bioartificial Pancreas. Tissue Eng. 2006, 12, 337–344. [Google Scholar] [CrossRef]
- Yamaoka, I.; Kikuchi, T.; Arata, T.; Kobayashi, E. Organ Preservation Using a Photosynthetic Solution. Transplant. Res. 2012, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, E.; Xiao, T.; Tan, Y.; Zhou, X.; Li, Y.; Wang, X.; Zhang, K.; Ou, C.; Zhang, J.; Li, Z.; et al. Separable Microneedles with Photosynthesis-Driven Oxygen Manufactory for Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 7725–7734. [Google Scholar] [CrossRef]
- Wang, Z.; Kwong, C.H.T.; Zhao, H.; Ding, Y.-F.; Gao, C.; Zhang, D.; Cheng, Q.; Wei, J.; Zhang, Q.; Wang, R. Microalgae Microneedle Supplies Oxygen for Antiphotoaging Treatment. ACS Appl. Bio Mater. 2023. [Google Scholar] [CrossRef]
- Chen, G.; Wang, F.; Zhang, X.; Shang, Y.; Zhao, Y. Living Microecological Hydrogels for Wound Healing. Sci. Adv. 2023, 9, eadg3478. [Google Scholar] [CrossRef]
- Ortega, J.S.; Corrales-Orovio, R.; Ralph, P.; Egaña, J.T.; Gentile, C. Photosynthetic Microorganisms for the Oxygenation of Advanced 3D Bioprinted Tissues. Acta Biomater. 2022, 165, 180–196. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Yu, Y.; Zhao, Y. In Situ 3D Bioprinting Living Photosynthetic Scaffolds for Autotrophic Wound Healing. Research 2022, 2022, 9794745. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, Y.; Li, H.; Chen, H.; Yuan, Z. Recent Advances in in Situ Oxygen-Generating and Oxygen-Replenishing Strategies for Hypoxic-Enhanced Photodynamic Therapy. Biomater. Sci. 2022, 10, 51–84. [Google Scholar] [CrossRef]
- Han, D.; Zhang, X.; Ma, Y.; Yang, X.; Li, Z. The Development of Live Microorganism-Based Oxygen Shuttles for Enhanced Hypoxic Tumor Therapy. Mater. Today Bio 2023, 18, 100517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.-J.; Xing, L.; Fan, Y.-T.; Cui, P.-F.; Jiang, H.-L. Light Triggered Oxygen-Affording Engines for Repeated Hypoxia-Resistant Photodynamic Therapy. J. Control. Release 2019, 307, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, H.; Guo, Y.; Zai, W.; Li, X.; Xiong, W.; Zhao, X.; Yao, Y.; Hu, Y.; Zou, Z.; et al. Photosynthetic Microorganisms Coupled Photodynamic Therapy for Enhanced Antitumor Immune Effect. Bioact. Mater. 2022, 12, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, Y.; Wang, C.; Jiang, X.; Liu, H.; Yuan, A.; Yan, J.; Hu, Y.; Wu, J. Light-Controlled Oxygen Production and Collection for Sustainable Photodynamic Therapy in Tumor Hypoxia. Biomaterials 2021, 269, 120621. [Google Scholar] [CrossRef]
- Aziz, B.; Aziz, I.; Khurshid, A.; Raoufi, E.; Esfahani, F.N.; Jalilian, Z.; Mozafari, M.R.; Taghavi, E.; Ikram, M. An Overview of Potential Natural Photosensitizers in Cancer Photodynamic Therapy. Biomedicines 2023, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Barsanti, L.; Gualtieri, P. Algae—Anatomy, Biochemistry, and Biotechnology, 2nd ed.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Huis in ‘t Veld, R.V.; Heuts, J.; Ma, S.; Cruz, L.J.; Ossendorp, F.A.; Jager, M.J. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023, 15, 330. [Google Scholar] [CrossRef]
- Songca, S.P.; Adjei, Y. Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int. J. Mol. Sci. 2022, 23, 3209. [Google Scholar] [CrossRef]
- Polat, E.; Kang, K. Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines 2021, 9, 584. [Google Scholar] [CrossRef]
- Suvorov, N.; Pogorilyy, V.; Diachkova, E.; Vasil’ev, Y.; Mironov, A.; Grin, M. Derivatives of Natural Chlorophylls as Agents for Antimicrobial Photodynamic Therapy. Int. J. Mol. Sci. 2021, 22, 6392. [Google Scholar] [CrossRef]
- Pucci, C.; Martinelli, C.; Degl’Innocenti, A.; Desii, A.; De Pasquale, D.; Ciofani, G. Light-Activated Biomedical Applications of Chlorophyll Derivatives. Macromol. Biosci. 2021, 21, 2100181. [Google Scholar] [CrossRef]
- Bouramtane, S.; Bretin, L.; Pinon, A.; Leger, D.; Liagre, B.; Perez, D.D.S.; Launay, Y.; Brégier, F.; Sol, V.; Chaleix, V. Acetylxylan-pheophorbide-a Nanoparticles Designed for Tumor-targeted Photodynamic Therapy. J. Appl. Polym. Sci. 2021, 138, 50799. [Google Scholar] [CrossRef]
