The Upper Limb Orthosis in the Rehabilitation of Stroke Patients: The Role of 3D Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection of Articles
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Evidence Synthesis
3.2. Synthesis of the Results
3.3. Intervention Protocol
3.4. Side Effects
3.5. Technical Features
3.6. Outcome Measures
3.7. Upper Limb Function
3.8. Satisfaction and Motivation
3.9. Limitations
3.10. Study Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demeco, A.; Zola, L.; Frizziero, A.; Martini, C.; Palumbo, A.; Foresti, R.; Buccino, G.; Costantino, C. Immersive Virtual Reality in Post-Stroke Rehabilitation: A Systematic Review. Sensors 2023, 23, 1712. [Google Scholar] [CrossRef] [PubMed]
- Marotta, N.; Ammendolia, A.; Marinaro, C.; Demeco, A.; Moggio, L.; Costantino, C. International Classification of Functioning, Disability and Health (ICF) and Correlation between Disability and Finance Assets in Chronic Stroke Patients. Acta Biomed. 2020, 91, e2020064. [Google Scholar] [CrossRef]
- GBD 2016 Stroke Collaborators. Global, Regional, and National Burden of Stroke, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Dudley, D.R.; Knarr, B.A.; Siu, K.-C.; Peck, J.; Ricks, B.; Zuniga, J.M. Testing of a 3D Printed Hand Exoskeleton for an Individual with Stroke: A Case Study. Disabil. Rehabil. Assist. Technol. 2021, 16, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Teasell, R.; Rice, D.; Richardson, M.; Campbell, N.; Madady, M.; Hussein, N.; Murie-Fernandez, M.; Page, S. The next Revolution in Stroke Care. Expert. Rev. Neurother. 2014, 14, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor Recovery after Stroke: A Systematic Review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- De Sire, A.; Moggio, L.; Demeco, A.; Fortunato, F.; Spanò, R.; Aiello, V.; Marotta, N.; Ammendolia, A. Efficacy of Rehabilitative Techniques in Reducing Hemiplegic Shoulder Pain in Stroke: Systematic Review and Meta-Analysis. Ann. Phys. Rehabil. Med. 2022, 65, 101602. [Google Scholar] [CrossRef]
- Stewart, C.; Subbarayan, S.; Paton, P.; Gemmell, E.; Abraha, I.; Myint, P.K.; O’Mahony, D.; Cruz-Jentoft, A.J.; Cherubini, A.; Soiza, R.L. Non-Pharmacological Interventions for the Improvement of Post-Stroke Activities of Daily Living and Disability amongst Older Stroke Survivors: A Systematic Review. PLoS ONE 2018, 13, e0204774. [Google Scholar] [CrossRef]
- Background Concepts in Stroke Rehabilitation|EBRSR—Evidence-Based Review of Stroke Rehabilitation. Available online: http://www.ebrsr.com/evidence-review/3-background-concepts-stroke-rehabilitation (accessed on 11 May 2023).
- Chen, S.-C.; Lin, C.-H.; Su, S.-W.; Chang, Y.-T.; Lai, C.-H. Feasibility and Effect of Interactive Telerehabilitation on Balance in Individuals with Chronic Stroke: A Pilot Study. J. Neuroeng. Rehabil. 2021, 18, 71. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Yang, Y.-L.; Lin, K.-W.; Sun, P.-C.; Chen, C.-S. Functional Assessment of 3D-Printed Multifunction Assistive Hand Device for Chronic Stroke Patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1261–1266. [Google Scholar] [CrossRef]
- Tyson, S.F.; Kent, R.M. The Effect of Upper Limb Orthotics after Stroke: A Systematic Review. NeuroRehabilitation 2011, 28, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Veloso, A.; Alves, N.; Fernandes, C.; Morouço, P. A Review of Additive Manufacturing Studies for Producing Customized Ankle-Foot Orthoses. Bioengineering 2022, 9, 249. [Google Scholar] [CrossRef] [PubMed]
- Totah, D.; Kovalenko, I.; Saez, M.; Barton, K. Manufacturing Choices for Ankle-Foot Orthoses: A Multi-Objective Optimization. Procedia CIRP 2017, 65, 145–150. [Google Scholar] [CrossRef]
- Choo, Y.J.; Boudier-Revéret, M.; Chang, M.C. 3D Printing Technology Applied to Orthosis Manufacturing: Narrative Review. Ann. Palliat. Med. 2020, 9, 4262–4270. [Google Scholar] [CrossRef] [PubMed]
- Sakib-Uz-Zaman, C.; Khondoker, M.A.H. Polymer-Based Additive Manufacturing for Orthotic and Prosthetic Devices: Industry Outlook in Canada. Polymers 2023, 15, 1506. [Google Scholar] [CrossRef] [PubMed]
- Cazon, A.; Kelly, S.; Paterson, A.M.; Bibb, R.J.; Campbell, R.I. Analysis and Comparison of Wrist Splint Designs Using the Finite Element Method: Multi-Material Three-Dimensional Printing Compared to Typical Existing Practice with Thermoplastics. Proc. Inst. Mech. Eng. H 2017, 231, 881–897. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Schofield, K.A. Utilization of 3D Printed Orthoses for Musculoskeletal Conditions of the Upper Extremity: A Systematic Review. J. Hand Ther. 2023, 36, 166–178. [Google Scholar] [CrossRef]
- Keller, M.; Guebeli, A.; Thieringer, F.; Honigmann, P. In-Hospital Professional Production of Patient-Specific 3D-Printed Devices for Hand and Wrist Rehabilitation. Hand Surg. Rehabil. 2021, 40, 126–133. [Google Scholar] [CrossRef]
- Oud, T.A.M.; Lazzari, E.; Gijsbers, H.J.H.; Gobbo, M.; Nollet, F.; Brehm, M.A. Effectiveness of 3D-Printed Orthoses for Traumatic and Chronic Hand Conditions: A Scoping Review. PLoS ONE 2021, 16, e0260271. [Google Scholar] [CrossRef]
