Artificial Vision: The High-Frequency Electrical Stimulation of the Blind Mouse Retina Decay Spike Generation and Electrogenically Clamped Intracellular Ca2+ at Elevated Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Tissue Preparation and Loading
2.3. Electrical Stimulation and Recording
2.4. Data Analysis
2.4.1. Ca2+ Imaging
2.4.2. MEA Recordings
2.5. Pharmacology
3. Results
3.1. Subretinal Electrical Stimulation and Ca2+ Imaging of Ganglion Cell Responses
3.2. Variation in the Electrical Stimulation Paradigm Modulates the Strength of the Ganglion Cell Ca2+ Responses
3.3. The Characteristics of Ganglion Cell Ca2+ Responses Are Modulated by Electrical Stimulation Frequencies
3.4. Stimulation Frequency-Dependent Activation of Ganglion Cells: Network-Mediated or Direct Activation
3.5. Continuous High-Frequency Electrical Stimulation Does Not Generate Pulse-Correlated Spikes in Ganglion Cells but Clamps Intracellular Ca2+ at Elevated Levels
4. Discussion
4.1. Switch from Network-Mediated to the Direct Stimulation of Ganglion Cells
4.2. High-Frequency Stimulation Electrogenically Modulates the Desensitization of the Ganglion Cells
4.3. Implications of Electrical-Stimulation-Mediated Modulation of Cellular Ca2+ Dynamics for the Development of Strategies for Electrical Implants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACSF | Artificial cerebrospinal fluid |
BC | Bipolar cells |
Ca2+ | Calcium |
CB OFF | OFF-type cone bipolar cell |
CB ON | ON-type cone bipolar cell |
CICR | Calcium-induced calcium release |
CNQX | 6-Cyano-7-nitroquinoxaline-2,3-dione |
ctr | Control |
elec | Electrode |
ER | Endoplasmic reticulum |
GC | Ganglion cell |
Hz | Hertz |
iGluR | Ionotropic glutamate receptors |
K+ | Potassium |
kHz | Kilo hertz |
L-AP4 | L-2-amino-4-phosphonobutyric acid |
MEA | Multielectrode array |
mGluR6 | Metabotropic glutamate receptor 6 |
mM | Milli molar |
Na+ | Sodium |
NCX | Sodium/calcium exchanger |
OGB-1 | Oregon Green 488 BAPTA-1 |
PMCA | Plasma membrane calcium ATP-pump |
rd1 | C3H/rd1 (C3H Pde6brd1/rd1) |
ref | Reference |
SEM | Standard error mean |
stim | Electrical stimulation |
TTX | Tetrodotoxin |
V | Volt |
VGC | Voltage-gated channels |
VGCC | Voltage-gated calcium channels |
VGNaC | Voltage-gated sodium channels |
δ | Delta (difference) |
τ | Tau |
µV | Microvolt |
∆ | Rate (change over time) |
References
- Tsang, S.H.; Sharma, T. Retinitis Pigmentosa (Non-syndromic). Adv. Exp. Med. Biol. 2018, 1085, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Ragi, S.D.; Tsang, S.H. Therapy in Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Mol. Ther. 2020, 28, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, T.B.; Luther, E.E. Retinitis Pigmentosa; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Van Hook, M.J.; Nawy, S.; Thoreson, W.B. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog. Retin. Eye Res. 2019, 72, 100760. [Google Scholar] [CrossRef] [PubMed]
- Farnum, A.; Pelled, G. New Vision for Visual Prostheses. Front. Neurosci. 2020, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, K.; Loudin, J.; Goetz, G.; Huie, P.; Wang, L.; Kamins, T.I.; Galambos, L.; Smith, R.; Harris, J.S.; Sher, A.; et al. Photovoltaic Retinal Prosthesis with High Pixel Density. Nat. Photonics 2012, 6, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Lorach, H.; Goetz, G.; Smith, R.; Lei, X.; Mandel, Y.; Kamins, T.; Mathieson, K.; Huie, P.; Harris, J.; Sher, A.; et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 2015, 21, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Weiland, J.D.; Roska, B.; Humayun, M.S. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog. Retin. Eye Res. 2016, 53, 21–47. [Google Scholar] [CrossRef]
- Stingl, K.; Schippert, R.; Bartz-Schmidt, K.U.; Besch, D.; Cottriall, C.L.; Edwards, T.L.; Gekeler, F.; Greppmaier, U.; Kiel, K.; Koitschev, A.; et al. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Front. Neurosci. 2017, 11, 445. [Google Scholar] [CrossRef]