- Pandurang, T.P.; Kumar, B.; Verma, N.; Dastidar, D.G.; Yamada, R.; Nishihara, T.; Tanabe, K.; Kumar, D. Synthesis of Red-Light-Responsive Pheophorbide-a Tryptamine Conjugated Photosensitizers for Photodynamic Therapy. ChemMedChem 2023, 18, e202200405. [Google Scholar] [CrossRef] [PubMed]
- Rybkin, A.Y.; Kurmaz, S.V.; Urakova, E.A.; Filatova, N.V.; Sizov, L.R.; Kozlov, A.V.; Koifman, M.O.; Goryachev, N.S. Nanoparticles of N-Vinylpyrrolidone Amphiphilic Copolymers and Pheophorbide a as Promising Photosensitizers for Photodynamic Therapy: Design, Properties and In Vitro Phototoxic Activity. Pharmaceutics 2023, 15, 273. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Mallik, S.K.; Lim, J.; Gurung, P.; Magar, T.B.T.; Kim, Y.-W. Efficient Synthesis of Chlorin E6 and Its Potential Photodynamic Immunotherapy in Mouse Melanoma by the Abscopal Effect. Int. J. Mol. Sci. 2023, 24, 3901. [Google Scholar] [CrossRef]
- Bui, H.T.H.; Thi Pham, T.; Thi Thu Nguyen, H.; Minh Do, T.; Thi Nga, V.; Bac, N.D.; Huyen, V.T.B.; Le, H.M.; Tran, Q.C. Transformation Chlorophyll a of Spirulina Platensis to Chlorin E6 Derivatives and Several Applications. Open Access Maced. J. Med. Sci. 2019, 7, 4372–4377. [Google Scholar] [CrossRef] [Green Version]
- Thapa Magar, T.B.; Shrestha, R.; Gurung, P.; Lim, J.; Kim, Y.-W. Improved Pilot-Plant-Scale Synthesis of Chlorin E6 and Its Efficacy as a Photosensitizer for Photodynamic Therapy and Photoacoustic Contrast Agent. Processes 2022, 10, 2215. [Google Scholar] [CrossRef]
- Dong, Y.; Li, G.; Wang, L.; Cao, L.; Li, Y.; Zhao, W. Anti-Tumor Evaluation of a Novel Methoxyphenyl Substituted Chlorin Photosensitizer for Photodynamic Therapy. J. Photochem. Photobiol. B 2020, 211, 112015. [Google Scholar] [CrossRef]
- Uliana, M.P.; da Cruz Rodrigues, A.; Ono, B.A.; Pratavieira, S.; de Oliveira, K.T.; Kurachi, C. Photodynamic Inactivation of Microorganisms Using Semisynthetic Chlorophyll a Derivatives as Photosensitizers. Molecules 2022, 27, 5769. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Moon, Y.-H.; Bang, I.-S.; Kim, Y.-C.; Kim, S.-A.; Ahn, S.-G.; Yoon, J.-H. Antimicrobial Effect of Photodynamic Therapy Using a Highly Pure Chlorin E6. Lasers Med. Sci. 2010, 25, 705–710. [Google Scholar] [CrossRef]
- Yao, H.; Yan, J.; Zhou, Z.; Shen, S.; Wu, Y.; Liu, P.; Zhang, H.; Wang, X. A Chlorin E6 Derivative-mediated Photodynamic Therapy for Patients with Cervical and Vaginal Low-grade Squamous Intraepithelial Lesions: A Retrospective Analysis. Transl. Biophotonics 2023, 5, e202200006. [Google Scholar] [CrossRef]
- Marques Lameirinhas, R.A.; Torres, J.P.N.; de Melo Cunha, J.P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies 2022, 15, 1823. [Google Scholar] [CrossRef]
- Yahya, M.; Bouziani, A.; Ocak, C.; Seferoğlu, Z.; Sillanpää, M. Organic/Metal-Organic Photosensitizers for Dye-Sensitized Solar Cells (DSSC): Recent Developments, New Trends, and Future Perceptions. Dyes Pigments 2021, 192, 109227. [Google Scholar] [CrossRef]
- Orona-Navar, A.; Aguilar-Hernández, I.; Nigam, K.D.P.; Cerdán-Pasarán, A.; Ornelas-Soto, N. Alternative Sources of Natural Pigments for Dye-Sensitized Solar Cells: Algae, Cyanobacteria, Bacteria, Archaea and Fungi. J. Biotechnol. 2021, 332, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Ranjitha, S.; Aroulmoji, V.; Selvankumar, T.; Sudhakar, C.; Hariharan, V. Synthesis and Development of Novel Sensitizer from Spirulina Pigment with Silver Doped TiO2 Nano Particles for Bio-Sensitized Solar Cells. Biomass Bioenergy 2020, 141, 105733. [Google Scholar] [CrossRef]
- Wang, L.; Tian, L.; Deng, X.; Zhang, M.; Sun, S.; Zhang, W.; Zhao, L. Photosensitizers from Spirulina for Solar Cell. J. Chem. 2014, 2014, 430806. [Google Scholar] [CrossRef] [Green Version]
- Amao, Y.; Komori, T. Bio-Photovoltaic Conversion Device Using Chlorine-E6 Derived from Chlorophyll from Spirulina Adsorbed on a Nanocrystalline TiO2 Film Electrode. Biosens. Bioelectron. 2004, 19, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Nurachman, Z.; Hartini, H.; Rahmaniyah, W.R.; Kurnia, D.; Hidayat, R.; Prijamboedi, B.; Suendo, V.; Ratnaningsih, E.; Panggabean, L.M.G.; Nurbaiti, S. Tropical Marine Chlorella sp. PP1 as a Source of Photosynthetic Pigments for Dye-Sensitized Solar Cells. Algal Res. 2015, 10, 25–32. [Google Scholar] [CrossRef]