- Barrios-Muriel, J.; Romero-Sánchez, F.; Alonso-Sánchez, F.J.; Rodríguez Salgado, D. Advances in Orthotic and Prosthetic Manufacturing: A Technology Review. Materials 2020, 13, 295. [Google Scholar] [CrossRef]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of Robot-Assisted Upper Limb Rehabilitation in Stroke Patients: A Systematic Review with Meta-Analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef]
- Heung, K.H.L.; Tang, Z.Q.; Ho, L.; Tung, M.; Li, Z.; Tong, R.K.Y. Design of a 3D Printed Soft Robotic Hand for Stroke Rehabilitation and Daily Activities Assistance. IEEE Int. Conf. Rehabil. Robot. 2019, 2019, 65–70. [Google Scholar] [CrossRef]
- Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Kondiah, P.P.D.; Pillay, V. 3D-Printing and the Effect on Medical Costs: A New Era? Expert. Rev. Pharmacoeconomics Outcomes Res. 2016, 16, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Basile, V.; Modica, F.; Surace, R.; Fassi, I. Micro-Texturing of Molds via Stereolithography for the Fabrication of Medical Components. Procedia CIRP 2022, 110, 93–98. [Google Scholar] [CrossRef]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive Manufacturing by Digital Light Processing: A Review. Prog. Addit. Manuf. 2023, 8, 331–351. [Google Scholar] [CrossRef]
- Montgomery, S.M.; Hamel, C.M.; Skovran, J.; Qi, H.J. A Reaction–Diffusion Model for Grayscale Digital Light Processing 3D Printing. Extrem. Mech. Lett. 2022, 53, 101714. [Google Scholar] [CrossRef]
- Chen, F.; Wu, Y.-R.; Wu, J.-M.; Zhu, H.; Chen, S.; Hua, S.-B.; He, Z.-X.; Liu, C.-Y.; Xiao, J.; Shi, Y.-S. Preparation and Characterization of ZrO2-Al2O3 Bioceramics by Stereolithography Technology for Dental Restorations. Addit. Manuf. 2021, 44, 102055. [Google Scholar] [CrossRef]
- Grivet-Brancot, A.; Boffito, M.; Ciardelli, G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol. Biosci. 2022, 22, 2200039. [Google Scholar] [CrossRef]
- Wang, Y.; Mushtaq, R.T.; Ahmed, A.; Rehman, M.; Khan, A.M.; Sharma, S.; Ishfaq, K.; Ali, H.; Gueye, T. Additive Manufacturing Is Sustainable Technology: Citespace Based Bibliometric Investigations of Fused Deposition Modeling Approach. Rapid Prototyp. J. 2021, 28, 654–675. [Google Scholar] [CrossRef]
- Trenfield, S.J.; Januskaite, P.; Goyanes, A.; Wilsdon, D.; Rowland, M.; Gaisford, S.; Basit, A.W. Prediction of Solid-State Form of SLS 3D Printed Medicines Using NIR and Raman Spectroscopy. Pharmaceutics 2022, 14, 589. [Google Scholar] [CrossRef]
- Kong, D.; Ni, X.; Dong, C.; Lei, X.; Zhang, L.; Man, C.; Yao, J.; Cheng, X.; Li, X. Bio-Functional and Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting. Mater. Des. 2018, 152, 88–101. [Google Scholar] [CrossRef]
- Ginestra, P.; Ferraro, R.M.; Zohar-Hauber, K.; Abeni, A.; Giliani, S.; Ceretti, E. Selective Laser Melting and Electron Beam Melting of Ti6Al4V for Orthopedic Applications: A Comparative Study on the Applied Building Direction. Materials 2020, 13, 5584. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S.; Wu, J.; Duan, S.; Wang, X.; Hong, X.; Han, X.; Li, C.; Kang, D.; Wang, Z.; et al. The Application and Challenge of Binder Jet 3D Printing Technology in Pharmaceutical Manufacturing. Pharmaceutics 2022, 14, 2589. [Google Scholar] [CrossRef] [PubMed]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef]
- Jahnke, P.; Schwarz, S.; Ziegert, M.; Schwarz, F.B.; Hamm, B.; Scheel, M. Paper-Based 3D Printing of Anthropomorphic CT Phantoms: Feasibility of Two Construction Techniques. Eur. Radiol. 2019, 29, 1384–1390. [Google Scholar] [CrossRef]
- Xu, X.; Awad, A.; Robles-Martinez, P.; Gaisford, S.; Goyanes, A.; Basit, A.W. Vat Photopolymerization 3D Printing for Advanced Drug Delivery and Medical Device Applications. J. Control. Release 2021, 329, 743–757. [Google Scholar] [CrossRef]
- Rodríguez-Pombo, L.; Martínez-Castro, L.; Xu, X.; Ong, J.J.; Rial, C.; García, D.N.; González-Santos, A.; Flores-González, J.; Alvarez-Lorenzo, C.; Basit, A.W.; et al. Simultaneous Fabrication of Multiple Tablets within Seconds Using Tomographic Volumetric 3D Printing. Int. J. Pharm. X 2023, 5, 100166. [Google Scholar] [CrossRef]
- Yang, F.; Zobeiry, N.; Mamidala, R.; Chen, X. A Review of Aging, Degradation, and Reusability of PA12 Powders in Selective Laser Sintering Additive Manufacturing. Mater. Today Commun. 2023, 34, 105279. [Google Scholar] [CrossRef]
- Guo, S.; Li, J.; Zhang, L.; Li, Y. Preparation of High-Porosity Biomass-Based Carbon Electrodes by Selective Laser Sintering. Mater. Lett. 2023, 330, 133300. [Google Scholar] [CrossRef]
- Praveen Kumar, A.; Dirgantara, T.; Krishna, P.V. (Eds.) Advances in Lightweight Materials and Structures: Select Proceedings of ICALMS 2020; Springer Proceedings in Materials; Springer: Singapore, 2020; Volume 8, ISBN 9789811578267. [Google Scholar]