- Humayun, M.S.; Dorn, J.D.; da Cruz, L.; Dagnelie, G.; Sahel, J.A.; Stanga, P.E.; Cideciyan, A.V.; Duncan, J.L.; Eliott, D.; Filley, E.; et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 2012, 119, 779–788. [Google Scholar] [CrossRef]
- da Cruz, L.; Coley, B.F.; Dorn, J.; Merlini, F.; Filley, E.; Christopher, P.; Chen, F.K.; Wuyyuru, V.; Sahel, J.; Stanga, P.; et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol. 2013, 97, 632–636. [Google Scholar] [CrossRef]
- Lowery, A.J.; Rosenfeld, J.V.; Lewis, P.M.; Browne, D.; Mohan, A.; Brunton, E.; Yan, E.; Maller, J.; Mann, C.; Rajan, R.; et al. Restoration of vision using wireless cortical implants: The Monash Vision Group project. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 1041–1044. [Google Scholar] [CrossRef]
- Pouratian, N.; Yoshor, D.; Niketeghad, S.; Dornm, J.; Greenberg, R. Early Feasibility Study of a Neurostimulator to Create Artificial Vision. Neurosurgery 2019, 66, 310-146. [Google Scholar] [CrossRef]
- Fernandez, E.; Alfaro, A.; Soto-Sanchez, C.; Gonzalez-Lopez, P.; Lozano, A.M.; Pena, S.; Grima, M.D.; Rodil, A.; Gomez, B.; Chen, X.; et al. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex. J. Clin. Investig. 2021, 131, e151331. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.; Bartz-Schmidt, K.U.; Besch, D.; Chee, C.K.; Cottriall, C.L.; Gekeler, F.; Groppe, M.; Jackson, T.L.; MacLaren, R.E.; Koitschev, A.; et al. Subretinal Visual Implant Alpha IMS—Clinical trial interim report. Vis. Res. 2015, 111, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, G.; Christopher, P.; Arditi, A.; da Cruz, L.; Duncan, J.L.; Ho, A.C.; Olmos de Koo, L.C.; Sahel, J.A.; Stanga, P.E.; Thumann, G.; et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus(R) II retinal prosthesis system. Clin. Exp. Ophthalmol. 2017, 45, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Chaumette, C. New rehabilitation strategies for patients with Argus II retinal implants. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4573. [Google Scholar]
- Farvardin, M.; Afarid, M.; Attarzadeh, A.; Johari, M.K.; Mehryar, M.; Nowroozzadeh, M.H.; Rahat, F.; Peyvandi, H.; Farvardin, R.; Nami, M. The Argus-II Retinal Prosthesis Implantation; From the Global to Local Successful Experience. Front. Neurosci. 2018, 12, 584. [Google Scholar] [CrossRef] [PubMed]
- Cehajic Kapetanovic, J.; Troelenberg, N.; Edwards, T.L.; Xue, K.; Ramsden, J.D.; Stett, A.; Zrenner, E.; MacLaren, R.E. Highest reported visual acuity after electronic retinal implantation. Acta Ophthalmol. 2020, 98, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Wilke, R.G.H.; Moghadam, G.K.; Lovell, N.H.; Suaning, G.J.; Dokos, S. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J. Neural Eng. 2011, 8, 046016. [Google Scholar] [CrossRef]
- Fornos, A.P.; Sommerhalder, J.; da Cruz, L.; Sahel, J.A.; Mohand-Said, S.; Hafezi, F.; Pelizzone, M. Temporal Properties of Visual Perception on Electrical Stimulation of the Retina. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2720–2731. [Google Scholar] [CrossRef]
- Jensen, R.J.; Rizzo, J.F., III. Responses of ganglion cells to repetitive electrical stimulation of the retina. J. Neural Eng. 2007, 4, S1. [Google Scholar] [CrossRef]
- Freeman, D.K.; Fried, S.I. Multiple Components of Ganglion Cell Desensitization in Response to Prosthetic Stimulation. J. Neural Eng. 2011, 8, 016008. [Google Scholar] [CrossRef]
- Weiland, J.D.; Walston, S.T.; Humayun, M.S. Electrical Stimulation of the Retina to Produce Artificial Vision. Annu. Rev. Vis. Sci. 2016, 2, 273–294. [Google Scholar] [CrossRef] [PubMed]