- Kim, H.; Julius, A.A.; Kim, M. Obstacle Avoidance for Bacteria-Powered Microrobots. In Microbiorobotics—Biologically Inspired Microscale Robotic Systems; Kim, M., Julius, A.A., Cheang, U.K., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; p. 290. ISBN 978-0-323-42993-1. [Google Scholar]
- Yan, X.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J.; Xu, J.; Xu, T.; Tang, T.; Bian, L.; Wang, Y.X.J.; et al. Multifunctional Biohybrid Magnetite Microrobots for Imaging-Guided Therapy. Sci. Robot. 2017, 2, eaaq1155. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Cai, S.; Wang, Z.; Ge, Z.; Yang, W. Magnetically Driven Microrobots: Recent Progress and Future Development. Mater. Des. 2023, 227, 111735. [Google Scholar] [CrossRef]
- Gao, W.; Feng, X.; Pei, A.; Kane, C.R.; Tam, R.; Hennessy, C.; Wang, J. Bioinspired Helical Microswimmers Based on Vascular Plants. Nano Lett. 2014, 14, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Xu, J.; Zhou, Q.; Jin, D.; Vong, C.I.; Feng, Q.; Ng, D.H.L.; Bian, L.; Zhang, L. Molecular Cargo Delivery Using Multicellular Magnetic Microswimmers. Appl. Mater. Today 2019, 15, 242–251. [Google Scholar] [CrossRef]
- Liu, L.; Chen, B.; Liu, K.; Gao, J.; Ye, Y.; Wang, Z.; Qin, N.; Wilson, D.A.; Tu, Y.; Peng, F. Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem-Like Cell Stimulation. Adv. Funct. Mater. 2020, 30, 1910108. [Google Scholar] [CrossRef]
- Xie, L.; Pang, X.; Yan, X.; Dai, Q.; Lin, H.; Ye, J.; Cheng, Y.; Zhao, Q.; Ma, X.; Zhang, X.; et al. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS Nano 2020, 14, 2880–2893. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Zhang, D.; Xie, T.; Zhou, M. Biodegradable Microalgae-Based Carriers for Targeted Delivery and Imaging-Guided Therapy toward Lung Metastasis of Breast Cancer. Small 2020, 16, 2000819. [Google Scholar] [CrossRef]
- Zhong, D.; Li, W.; Qi, Y.; He, J.; Zhou, M. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for FL/PA/MR Imaging-Guided Enhanced Radio-Photodynamic Synergetic Therapy. Adv. Funct. Mater. 2020, 30, 1910395. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Zhong, D.; Du, Z.; Zhou, M. A Bioactive Living Hydrogel: Photosynthetic Bacteria Mediated Hypoxia Elimination and Bacteria-Killing to Promote Infected Wound Healing. Adv. Ther. 2021, 4, 2000107. [Google Scholar] [CrossRef]
- Hu, H.; Zhong, D.; Li, W.; Lin, X.; He, J.; Sun, Y.; Wu, Y.; Shi, M.; Chen, X.; Xu, F.; et al. Microalgae-Based Bioactive Hydrogel Loaded with Quorum Sensing Inhibitor Promotes Infected Wound Healing. Nano Today 2022, 42, 101368. [Google Scholar] [CrossRef]
- Zhong, D.; Li, W.; Hua, S.; Qi, Y.; Xie, T.; Qiao, Y.; Zhou, M. Calcium Phosphate Engineered Photosynthetic Microalgae to Combat Hypoxic-Tumor by in-Situ Modulating Hypoxia and Cascade Radio-Phototherapy. Theranostics 2021, 11, 3580–3594. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Kwong, C.H.T.; Wang, Q.; Kam, H.; Wei, J.; Chen, Q.; Zhang, J.; Lee, S.M.Y.; Gu, D.; Wang, R. Surface-Engineered Chlorella Alleviated Hypoxic Tumor Microenvironment for Enhanced Chemotherapy and Immunotherapy of First-Line Drugs. Mater. Today 2022, 58, 57–70. [Google Scholar] [CrossRef]
- Gong, D.; Celi, N.; Zhang, D.; Cai, J. Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2022, 14, 6320–6330. [Google Scholar] [CrossRef]
- Li, J.; Yu, J. Biodegradable Microrobots and Their Biomedical Applications: A Review. Nanomaterials 2023, 13, 1590. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- Sathya, A.B.; Thirunavukkarasu, A.; Nithya, R.; Nandan, A.; Sakthishobana, K.; Kola, A.K.; Sivashankar, R.; Tuan, H.A.; Deepanraj, B. Microalgal Biofuel Production: Potential Challenges and Prospective Research. Fuel 2023, 332, 126199. [Google Scholar] [CrossRef]
- Bautista, E.G.; Laroche, C. Arthrospira Platensis as a Feasible Feedstock for Bioethanol Production. Appl. Sci. 2021, 11, 6756. [Google Scholar] [CrossRef]