- Gong, J.; Qian, Y.; Lu, K.; Zhu, Z.; Siow, L.; Zhang, C.; Zhou, S.; Gu, T.; Yin, J.; Yu, M.; et al. Digital Light Processing (DLP) in Tissue Engineering: From Promise to Reality, and Perspectives. Biomed. Mater. 2022, 17, 062004. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Liang, H.; Liu, Y.; Bai, J.; Wang, M. Digital Light Processing (DLP) of Nano Biphasic Calcium Phosphate Bioceramic for Making Bone Tissue Engineering Scaffolds. Ceram. Int. 2022, 48, 27681–27692. [Google Scholar] [CrossRef]
- Keßler, A.; Dosch, M.; Reymus, M.; Folwaczny, M. Influence of 3D-Printing Method, Resin Material, and Sterilization on the Accuracy of Virtually Designed Surgical Implant Guides. J. Prosthet. Dent. 2022, 128, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Tura, A.D.; Lemu, H.G.; Mamo, H.B. Experimental Investigation and Prediction of Mechanical Properties in a Fused Deposition Modeling Process. Crystals 2022, 12, 844. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Arrieta, M.P.; Moreno, E.; Gaspar, G.; Muneta, L.M.; Carrasco-Gallego, R.; Yáñez, S.; Hidalgo-Carvajal, D.; de la Orden, M.U.; Martínez Urreaga, J. Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes. Polymers 2021, 13, 1247. [Google Scholar] [CrossRef]
- Pugliese, R.; Beltrami, B.; Regondi, S.; Lunetta, C. Polymeric Biomaterials for 3D Printing in Medicine: An Overview. Ann. 3D Print. Med. 2021, 2, 100011. [Google Scholar] [CrossRef]
- Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused Deposition Modelling: Current Status, Methodology, Applications and Future Prospects. Addit. Manuf. 2021, 47, 102378. [Google Scholar] [CrossRef]
- Arias-González, F.; Rodríguez-Contreras, A.; Punset, M.; Manero, J.M.; Barro, Ó.; Fernández-Arias, M.; Lusquiños, F.; Gil, F.J.; Pou, J. In-Situ Laser Directed Energy Deposition of Biomedical Ti-Nb and Ti-Zr-Nb Alloys from Elemental Powders. Metals 2021, 11, 1205. [Google Scholar] [CrossRef]
- Rahman, K.M.; Wei, A.; Miyanaji, H.; Williams, C.B. Impact of Binder on Part Densification: Enhancing Binder Jetting Part Properties through the Fabrication of Shelled Geometries. Addit. Manuf. 2023, 62, 103377. [Google Scholar] [CrossRef]
- Trenfield, S.J.; Awad, A.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D Printing Pharmaceuticals: Drug Development to Frontline Care. Trends Pharmacol. Sci. 2018, 39, 440–451. [Google Scholar] [CrossRef]
- Kulinowski, P.; Malczewski, P.; Łaszcz, M.; Baran, E.; Milanowski, B.; Kuprianowicz, M.; Dorożyński, P. Development of Composite, Reinforced, Highly Drug-Loaded Pharmaceutical Printlets Manufactured by Selective Laser Sintering—In Search of Relevant Excipients for Pharmaceutical 3D Printing. Materials 2022, 15, 2142. [Google Scholar] [CrossRef]
- Thakkar, R.; Davis, D.A., Jr.; Williams, R.O.I.; Maniruzzaman, M. Selective Laser Sintering of a Photosensitive Drug: Impact of Processing and Formulation Parameters on Degradation, Solid State, and Quality of 3D-Printed Dosage Forms. Mol. Pharm. 2021, 18, 3894–3908. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, R.; Tilleux, C.; Hastir, J.-P.; Delvaux, L.; Danse, E. Holding Eternity in One’s Hand: First Three-Dimensional Reconstruction and Printing of the Heart from 2700 Years-Old Egyptian Mummy. Anat. Rec. 2019, 302, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Petretta, M.; Desando, G.; Grigolo, B.; Roseti, L. Cartilage Tissue Engineering by Extrusion Bioprinting: Process Analysis, Risk Evaluation, and Mitigation Strategies. Materials 2021, 14, 3528. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive Manufacturing of Biomaterials. Prog. Mater. Sci. 2018, 93, 45–111. [Google Scholar] [CrossRef]
- Kakanuru, P.; Pochiraju, K. Moisture Ingress and Degradation of Additively Manufactured PLA, ABS and PLA/SiC Composite Parts. Addit. Manuf. 2020, 36, 101529. [Google Scholar] [CrossRef]
- Haryńska, A.; Carayon, I.; Kosmela, P.; Brillowska-Dąbrowska, A.; Łapiński, M.; Kucińska-Lipka, J.; Janik, H. Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering. Materials 2020, 13, 4457. [Google Scholar] [CrossRef]
- Pérez-Davila, S.; González-Rodríguez, L.; Lama, R.; López-Álvarez, M.; Oliveira, A.L.; Serra, J.; Novoa, B.; Figueras, A.; González, P. 3D-Printed PLA Medical Devices: Physicochemical Changes and Biological Response after Sterilisation Treatments. Polymers 2022, 14, 4117. [Google Scholar] [CrossRef]
- Pokharna, P.P.; Ghantasala, M.K.; Rozhkova, E.A. 3D Printed Polylactic Acid and Acrylonitrile Butadiene Styrene Fluidic Structures for Biological Applications: Tailoring Bio-Material Interface via Surface Modification. Mater. Today Commun. 2021, 27, 102348. [Google Scholar] [CrossRef]
- Jiang, C.-P.; Romario, Y.S.; Toyserkani, E. Development of a Novel Tape-Casting Multi-Slurry 3D Printing Technology to Fabricate the Ceramic/Metal Part. Materials 2023, 16, 585. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Liu, W.; Zhou, H.; Li, M.; Chen, Y.; Xing, Z. High-Performance Integrated Manufacturing of a 3Y-TZP Ceramic Crown through Viscoelastic Paste-Based Vat Photopolymerization with a Conformal Contactless Support. Addit. Manuf. 2022, 59, 103143. [Google Scholar] [CrossRef]