- Haq, W.; Basavaraju, S.; Speck, A.; Zrenner, E. Nature-inspired saccadic-like electrical stimulation paradigm promotes sustained retinal ganglion cell responses by spatiotemporally alternating activation of contiguous multi-electrode patterns. J. Neural Eng. 2022, 19, 055001. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, N.; Kilgore, K.L. Direct current electrical conduction block of peripheral nerve. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.K.; Jeng, J.S.; Kelly, S.K.; Hartveit, E.; Fried, S.I. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms. J. Neural Eng. 2011, 8, 046005. [Google Scholar] [CrossRef] [PubMed]
- Kameneva, T.; Maturana, M.I.; Hadjinicolaou, A.E.; Cloherty, S.L.; Ibbotson, M.R.; Grayden, D.B.; Burkitt, A.N.; Meffin, H. Retinal ganglion cells: Mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells. J. Neural Eng. 2016, 13, 016017. [Google Scholar] [CrossRef] [PubMed]
- Haq, W.; Dietter, J.; Zrenner, E. Electrical activation of degenerated photoreceptors in blind mouse retina elicited network-mediated responses in different types of ganglion cells. Sci. Rep. 2018, 8, 16998. [Google Scholar] [CrossRef] [PubMed]
- Keeler, C.E. The Inheritance of a Retinal Abnormality in White Mice. Proc. Natl. Acad. Sci. USA 1924, 10, 329–333. [Google Scholar] [CrossRef]
- Briggman, K.L.; Euler, T. Bulk electroporation and population calcium imaging in the adult mammalian retina. J. Neurophysiol. 2011, 105, 2601–2609. [Google Scholar] [CrossRef]
- Baden, T.; Berens, P.; Franke, K.; Roman Roson, M.; Bethge, M.; Euler, T. The functional diversity of retinal ganglion cells in the mouse. Nature 2016, 529, 345–350. [Google Scholar] [CrossRef]
- Gleichmann, M.; Mattson, M.P. Neuronal calcium homeostasis and dysregulation. Antioxid. Redox Signal. 2011, 14, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Brini, M.; Cali, T.; Ottolini, D.; Carafoli, E. Neuronal calcium signaling: Function and dysfunction. Cell Mol. Life Sci. 2014, 71, 2787–2814. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.M.; Miller, M.W.; Brayman, A.A.; Carstensen, E.L. Electric field-induced inhibition of electrogenic pumping in Nitella: Analysis for transmembrane potential hypo- and hyperpolarization effects. Environ. Exp. Bot. 1993, 33, 209–223. [Google Scholar] [CrossRef]
- Beurrier, C.; Bioulac, B.; Audin, J.; Hammond, C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J. Neurophysiol. 2001, 85, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- von Gersdorff, H.; Matthews, G. Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons. J. Neurosci. 1996, 16, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Borde, M.; Bonansco, C.; Fernandez de Sevilla, D.; Le Ray, D.; Buno, W. Voltage-clamp analysis of the potentiation of the slow Ca2+-activated K+ current in hippocampal pyramidal neurons. Hippocampus 2000, 10, 198–206. [Google Scholar] [CrossRef]
- Sah, P.; Davies, P. Calcium-activated potassium currents in mammalian neurons. Clin. Exp. Pharmacol. Physiol. 2000, 27, 657–663. [Google Scholar] [CrossRef]
- Kovacs-Oller, T.; Szarka, G.; Ganczer, A.; Tengolics, A.; Balogh, B.; Volgyi, B. Expression of Ca2+-Binding Buffer Proteins in the Human and Mouse Retinal Neurons. Int. J. Mol. Sci. 2019, 20, 2229. [Google Scholar] [CrossRef]
- Mattson, M.P.; LaFerla, F.M.; Chan, S.L.; Leissring, M.A.; Shepel, P.N.; Geiger, J.D. Calcium signaling in the ER: Its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2000, 23, 222–229. [Google Scholar] [CrossRef]
- Hajieva, P.; Baeken, M.W.; Moosmann, B. The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders. Neurosci. Lett. 2018, 663, 29–38. [Google Scholar] [CrossRef]
- Lee, J.I.; Werginz, P.; Fried, S.I. Variability in Depolarization Sensitivity Underlies Differential Responses to High-frequency Stimulation of ON and OFF RGCs. In Proceedings of the 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), Baltimore, MD, USA, 24–27 April 2023; pp. 1–4. [Google Scholar]