- da Maia, J.L.; Cardoso, J.S.; da Mastrantonio, D.J.; Bierhals, C.K.; Moreira, J.B.; Costa, J.A.V.; de Morais, M.G. Microalgae Starch: A Promising Raw Material for the Bioethanol Production. Int. J. Biol. Macromol. 2020, 165, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.M.; Sun, Y.L.; Lin, C.H.; Lin, C.H.; Wu, H.T.; Lin, C.S. Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. Sustainability 2021, 13, 13480. [Google Scholar] [CrossRef]
- Jiménez-Llanos, J.; Ramírez-Carmona, M.; Rendón-Castrillón, L.; Ocampo-López, C. Sustainable Biohydrogen Production by Chlorella sp. Microalgae: A Review. Int. J. Hydrogen Energy 2020, 45, 8310–8328. [Google Scholar] [CrossRef]
- Xie, D.; Ji, X.; Zhou, Y.; Dai, J.; He, Y.; Sun, H.; Guo, Z.; Yang, Y.; Zheng, X.; Chen, B. Chlorella Vulgaris Cultivation in Pilot-Scale to Treat Real Swine Wastewater and Mitigate Carbon Dioxide for Sustainable Biodiesel Production by Direct Enzymatic Transesterification. Bioresour. Technol. 2022, 349, 126886. [Google Scholar] [CrossRef]
- Sarma, S.; Sharma, S.; Patel, A.; Upadhyay, J.; Rathod, V.; Narra, M. Statistical Optimization of Microalgal Biodiesel Production and Protein Extraction from Chlorella Sorokiniana Cultivated in Dairy Effluent. Mater. Today Proc. 2023, 72, 2731–2740. [Google Scholar] [CrossRef]
- Elshobary, M.E.; Zabed, H.M.; Yun, J.; Zhang, G.; Qi, X. Recent Insights into Microalgae-Assisted Microbial Fuel Cells for Generating Sustainable Bioelectricity. Int. J. Hydrogen Energy 2021, 46, 3135–3159. [Google Scholar] [CrossRef]
- Bombelli, P.; Savanth, A.; Scarampi, A.; Rowden, S.J.L.; Green, D.H.; Erbe, A.; Årstøl, E.; Jevremovic, I.; Hohmann-Marriott, M.F.; Trasatti, S.P.; et al. Powering a Microprocessor by Photosynthesis. Energy Environ. Sci. 2022, 15, 2529–2536. [Google Scholar] [CrossRef]
- Yadav, G.; Sharma, I.; Ghangrekar, M.; Sen, R. A Live Bio-Cathode to Enhance Power Output Steered by Bacteria-Microalgae Synergistic Metabolism in Microbial Fuel Cell. J. Power Sources 2020, 449, 227560. [Google Scholar] [CrossRef]
- Tay, Z.H.-Y.; Ng, F.-L.; Ling, T.-C.; Iwamoto, M.; Phang, S.-M. The Use of Marine Microalgae in Microbial Fuel Cells, Photosynthetic Microbial Fuel Cells and Biophotovoltaic Platforms for Bioelectricity Generation. 3 Biotech 2022, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Fadhil, S.H.; Ismail, Z.Z. Influence of Light Color on Power Generation and Microalgae Growth in Photosynthetic Microbial Fuel Cell with Chlorella Vulgaris Microalgae as Bio-Cathode. Curr. Microbiol. 2023, 80, 177. [Google Scholar] [CrossRef] [PubMed]
- Fadhil, S.H.; Ismail, Z.Z. Bioremediation of Real-Field Slaughterhouse Wastewater Associated with Power Generation in Algae-Photosynthetic Microbial Fuel Cell. Bioremediat. J. 2023, 27, 75–83. [Google Scholar] [CrossRef]
- Aiyer, K.S. Synergistic Effects in a Microbial Fuel Cell between Co-Cultures and a Photosynthetic Alga Chlorella Vulgaris Improve Performance. Heliyon 2021, 7, e05935. [Google Scholar] [CrossRef]
- Longtin, N.; Oliveira, D.; Mahadevan, A.; Gejji, V.; Gomes, C.; Fernando, S. Analysis of Spirulina Platensis Microalgal Fuel Cell. J. Power Sources 2021, 486, 229290. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Christwardana, M.; da Costa, C. Electrogenic and Biomass Production Capabilities of a Microalgae–Microbial Fuel Cell (MMFC) System Using Tapioca Wastewater and Spirulina Platensis for COD Reduction. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 45, 3409–3420. [Google Scholar] [CrossRef]
- Mehariya, S.; Plöhn, M.; Jablonski, P.; Stagge, S.; Jönsson, L.J.; Funk, C. Biopolymer Production from Biomass Produced by Nordic Microalgae Grown in Wastewater. Bioresour. Technol. 2023, 376, 128901. [Google Scholar] [CrossRef] [PubMed]
- Khanra, A.; Vasistha, S.; Rai, M.P.; Cheah, W.Y.; Khoo, K.S.; Chew, K.W.; Chuah, L.F.; Show, P.L. Green Bioprocessing and Applications of Microalgae-Derived Biopolymers as a Renewable Feedstock: Circular Bioeconomy Approach. Environ. Technol. Innov. 2022, 28, 102872. [Google Scholar] [CrossRef]
- European Union Biobased, Biodegradable and Compostable Plastics. Available online: https://environment.ec.europa.eu/topics/plastics/biobased-biodegradable-and-compostable-plastics_en (accessed on 26 May 2023).