- Tang, J.C.; Luo, J.P.; Huang, Y.J.; Sun, J.F.; Zhu, Z.Y.; Xu, J.Y.; Dargusch, M.S.; Yan, M. Immunological Response Triggered by Metallic 3D Printing Powders. Addit. Manuf. 2020, 35, 101392. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Development of AM Technologies for Metals in the Sector of Medical Implants. Metals 2020, 10, 686. [Google Scholar] [CrossRef]
- Alam, F.; Elsherif, M.; Salih, A.E.; Butt, H. 3D Printed Polymer Composite Optical Fiber for Sensing Applications. Addit. Manuf. 2022, 58, 102996. [Google Scholar] [CrossRef]
- Song, B.; Kenel, C.; Dunand, D.C. 3D Ink-Extrusion Printing and Sintering of Ti, Ti-TiB and Ti-TiC Microlattices. Addit. Manuf. 2020, 35, 101412. [Google Scholar] [CrossRef]
- Xie, M.; Lian, L.; Mu, X.; Luo, Z.; Garciamendez-Mijares, C.E.; Zhang, Z.; López, A.; Manríquez, J.; Kuang, X.; Wu, J.; et al. Volumetric Additive Manufacturing of Pristine Silk-Based (Bio)Inks. Nat. Commun. 2023, 14, 210. [Google Scholar] [CrossRef]
- Sultan, M.T.; Lee, O.J.; Lee, J.S.; Park, C.H. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications. Biomedicines 2022, 10, 3224. [Google Scholar] [CrossRef]
- Mamo, H.B.; Adamiak, M.; Kunwar, A. 3D Printed Biomedical Devices and Their Applications: A Review on State-of-the-Art Technologies, Existing Challenges, and Future Perspectives. J. Mech. Behav. Biomed. Mater. 2023, 143, 105930. [Google Scholar] [CrossRef]
- Pan, T.; Song, W.; Cao, X.; Wang, Y. 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties. J. Mater. Sci. Technol. 2016, 32, 889–900. [Google Scholar] [CrossRef]
- Gerbolés, A.G.; Galetti, M.; Rossi, S.; lo Muzio, F.P.; Pinelli, S.; Delmonte, N.; Caffarra Malvezzi, C.; Macaluso, C.; Miragoli, M.; Foresti, R. Three-Dimensional Bioprinting of Organoid-Based Scaffolds (OBST) for Long-Term Nanoparticle Toxicology Investigation. Int. J. Mol. Sci. 2023, 24, 6595. [Google Scholar] [CrossRef]
- Dunford, K.M.; LeRoith, T.; Kemper, A.R. Effects of Postmortem Time and Storage Fluid on the Material Properties of Bovine Liver Parenchyma in Tension. J. Mech. Behav. Biomed. Mater. 2018, 87, 240–255. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Chu, C.; Han, L.; Bai, J.; Xue, F. A Study on Mg Wires/Poly-Lactic Acid Composite Degradation under Dynamic Compression and Bending Load for Implant Applications. J. Mech. Behav. Biomed. Mater. 2020, 105, 103707. [Google Scholar] [CrossRef]
- Fallah, A.; Altunbek, M.; Bartolo, P.; Cooper, G.; Weightman, A.; Blunn, G.; Koc, B. 3D Printed Scaffold Design for Bone Defects with Improved Mechanical and Biological Properties. J. Mech. Behav. Biomed. Mater. 2022, 134, 105418. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Fang, S.; Wang, H.; Bai, Y.; Zhao, Z.; Zhu, Q.; Wang, C.; Chen, G.; Jiang, H.; et al. Effect of Polycaprolactone Impregnation on the Properties of Calcium Silicate Scaffolds Fabricated by 3D Printing. Mater. Des. 2022, 220, 110856. [Google Scholar] [CrossRef]
- Gharibi, H.; Abdolmaleki, A. Thermo-Chemical Modification of a Natural Biomembrane to Induce Mucoadhesion, PH Sensitivity and Anisotropic Mechanical Properties. J. Mech. Behav. Biomed. Mater. 2018, 87, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Machry, R.V.; Dapieve, K.S.; Valcanaia, A.; Pereira, G.K.R.; Bottino, M.C.; Valandro, L.F. Thickness and Internal Adjustment of Monolithic Resin Composite Milled Crowns: Effect on the Load-Bearing Capacity under Fatigue. J. Mech. Behav. Biomed. Mater. 2022, 134, 105407. [Google Scholar] [CrossRef] [PubMed]
- Manickam, P.S.; Ghosh, G.; Shetty, G.M.; Chowdhury, A.R.; Roy, S. Biomechanical Analysis of the Novel S-Type Dynamic Cage by Implementation of Teaching Learning Based Optimization Algorithm—An Experimental and Finite Element Study. Med. Eng. Phys. 2023, 112, 103955. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, G.; Du, J.; Ye, N. Mechanical Properties Analysis of Medical Endodontic Instruments Based on Parameterization. J. Mech. Behav. Biomed. Mater. 2022, 134, 105416. [Google Scholar] [CrossRef]
- Ghidini, T. Regenerative Medicine and 3D Bioprinting for Human Space Exploration and Planet Colonisation. J. Thorac. Dis. 2018, 10, S2363–S2375. [Google Scholar] [CrossRef]
- Culmone, C.; Smit, G.; Breedveld, P. Additive Manufacturing of Medical Instruments: A State-of-the-Art Review. Addit. Manuf. 2019, 27, 461–473. [Google Scholar] [CrossRef]
- Wazeer, A.; Das, A.; Sinha, A.; Inaba, K.; Ziyi, S.; Karmakar, A. Additive Manufacturing in Biomedical Field: A Critical Review on Fabrication Method, Materials Used, Applications, Challenges, and Future Prospects. Prog. Addit. Manuf. 2022. [Google Scholar] [CrossRef]
- Dehghan-Manshadi, A.; Yu, P.; Dargusch, M.; StJohn, D.; Qian, M. Metal Injection Moulding of Surgical Tools, Biomaterials and Medical Devices: A Review. Powder Technol. 2020, 364, 189–204. [Google Scholar] [CrossRef]
- Patpatiya, P.; Chaudhary, K.; Shastri, A.; Sharma, S. A Review on Polyjet 3D Printing of Polymers and Multi-Material Structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 7899–7926. [Google Scholar] [CrossRef]
- Rouf, S.; Malik, A.; Singh, N.; Raina, A.; Naveed, N.; Siddiqui, M.I.H.; Haq, M.I.U. Additive Manufacturing Technologies: Industrial and Medical Applications. Sustain. Oper. Comput. 2022, 3, 258–274. [Google Scholar] [CrossRef]