- Borde, M.; Cazalets, J.R.; Buno, W. Activity-dependent response depression in rat hippocampal CA1 pyramidal neurons in vitro. J. Neurophysiol. 1995, 74, 1714–1729. [Google Scholar] [CrossRef] [PubMed]
- Borde, M.; Bonansco, C.; Buno, W. The activity-dependent potentiation of the slow Ca2+-activated K+ current regulates synaptic efficacy in rat CA1 pyramidal neurons. Pflugers Arch. 1999, 437, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Sekirnjak, C.; Hottowy, P.; Sher, A.; Dabrowski, W.; Litke, A.M.; Chichilnisky, E.J. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J. Neurophysiol. 2006, 95, 3311–3327. [Google Scholar] [CrossRef] [PubMed]
- Theis, L.; Berens, P.; Froudarakis, E.; Reimer, J.; Rosón, M.R.; Baden, T.; Euler, T.; Tolias, A.S.; Bethge, M. Supervised learning sets benchmark for robust spike rate inference from calcium imaging signals. bioRxiv 2015, arXiv:1503.00135. [Google Scholar]
- Pachitariu, M.; Stringer, C.; Harris, K.D. Robustness of Spike Deconvolution for Neuronal Calcium Imaging. J. Neurosci. 2018, 38, 7976–7985. [Google Scholar] [CrossRef] [PubMed]
- Fleming, W.; Jewell, S.; Engelhard, B.; Witten, D.M.; Witten, I.B. Inferring spikes from calcium imaging in dopamine neurons. PLoS ONE 2021, 16, e0252345. [Google Scholar] [CrossRef] [PubMed]
- Werginz, P.; Benav, H.; Zrenner, E.; Rattay, F. Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Res. 2015, 111, 170–181. [Google Scholar] [CrossRef]
- Rattay, F.; Bassereh, H.; Stiennon, I. Compartment models for the electrical stimulation of retinal bipolar cells. PLoS ONE 2018, 13, e0209123. [Google Scholar] [CrossRef]
- Werginz, P.; Rattay, F. The impact of calcium current reversal on neurotransmitter release in the electrically stimulated retina. J. Neural Eng. 2016, 13, 046013. [Google Scholar] [CrossRef]
- Jensen, R.J.; Rizzo, J.F., 3rd. Activation of ganglion cells in wild-type and rd1 mouse retinas with monophasic and biphasic current pulses. J. Neural Eng. 2009, 6, 035004. [Google Scholar] [CrossRef]
- Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D.L. Tickling the retina: Integration of subthreshold electrical pulses can activate retinal neurons. J. Neural Eng. 2016, 13, 046004. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Haji Ghaffari, D.; Misra, R.; Weiland, J.D. Retinal ganglion cell desensitization is mitigated by varying parameter constant excitation pulse trains. Front. Cell. Neurosci. 2022, 16, 897146. [Google Scholar] [CrossRef] [PubMed]
- Chenais, N.A.L.; Airaghi Leccardi, M.J.I.; Ghezzi, D. Naturalistic spatiotemporal modulation of epiretinal stimulation increases the response persistence of retinal ganglion cell. J. Neural Eng. 2021, 18, 016016. [Google Scholar] [CrossRef] [PubMed]
- Power, M.; Das, S.; Schutze, K.; Marigo, V.; Ekstrom, P.; Paquet-Durand, F. Cellular mechanisms of hereditary photoreceptor degeneration—Focus on cGMP. Prog. Retin. Eye Res. 2020, 74, 100772. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peiroten, L.; Zrenner, E.; Haq, W. Artificial Vision: The High-Frequency Electrical Stimulation of the Blind Mouse Retina Decay Spike Generation and Electrogenically Clamped Intracellular Ca2+ at Elevated Levels. Bioengineering 2023, 10, 1208. https://doi.org/10.3390/bioengineering10101208
Peiroten L, Zrenner E, Haq W. Artificial Vision: The High-Frequency Electrical Stimulation of the Blind Mouse Retina Decay Spike Generation and Electrogenically Clamped Intracellular Ca2+ at Elevated Levels. Bioengineering. 2023; 10(10):1208. https://doi.org/10.3390/bioengineering10101208
Chicago/Turabian StylePeiroten, Lucia, Eberhart Zrenner, and Wadood Haq. 2023. "Artificial Vision: The High-Frequency Electrical Stimulation of the Blind Mouse Retina Decay Spike Generation and Electrogenically Clamped Intracellular Ca2+ at Elevated Levels" Bioengineering 10, no. 10: 1208. https://doi.org/10.3390/bioengineering10101208