- Mal, N.; Satpati, G.G.; Raghunathan, S.; Davoodbasha, M.A. Current Strategies on Algae-Based Biopolymer Production and Scale-Up. Chemosphere 2022, 289, 133178. [Google Scholar] [CrossRef] [PubMed]
- European Bioplastics Bioplastics Market Data. Available online: https://www.european-bioplastics.org/market/ (accessed on 26 May 2023).
- Ciapponi, R.; Turri, S.; Levi, M. Mechanical Reinforcement by Microalgal Biofiller in Novel Thermoplastic Biocompounds from Plasticized Gluten. Materials 2019, 12, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roja, K.; Ruben Sudhakar, D.; Anto, S.; Mathimani, T. Extraction and Characterization of Polyhydroxyalkanoates from Marine Green Alga and Cyanobacteria. Biocatal. Agric. Biotechnol. 2019, 22, 101358. [Google Scholar] [CrossRef]
- Zeller, M.A.; Hunt, R.; Jones, A.; Sharma, S. Bioplastics and Their Thermoplastic Blends from Spirulina and Chlorella Microalgae. J. Appl. Polym. Sci. 2013, 130, 3263–3275. [Google Scholar] [CrossRef]
- Sabathini, H.A.; Windiani, L.; Dianursanti; Gozan, M. Mechanical Physicial Properties of Chlorella-PVA Based Bioplastic with Ultrasonic Homogenizer. In Proceedings of the E3S Web of Conferences, Bali, Indonesia, 26 November 2018; Volume 67. [Google Scholar]
- Coelho, C.V.; Cleber, K.D.S.; Ana, L.T.; Jorge, A.V.C.; Michele, G.D.M. Polyhydroxybutyrate Production by Spirulina sp. LEB 18 Grown under Different Nutrient Concentrations. Afr. J. Microbiol. Res. 2015, 9, 1586–1594. [Google Scholar] [CrossRef] [Green Version]
- Costa, S.S.; Miranda, A.L.; Andrade, B.B.; de Jesus Assis, D.; Souza, C.O.; de Morais, M.G.; Costa, J.A.V.; Druzian, J.I. Influence of Nitrogen on Growth, Biomass Composition, Production, and Properties of Polyhydroxyalkanoates (PHAs) by Microalgae. Int. J. Biol. Macromol. 2018, 116, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Toh, P.S.Y.; Jau, M.-H.; Yew, S.-P.; Abed, R.M.M.; Sudesh, K. Comparison of polyhydroxyalkanoates biosynthesis, mobilization and the effects on cellular morphology in spirulina platensis and synechocystis sp. Uniwge. Trop. Life Sci. Res. 2008, 19, 21–38. [Google Scholar]
- Corrêa, P.S.; Teixeira, C.M.L.L. Polyhydroxyalkanoates and Pigments Coproduction by Arthrospira (Spirulina) Platensis Cultivated in Crude Glycerol. J. Appl. Phycol. 2021, 33, 1487–1500. [Google Scholar] [CrossRef]
- Arun, J.; Vigneshwar, S.S.; Swetha, A.; Gopinath, K.P.; Basha, S.; Brindhadevi, K.; Pugazhendhi, A. Bio-Based Algal (Chlorella Vulgaris) Refinery on de-Oiled Algae Biomass Cake: A Study on Biopolymer and Biodiesel Production. Sci. Total Environ. 2022, 816, 151579. [Google Scholar] [CrossRef]
- Kumari, P.; Ravi Kiran, B.; Venkata Mohan, S. Polyhydroxybutyrate Production by Chlorella Sorokiniana SVMIICT8 under Nutrient-Deprived Mixotrophy. Bioresour. Technol. 2022, 354, 127135. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.R.; Khoo, K.S.; Chew, K.W.; Chang, C.-K.; Munawaroh, H.S.H.; Kumar, P.S.; Huy, N.D.; Show, P.L. Perspective of Spirulina Culture with Wastewater into a Sustainable Circular Bioeconomy. Environ. Pollut. 2021, 284, 117492. [Google Scholar] [CrossRef] [PubMed]
- Plöhn, M.; Spain, O.; Sirin, S.; Silva, M.; Escudero-Oñate, C.; Ferrando-Climent, L.; Allahverdiyeva, Y.; Funk, C. Wastewater Treatment by Microalgae. Physiol. Plant 2021, 173, 568–578. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, P. Assessing the Feasibility of N and P Recovery by Struvite Precipitation from Nutrient-Rich Wastewater: A Review. Environ. Sci. Pollut. Res. 2015, 22, 17453–17464. [Google Scholar] [CrossRef]
- Rempel, A.; Gutkoski, J.P.; Nazari, M.T.; Biolchi, G.N.; Cavanhi, V.A.F.; Treichel, H.; Colla, L.M. Current Advances in Microalgae-Based Bioremediation and Other Technologies for Emerging Contaminants Treatment. Sci. Total Environ. 2021, 772, 144918. [Google Scholar] [CrossRef] [PubMed]