- Goda, I.; Nachtane, M.; Qureshi, Y.; Benyahia, H.; Tarfaoui, M. COVID-19: Current Challenges Regarding Medical Healthcare Supplies and Their Implications on the Global Additive Manufacturing Industry. Proc. Inst. Mech. Eng. H 2022, 236, 613–627. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S.S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A.A.; Taghavinezhaddilami, F.; Leonova, A.; et al. 3D and 4D Printing in Dentistry and Maxillofacial Surgery: Printing Techniques, Materials, and Applications. Acta Biomater. 2021, 122, 26–49. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, X.; Gou, M.; Mei, D.; Zhang, K.; Chen, S. 3D Printing of Functional Biomaterials for Tissue Engineering. Curr. Opin. Biotechnol. 2016, 40, 103–112. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.-H.; Mao, S.-G.; Zhang, X.-X. Evaluation of the Clinical Efficacy of 3D Printing Technology Assisted Surgery Combined with Early Postoperative Comprehensive Rehabilitation in the Treatment of Senile Intertrochanteric Fractures. Pak. J. Med. Sci. 2021, 37, 740–745. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, D.; Zhao, J.; Wu, Y.; Zheng, B. 3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning? J. Surg. Educ. 2016, 73, 518–523. [Google Scholar] [CrossRef]
- Zhang, Y.; Weng, Q.; Gu, Y.; Chen, J.; Yang, Y. Calcaneal Fractures: 3D-Printing Model to Assist Spatial Weaving of Percutaneous Screws versus Conventional Open Fixation-a Retrospective Cohort Study. Int. Orthop. 2021, 45, 2337–2346. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Q.; Zhang, Y.; Dai, K.; Wei, Y. 3D-Bioprinted Gradient-Structured Scaffold Generates Anisotropic Cartilage with Vascularization by Pore-Size-Dependent Activation of HIF1α/FAK Signaling Axis. Nanomedicine 2021, 37, 102426. [Google Scholar] [CrossRef]
- Soman, S.S.; Vijayavenkataraman, S. Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. Int. J. Mol. Sci. 2020, 21, 5792. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Pan, L.-L.H.; Yang, W.-W.; Huang, L.-Y.; Sun, P.-C.; Chen, C.-S. Biomechanical Evaluation of Three-Dimensional Printed Dynamic Hand Device for Patients with Chronic Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Bouteraa, Y.; Ben Abdallah, I. Exoskeleton Robots for Upper-Limb Rehabilitation. In Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016; pp. 1–6. [Google Scholar]
- Orihuela-Espina, F.; Roldán, G.F.; Sánchez-Villavicencio, I.; Palafox, L.; Leder, R.; Sucar, L.E.; Hernández-Franco, J. Robot Training for Hand Motor Recovery in Subacute Stroke Patients: A Randomized Controlled Trial. J. Hand Ther. 2016, 29, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Lunsford, C.; Grindle, G.; Salatin, B.; Dicianno, B.E. Innovations with 3-Dimensional Printing in Physical Medicine and Rehabilitation: A Review of the Literature. PMR 2016, 8, 1201–1212. [Google Scholar] [CrossRef]
- Oud, T.; Kerkum, Y.; de Groot, P.; Gijsbers, H.; Nollet, F.; Brehm, M.-A. Production Time and User Satisfaction of 3-Dimensional Printed Orthoses for Chronic Hand Conditions Compared With Conventional Orthoses: A Prospective Case Series. J. Rehabil. Med. Clin. Commun. 2021, 4, 1000048. [Google Scholar] [CrossRef]
- Borghese, N.A.; Essenziale, J.; Mainetti, R.; Mancon, E.; Pagliaro, R.; Pajardi, G. Hand Rehabilitation and Telemonitoring through Smart Toys. Sensors 2019, 19, 5517. [Google Scholar] [CrossRef]
- Bourhis, F.L.; Kerbrat, O.; Hascoet, J.-Y.; Mognol, P. Sustainable Manufacturing: Evaluation and Modeling of Environmental Impacts in Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2013, 69, 1927–1939. [Google Scholar] [CrossRef]
- Sanchez, F.A.C.; Boudaoud, H.; Camargo, M.; Pearce, J.M. Plastic Recycling in Additive Manufacturing: A Systematic Literature Review and Opportunities for the Circular Economy. J. Clean. Prod. 2020, 264, 121602. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. On the Environmental Impacts of 3D Printing Technology. Appl. Mater. Today 2020, 20, 100689. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Rab, S. Role of Additive Manufacturing Applications towards Environmental Sustainability. Adv. Ind. Eng. Polym. Res. 2021, 4, 312–322. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Lee, J.-Y.; Kim, H.-S.; Kim, M.-S.; Kim, E.-S.; Shin, Y.-J.; Chu, W.-S.; Ahn, S.-H. A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additive Processes: Review and Case Study. Int. J. Precis. Eng. Manuf.-Green. Technol. 2014, 1, 261–279. [Google Scholar] [CrossRef]
- Foresti, R.; Ghezzi, B.; Vettori, M.; Bergonzi, L.; Attolino, S.; Rossi, S.; Tarabella, G.; Vurro, D.; von Zeppelin, D.; Iannotta, S.; et al. 3D Printed Masks for Powders and Viruses Safety Protection Using Food Grade Polymers: Empirical Tests. Polymers 2021, 13, 617. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Yang, Y.-S.; Tseng, C.-H.; Fang, W.-C.; Han, I.-W.; Huang, S.-C. Effectiveness of a New 3D-Printed Dynamic Hand-Wrist Splint on Hand Motor Function and Spasticity in Chronic Stroke Patients. J. Clin. Med. 2021, 10, 4549. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, G.; Yu, L.; Wang, Y.; Fang, Y.; Shen, Y.; Huang, X.; Qiao, L.; Yang, J.; Zhang, Y.; et al. Effects of a 3D-Printed Orthosis Compared to a Low-Temperature Thermoplastic Plate Orthosis on Wrist Flexor Spasticity in Chronic Hemiparetic Stroke Patients: A Randomized Controlled Trial. Clin. Rehabil. 2020, 34, 194–204. [Google Scholar] [CrossRef]