- Goh, P.S.; Lau, W.J.; Ismail, A.F.; Samawati, Z.; Liang, Y.Y.; Kanakaraju, D. Microalgae-Enabled Wastewater Treatment: A Sustainable Strategy for Bioremediation of Pesticides. Water 2022, 15, 70. [Google Scholar] [CrossRef]
- Popp, J.; Pető, K.; Nagy, J. Pesticide Productivity and Food Security. A Review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Cardoso, L.G.; Lemos, P.V.F.; de Souza, C.O.; Oliveira, M.B.P.P.; Chinalia, F.A. Current Advances in Phytoremediation and Biochemical Composition of Arthrospira (Spirulina) Grown in Aquaculture Wastewater. Aquac. Res. 2022, 53, 4931–4943. [Google Scholar] [CrossRef]
- Ferrando, L.; Matamoros, V. Attenuation of Nitrates, Antibiotics and Pesticides from Groundwater Using Immobilised Microalgae-Based Systems. Sci. Total Environ. 2020, 703, 134740. [Google Scholar] [CrossRef]
- Castellanos-Estupiñan, M.; Carrillo-Botello, A.; Rozo-Granados, L.; Becerra-Moreno, D.; García-Martínez, J.; Urbina-Suarez, N.; López-Barrera, G.; Barajas-Solano, A.; Bryan, S.; Zuorro, A. Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. Water 2022, 14, 558. [Google Scholar] [CrossRef]
- Matamoros, V.; Gutiérrez, R.; Ferrer, I.; García, J.; Bayona, J.M. Capability of Microalgae-Based Wastewater Treatment Systems to Remove Emerging Organic Contaminants: A Pilot-Scale Study. J. Hazard. Mater. 2015, 288, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaya-Santos, G.; Ruiz-Nieto, Á.; Sánchez-Zurano, A.; Ciardi, M.; Gómez-Serrano, C.; Acién, G.; Lafarga, T. Production of Chlorella Vulgaris Using Urban Wastewater: Assessment of the Nutrient Recovery Capacity of the Biomass and Its Plant Biostimulant Effects. J. Appl. Phycol. 2022, 34, 2971–2979. [Google Scholar] [CrossRef]
- Liu, R.; Li, S.; Tu, Y.; Hao, X. Capabilities and Mechanisms of Microalgae on Removing Micropollutants from Wastewater: A Review. J. Environ. Manage 2021, 285, 112149. [Google Scholar] [CrossRef] [PubMed]
- García-Corral, I.; Morillas-España, A.; Ciardi, M.; Massa, D.; Jiménez-Becker, S. Reuse of Wastewater from the Production of Microalgae and Its Effect on the Growth of Pelargonium x Hortorum. J. Appl. Phycol. 2023, 35, 173–181. [Google Scholar] [CrossRef]
- Khor, J.G.; Lim, H.R.; Chia, W.Y.; Chew, K.W. Automated Cultivation System for Microalgae: Growth Factors and Control. Curr. Nutr. Food Sci. 2022, 18, 776–779. [Google Scholar] [CrossRef]
- Singh, N.K.; Yadav, M.; Singh, V.; Padhiyar, H.; Kumar, V.; Bhatia, S.K.; Show, P.-L. Artificial Intelligence and Machine Learning-Based Monitoring and Design of Biological Wastewater Treatment Systems. Bioresour. Technol. 2023, 369, 128486. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Medhi, K.; Malaviya, P.; Thakur, I.S. Omics Approaches for Microalgal Applications: Prospects and Challenges. Bioresour. Technol. 2019, 291, 121890. [Google Scholar] [CrossRef]
- Ampofo, J.; Abbey, L. Microalgae: Bioactive Composition, Health Benefits, Safety and Prospects as Potential High-Value Ingredients for the Functional Food Industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef]
- Karaduman, F.R.; Türk Çulha, S.; Horzum, N. Algal Nanofibers: Current Status and Recent Developments. Mater. Today Commun. 2022, 33, 104248. [Google Scholar] [CrossRef]
Nutrient Composition | Chlorella | Spirulina |
---|---|---|
Macronutrient (% dry weight) | ||
Protein | 42–65.5 | 52–72 |
Carbohydrate | 8.1–65 | 9–25 |
Lipid/fat | 1.6–40 | 1–8 |
Fiber | 1.6–6 | 2–18 |
Minerals/Ash | 6.3–27.3 | 3–13 |
Essential amino acids (mg/g protein) | ||
Leucine | 40–95 | 56–84 |
Phenylalanine | 20–96 | 29–48 |
Lysine | 35–82 | 35–51 |
Valine | 28–78 | 29–54 |
Isoleucine | 1.0–44 | 1.2–41 |
Threonine | 40–62 | 30–62 |
Histidine | 10–35 | 6.0–28 |
Methionine | 6.0–58 | 16–28 |
Tryptophan | 1.0–24 | 10–20 |
Other amino acids (mg/g protein) | ||
Aspartic acid | 38–109 | 54–118 |
Serine | 13–95 | 23–68 |
Glutamic acid | 76–137 | 70–105 |
Glycine | 60–105 | 39–78 |
Alanine | 82–159 | 51–108 |
Cysteine | 2.0–35 | 2.0–6.0 |
Tyrosine | 13–84 | 30–48 |
Arginine | 47–74 | 4.0–77 |
Ornithine | 1.2–1.3 | nr |
Proline | 27–85 | 20–41 |
Fatty acids (FA) | ||
Saturated | 25–33 1 | 45–56 1 |
63–66 2 | ||
Unsaturated | 60–70 1 | 41–52 1 |
33.8–37.1 2 | ||
PUFA | 36–65 1 | 30–42 1 |
23.1–24.5 2 | ||
ω-3 | 0.1–0.22 | |
Alpha-linolenic acid (essential FA) | 14–19.3 1 | nr |
ω-6 | 23.1–24.5 2 | |
Linoleic acid (essential FA) | 11–21 1 | 16–17 1 |
Vitamins (mg/100 g) | ||
B1 (Thiamine) | 1.5–2.4 | 3.5 |
B2 (Riboflavin) | 4.8–6.0 | 3.2 |
B3 (Niacin) | 23.8 | 12.1 |
B5 (Pantothenic acid) | 1.3 | 0.4–25 |
B6 (Pyridoxine) | 1.0–1.7 | 0.78 |
B7 (Biotin) | 191.6 | 64 |
B9 (Folic acid) | 0.61–26.9 | 0.033 |
B12 (Cobalamin) | 0.1–125.9 | 0.012–0.24 |
C (Ascorbic acid) | 15.6–100.0 | nr |
E (Tocopherol) | 6.0–2787.0 | 2.8–75 |
A (Retinol) | 13.2 | nr |
K | 0.033 | 2 |
Bioactive Compound | Biological Activity |
---|---|
Carotenoids | Scavenges free radicals, fights wrinkles, delays aging, soothes eye skin. Antioxidant, anti-inflammatory. Provides blue light and UV protection. β-Carotene serves as a natural colorant in cosmetics. Lutein promotes regeneration of normal retinal blood vessels. |
Vitamin C | Prevents melanin deposits, whitens the skin. Repairs the skin barrier, capillaries, and photo-aging skin, reduces erythema and telangiectasia, and lightens skin wrinkles. Stimulates collagen synthesis in the skin. |
Vitamin E | Antioxidant. Repairs the skin barrier, treats some skin diseases. |
Polysaccharides | Antioxidant, antibacterial. Good film-forming properties, reduces water evaporation on the skin surface and provides a moisturizing effect. |
Peptides | Anti-inflammatory. Protects skin , reduces UVB and UVC-effects. |
Flavonoids Phenols | Antioxidant activity. Stimulates collagen synthesis in the skin, reduces wrinkle formation. |
Manufacturer | Product | Ingredient | Ref. |
---|---|---|---|
Estée Lauder | Perfectionist Pro | Chlorella vulgaris extract | [62] |
Thalgo | Activ Refining Blocker | C. vulgaris extract | [63] |
Spiruline Boost collection (booster concentrate, antipollution gel-cream, detoxifying serum, and booster shot mask) | Spirulina platensis extract | [64,65,66,67] | |
Institut Esthederm | Intensive Spiruline collection (serum and crème) | Spirulina maxima extract | [68,69] |
Nuxe | Merveillance LIFT collection (night cream, firming cream, lift eye cream, and firming-activating serum) | C. vulgaris oil | [70] |
Algenist | Blue Algae Vitamin C™ Dark Spot | Blue vitamin C, phycocyanin extracted from S. platensis extract | [71] |
Bioactive Compound | Biological Activity | Ref. |
---|---|---|
Carotenoids | Antioxidant activities. Anticancer properties (oral, bladder, colon cancers; leukemia; hepatocellular carcinoma) | [30,95,96,97] |
Polysaccharides | Antioxidant and antiviral activities. Anticancer properties (breast, ovary, skin, lung, colon, kidney, stomach cancers). Immunomodulation. Anti-hyperlipidemia. Neuroprotection. Anti-asthmatic effect. | [95,98,99,100] |
Fatty acids | Antioxidant and antimicrobial activities. Reduces cancer risk. Heart protective properties. Treatment of arthritis. Migration and proliferation of skin cells by angiogenesis. | [30,95,99,101,102,103] |
Proteins, peptides | Anticancer properties (reduces the proliferation of different lineages of neoplastic cells). Antioxidant activities. | [94,95,104] |
Vitamins | Antioxidant activities. | [95] |
Phenolics and flavonoids | Antimicrobial and antioxidant activities. | [25] |
Found exclusively in Spirulina (Arthrospira) sp.: | ||
Phycocyanin | Anticancer properties (inhibits the proliferation of tumor cells, triggers cell cycle arrest, and induces apoptosis via different signaling pathways). Antioxidant, antiangiogenic, antidiabetic, and anti-inflammatory activities. Antiviral activity (inhibits the replication of several viruses such as influenza, mumps, and HIV). Immunity booster. Detoxifier. | [30,94,99,104] |