- Zhou, C.Q.; Shi, X.Q.; Li, Z.; Tong, K.Y. 3D Printed Soft Robotic Hand Combining Post-Stroke Rehabilitation and Stiffness Evaluation. In Intelligent Robotics and Applications, Proceedings of the 15 International Conference ICIRA 2022, Harbin, China, 1–3 August 2021; PT III; Liu, H., Yin, Z., Liu, L., Jiang, L., Gu, G., Wu, X., Ren, W., Eds.; Springer: Cham, Switzerland, 2022; Volume 13457, pp. 13–23. [Google Scholar]
- Toth, L.; Schiffer, A.; Nyitrai, M.; Pentek, A.; Told, R.; Maroti, P. Developing an Anti-Spastic Orthosis for Daily Home-Use of Stroke Patients Using Smart Memory Alloys and 3D Printing Technologies. Mater. Des. 2020, 195, 109029. [Google Scholar] [CrossRef]
- Ben, I.; Bouteraa, Y.; Rekik, C. Design and Development of 3d Printed Myoelectric Robotic Exoskeleton for Hand Rehabilitation. Int. J. Smart Sens. Intell. Syst. 2017, 10, 341–366. [Google Scholar] [CrossRef]
- Park, C.B.; Park, H.-S. Portable 3D-Printed Hand Orthosis with Spatial Stiffness Distribution Personalized for Assisting Grasping in Daily Living. Front. Bioeng. Biotechnol. 2023, 11, 895745. [Google Scholar] [CrossRef]
- Huber, J.; Slone, S.; Bazrgari, B. An Evaluation of 3D Printable Elastics for Post Stroke Dynamic Hand Bracing: A Pilot Study. Assist. Technol. 2023, 35, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, T.; Yu, P.; Chang, J.; Zhao, L.; Zhao, X.; Elhajj, I.H.; Xi, N.; Liu, L. Bio-Inspired Upper Limb Soft Exoskeleton to Reduce Stroke-Induced Complications. Bioinspiration Biomim. 2018, 13, 066001. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of Robot-Assisted Therapy on Upper Limb Recovery after Stroke: A Systematic Review. Neurorehabilit. Neural Repair 2008, 22, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shi, Y.; He, W.; Yuan, J.; Li, Y.; Pan, X.; Zhao, C. The Research on 3D Printing Fingerboard and the Initial Application on Cerebral Stroke Patient’s Hand Spasm. Biomed. Eng. Online 2018, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Hunzeker, M.; Ozelie, R. A Cost-Effective Analysis of 3D Printing Applications in Occupational Therapy Practice. Open J. Occup. Ther. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Cha, Y.H.; Lee, K.H.; Ryu, H.J.; Joo, I.W.; Seo, A.; Kim, D.-H.; Kim, S.J. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software. Appl. Bionics Biomech. 2017, 2017, 9610468. [Google Scholar] [CrossRef]
- Jin, H.; Xu, R.; Wang, S.; Wang, J. Use of 3D-Printed Heel Support Insoles Based on Arch Lift Improves Foot Pressure Distribution in Healthy People. Med. Sci. Monit. 2019, 25, 7175–7181. [Google Scholar] [CrossRef]
- Schmitz, C.; Mori, Y.T.; Remigio Gamba, H.; Nohama, P.; de Souza, M.A. Development and Evaluation of a Customized Wrist-Hand Orthosis Using 3D Technology for a Child with Cerebral Palsy—A Case Study. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 1476–1479. [Google Scholar] [CrossRef]
- Telfer, S.; Woodburn, J.; Collier, A.; Cavanagh, P.R. Virtually Optimized Insoles for Offloading the Diabetic Foot: A Randomized Crossover Study. J. Biomech. 2017, 60, 157–161. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, S.J.; Cha, Y.H.; Lee, K.H.; Kwon, J.-Y. Effect of Personalized Wrist Orthosis for Wrist Pain with Three-Dimensional Scanning and Printing Technique: A Preliminary, Randomized, Controlled, Open-Label Study. Prosthet. Orthot. Int. 2018, 42, 636–643. [Google Scholar] [CrossRef]
- Cui, Y.; Cheng, S.; Chen, X.; Xu, G.; Ma, N.; Li, H.; Zhang, H.; Li, Z. Advances in the Clinical Application of Orthotic Devices for Stroke and Spinal Cord Injury since 2013. Front. Neurol. 2023, 14, 1108320. [Google Scholar] [CrossRef] [PubMed]
- Allan, R.; Woodburn, J.; Telfer, S.; Abbott, M.; Steultjens, M.P. Knee Joint Kinetics in Response to Multiple Three-Dimensional Printed, Customised Foot Orthoses for the Treatment of Medial Compartment Knee Osteoarthritis. Proc. Inst. Mech. Eng. H 2017, 231, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Leung, S.H.S.; Chan, Z.Y.S.; Sze, L.K.Y.; Mok, K.-M.; Yung, P.S.H.; Ferber, R.; Cheung, R.T.H. The Biomechanical Difference between Running with Traditional and 3D Printed Orthoses. J. Sports Sci. 2019, 37, 2191–2197. [Google Scholar] [CrossRef]
- Rogati, G.; Caravaggi, P.; Leardini, A. Design Principles, Manufacturing and Evaluation Techniques of Custom Dynamic Ankle-Foot Orthoses: A Review Study. J. Foot Ankle Res. 2022, 15, 38. [Google Scholar] [CrossRef]
- What Is Biomechanics?|Basic Biomechanics, 8e|AccessPhysiotherapy|McGraw Hill Medical. Available online: https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=2433§ionid=191508967 (accessed on 23 May 2023).
- Bai, H.; Deng, S.; Bai, D.; Zhang, Q.; Fu, Q. Recent Advances in Processing of Stereocomplex-Type Polylactide. Macromol. Rapid Commun. 2017, 38, 1700454. [Google Scholar] [CrossRef]
- Bardot, M.; Schulz, M.D. Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing. Nanomaterials 2020, 10, 2567. [Google Scholar] [CrossRef] [PubMed]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchoł, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D Printing Filament as a Second Life of Waste Plastics—A Review. Environ. Sci. Pollut. Res. 2021, 28, 12321–12333. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Liu, T.; Wang, Q.; Dilmurat, A.; Li, D.; Ziegmann, G. Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites. J. Clean. Prod. 2017, 142, 1609–1618. [Google Scholar] [CrossRef]
3DP Orthoses of the Upper Limb | Traditional Personalized Upper Limbs Orthoses |
---|---|
Production takes an average of 24 h. | Production takes more than 2 days. |
Measurement is automated and performed with a 3D scanner. | The measurement is performed manually. |
Production has fewer steps: 3D body shape acquisition, CAD-CAE model construction, orthosis printing. | Production is more complex. It requires the acquisition of the body shape, the creation of the negative mold, manual fabrication, polishing and adjustments. |
Tools needed: 3D printer; 3D scanner. | Tools needed: plaster; thermoplastic material; tools and machines for measuring and shaping. |
Low rate of ergonomic failure | Modifications are often necessary when testing the product on the patient. |
It is easy to reprint the orthosis with anatomical adjustments. | Post-production modification requires great skill; is not always possible and affects the quality of the product. |
PubMed ((stroke) OR (cerebrovascular accident) OR (CVA)) AND ((3dp) OR (3d printing) OR (additive manufacturing)) AND (rehabilitation) Scopus TITLE-ABS-KEY (“stroke” OR “cerebrovascular accident” OR “CVA”) AND (“3dp” OR “3d printing” OR “additive manufacturing”) AND “rehabilitation” Web of Science (“stroke” OR “cerebrovascular accident” OR “CVA”) AND (“3dp” OR “3d printing” OR “additive manufacturing”) AND “rehabilitation” |
Author | Patient | Tools | Training | Intervention | Control Group | Assessment | Outcome |
---|---|---|---|---|---|---|---|
Yang et al., 2021 [109] | N = 25, 21 M/4 F Age: 45.7 ± 0 years. Stroke resulting in upper limb spastic hemiplegia more than 1 year before admission to the study. | Dynamic 3D-printed hand–wrist splint. | 40 min, three times a week for 6 weeks. | Wear a custom-made, dynamic 3D-printed hand–wrist splint for at least 6 h per day at home for the 6-week intervention in addition to conventional rehabilitation therapy. | Did not wear a hand splint and were involved in a home exercise program in addition to conventional rehabilitation therapy. | MAS; FMA; questionnaire measured with a VAS regarding pain, spasticity, satisfaction, ease of self-wear, pain. | The 3D-printed dynamic hand–wrist splint was effective in reducing wrist and finger flexor spasticity. Also, there was a significant alleviation in self-reported spasticity after 6 weeks of intervention. |
Zheng et al., 2020 [110] | N = 40, 31 M/9 F Aged 35–80 years. Ischemic or hemorrhagic stroke. Limb hemiplegia within 2–12 months of acute event. | 3D-printed orthosis versus conventional thermoplastic orthosis. | Wear the orthosis at home for about 4–8 h per day for six weeks. | Conventional rehabilitation therapy with 3D-printed orthosis. | Conventional rehabilitation therapy with low-temperature thermoplastic plate orthosis. | MAS, PROM wrist, FMA, swelling scores, VAS, subjective feeling scores. | 3D-printed orthosis showed greater improvement compared with low-temperature thermoplastic plate orthosis in spasticity and swelling, motor function of the wrist and passive range of wrist extension. |
Zhou et al., 2022 [111] | N = 4, 2 M/2 F Stroke survivors with hand impairment. | New personalized 3D-printed soft robotic hand (SECA). | 20 sessions (three times a week) of hand function rehabilitation training consisting of 45 min sessions with 5 min breaks to prevent fatigue. | Subjects were stimulated to practice hand closing and opening exercises. Moreover, they were required to conduct ADLs using the 3D-printed soft robotic hand. | No control group. | FMA, BBT, grip force, ADL. | Significant improvement in hand function in all subjects evaluated. Three subjects improved significantly in the BBT performance. Two subjects (50%) showed an improvement in spasticity. |
Dudley et al., 2021 [4] | N = 1, 1 M Age 67 y.o. Stroke survivor with hand impairment. | A 3D-printed upper limb exoskeleton. | No training. | Hand function was assessed with and without the orthosis. Strength was tested during MVC using a dynamometer. BBT was performed with and without the device; exertion was measured by EMG signal and RPE scale. | No control group. | FMA, BBT, Borg RPE scale, SUS, QUEST. | While wearing the exoskeleton, the subject improved in flexion and extension and successfully performed three out of the four different grasps; the subject’s normalized EMG extensor activation was larger while using the exoskeleton compared to the control group. The reported RPE scores were lower when using the exoskeleton, reducing fatigue. The device received high scores from the QUEST and SUS surveys. |
Huang et al., 2019 [95] | N = 10; 9 M/1 F Age: 59.6 ± 8.0 y.o. with hemiparesis of the upper limb. Acute event occurred more than 6 months previously. | 3D-printed dynamic hand device (3D-DHD). | 30 min of onsite training twice a week and at least 30 min of home training for the rest of the week for 4 weeks. | Traditional task-oriented approach training and 3D-DHD autonomous training at home. | Traditional task-oriented approach training. | BBT, FMA-UE, hand force (GF, LPF, PPF). | 3D-DHD improved dexterity, pinch force and GF in individuals with chronic stroke. Because of the opposition-based design, the 3D-DHD group exhibited more improvement in terms of palmar pinch force than the control group. Participants wearing 3D-DHD showed higher motivation during training. |