Cyanovirin-N sulpholipids | Antiviral properties. | [30] |
Calcium spirulan | Anticancer, antiviral activities. Immunity enhancer. Induces haematopoiesis. | [30] |
Microalgae Species | Main Findings | Ref. |
---|---|---|
Arthrospira platensis | A. platensis antioxidant peptide-packed electrospun chitosan/poly (vinyl alcohol) nanofibrous mat showed no cytotoxicity in human blood leucocytes nor in the NIH-3T3 mouse embryonic fibroblast cells. It promoted fast wound healing in 3T3 cells in vitro, via inducing mouse embryonic fibroblast proliferation. | [107] |
Spirulina platensis | in vivo assays confirmed the potential of the Spirulina- polycaprolactone (PCL) nanofibers in regenerating wounds | [108] |
S. platensis | PCL-Alginate-Spirulina nanofiber showed no cytotoxicity towards human epithelial cells | [109] |
S. platensis | Nanoliposomal peptides derived from S. platensis protein accelerated full-thickness wound healing in vivo, via angiogenesis and collagen production. | [110] |
S. platensis | A Spirulina-nanophytosomal gel showed higher wound closure potential and enhanced histopathological alterations as compared to the control. | [111] |
Spirulina maxima | Pectin derived from S. maxima showed great potential in wound healing | [112] |
Chlorella sp. | hydrogels against diabetic wounds. In vivo outcomes confirmed Chlorella sp. could ameliorate hypoxia, high-glucose, excessive-reactive oxygen species, and chronic inflammation. | [113] |
Chlorella sorokiniana | Chlorella-loaded hydrogel scaffolds, applied for 14 days on excisional wounds in mice, exhibited excellent biocompatibility in addition to significant antibacterial activity against Escherichia coli (99%) and Staphylococcus aureus (98%). | [114] |
Chlorella vulgaris | Hydrogel material was used on wounded mice and showed pro-healing and anti-inflammatory properties | [115] |
C. vulgaris | Chlorella extract-based hydrogel showed activity against S. aureus and E. coli. | [116] |
C. vulgaris | Chlorella ointment containing 15% extract gives the best results in accelerating the wound-healing process and increasing the number of fibroblast cells in the soft tissue of pig ears. | [117] |
Microalgae | Pmax (mW m−2) | Pmax (mW m−3) | Ref. |
---|---|---|---|
Arthrospira maxima | - | 100 | [179] |
Chlorella sp. | 54.48 | - | [181] |
Chlorella sp. | 36.4 | - | [182] |
Chlorella sp. | 6.4 | [182] | |
Chlorella vulgaris | 13.5 | - | [179] |
C. vulgaris | 18.7 | - | [179] |
C. vulgaris | - | 2485 | [179] |
C. vulgaris | 68 | - | [179] |
C. vulgaris | 38 | - | [179] |
C. vulgaris | 48.5 | - | [179] |
C. vulgaris | 217.04 | - | [183] |
C. vulgaris | 980 | 2770 | [179] |
C. vulgaris | - | 3700 | [179] |
C. vulgaris | 15 | 370 | [179] |
C. vulgaris | 543.28 | - | [184] |
C. vulgaris | - | 123 | [182] |
C. vulgaris | 1926 | - | [182] |
C. vulgaris | 24.4 | - | [182] |
C. vulgaris | 248 | - | [185] |
Chlorella pyrenoidosa | 30.2 | 120 | [179] |
C. pyrenoidosa | 2.5 | 450 | [179] |
C. pyrenoidosa | - | 99 | [182] |
Spirulina platensis | - | 1.64 | [179] |
S. platensis | 10 | - | [179] |
S. platensis | 44.3 | - | [182] |
S. platensis | 59.8 | - | [186] |
S. platensis | 14.47 | - | [187] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, A.P.; Martins, R.; Nunes, J. Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. https://doi.org/10.3390/bioengineering10080955
Abreu AP, Martins R, Nunes J. Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering. 2023; 10(8):955. https://doi.org/10.3390/bioengineering10080955
Chicago/Turabian StyleAbreu, Ana P., Rodrigo Martins, and João Nunes. 2023. "Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp." Bioengineering 10, no. 8: 955. https://doi.org/10.3390/bioengineering10080955
APA StyleAbreu, A. P., Martins, R., & Nunes, J. (2023). Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering, 10(8), 955. https://doi.org/10.3390/bioengineering10080955