Toth et al., 2020 [112] | N = 6; 2 M/4 F Age: 42.0 ± 17 years Stroke survivor with hand impairment. | Personalized orthosis for post-stroke patients. | No training. | Performing functional manual tasks with or without the orthosis. | No control group. | Manual function test, daily living functionality tests and Likert scale. | The orthosis significantly increased the functionality of the users in all tasks evaluated, except eraser-holding. |
Ben Abdallah et al., 2017 [113] | N = 2; 2 M Stroke survivor with hand impairment. | 3D-printed hand exoskeleton. | Home exercise every day for 26 days with periodic therapist contact. | Not stated. | No control group. | ROM of hand joints assessment at baseline and post-intervention. | Positive effect on finger ROM and in the hand function. This technology also shows potential application in domestic rehabilitation. |
Chen et al., 2022 [11] | N = 6; 6 M Age: 42.0 ± 15 years Acute event occurred more than 6 months. | 3D-printed multi-functional hand device (3DP-MFHD). | Training at home for 4 weeks for at least 40 min per day, 5 days per week. | Training using 3DP-MFHD. | No control group. | Hand function evaluation through GF, LPF, PPF and ARAT. | The 3DP-MFHD significantly improved hand strength in terms of grip force and lateral pinch force in home rehabilitation. |
Park et al., 2023 [114] | N = 10; 4 M/6 F Age: 64.5 ± 12.5 years Chronic stage stroke with limited active ROM. | 3DP active assisting hand orthosis. | No training. | Performing tasks and movements with or without the orthosis. | No control group. | ROM, CAHAI-9, grasp performance. | The orthosis can successfully assist with grasping tasks in ADL by providing a sufficient grip aperture and grip strength. The orthosis increased the grip aperture and grip strength of all participants, enabling successful grasping even in severe degrees of spasticity. |
Huber et al., 2023 [115] | N = 5; 5 M Age: 50.0 ± 0 years History of subacute or chronic stroke. | 3DP dynamic hand bracing with 3DP elastic modules. | No training. | Assessing device usability and comparing with commercially available tools. Testing different tension elastic modules in different tasks. | No control group. | Stroke impairment scale, Likert-10 questionnaire, BBT, dynamometer. | Both devices tested did not show an improvement in hand function. Pinch force decreased more with higher elastic modules, as did pinch aperture force. A significant decrease in BBT score was found with higher elastic modules. The commercial brace reduced hand function more than the 3DP device. |
Technology | Material | Designed Part | Reference |
---|---|---|---|
FDM | PLA + nanoparticles | All the orthosis parts | Dudley et al., 2021 [4] |
FDM | n/a (printing T = 190–205; hp: PLA) | All the orthosis parts | Huang et al., 2019 [95] |
FDM-SLS | TPU flexible + PA | All the orthosis parts | Toth et al., 2020 [112] |
n/a (SLA or DLP) | Resin (generic) | All the orthosis parts | Zheng et al., 2020 [110] |
FDM | PLA | Splints and supports | Chen et al., 2019 [11] |
FDM | TPU flexible + PLA | Splints and supports | Park et al., 2023 [114] |
SLS—MJP—CLIP | TPU—TPU—EPU | Splints and supports | Huber et al., 2023 [115] |
FDM | PLA | Splints | Ben et al., 2017 [113] |
FDM | ABS | Splints | Yang et al., 2021 [109] |
n/a (hp: robocasting) | Silicon | Splints | Zhou et al., 2022 [111] |
Articles | Criteria for the Quality Scoring | Score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Ben Abdallah et al., 2017 [113] | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 7 |
Chen et al., 2022 [11] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Dudley et al., 2021 [4] | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
Huang et al., 2019 [95] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Huber et al., 2023 [115] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 9 |
Park et al., 2023 [114] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Toth et al., 2020 [112] | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 8 |
Yang et al., 2021 [109] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Zheng et al., 2020 [110] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 7 |
Zhou et al., 2022 [111] | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demeco, A.; Foresti, R.; Frizziero, A.; Daracchi, N.; Renzi, F.; Rovellini, M.; Salerno, A.; Martini, C.; Pelizzari, L.; Costantino, C. The Upper Limb Orthosis in the Rehabilitation of Stroke Patients: The Role of 3D Printing. Bioengineering 2023, 10, 1256. https://doi.org/10.3390/bioengineering10111256
Demeco A, Foresti R, Frizziero A, Daracchi N, Renzi F, Rovellini M, Salerno A, Martini C, Pelizzari L, Costantino C. The Upper Limb Orthosis in the Rehabilitation of Stroke Patients: The Role of 3D Printing. Bioengineering. 2023; 10(11):1256. https://doi.org/10.3390/bioengineering10111256
Chicago/Turabian StyleDemeco, Andrea, Ruben Foresti, Antonio Frizziero, Nicola Daracchi, Francesco Renzi, Margherita Rovellini, Antonello Salerno, Chiara Martini, Laura Pelizzari, and Cosimo Costantino. 2023. "The Upper Limb Orthosis in the Rehabilitation of Stroke Patients: The Role of 3D Printing" Bioengineering 10, no. 11: 1256. https://doi.org/10.3390/bioengineering10111256
APA StyleDemeco, A., Foresti, R., Frizziero, A., Daracchi, N., Renzi, F., Rovellini, M., Salerno, A., Martini, C., Pelizzari, L., & Costantino, C. (2023). The Upper Limb Orthosis in the Rehabilitation of Stroke Patients: The Role of 3D Printing. Bioengineering, 10(11), 1256. https://doi.org/10.3390/bioengineering10111256