Hybrid Therapeutic Device (CUHK-OA-M2) for Relieving Symptoms Induced by Knee Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Design of the Hybrid Therapeutic Device
2.2. Control System of the Hybrid Therapeutic Device
2.3. Lab Experiment Setup for Massage Therapy, Heat Therapy, and LLLT
2.4. Experimental Setup and Development
2.5. Pilot Test on Elderly Subjects with OA Symptoms
2.5.1. Inclusion and Exclusion
2.5.2. Enrollment, Eligibility Assessment, and Grouping
2.5.3. Intervention Protocol
2.5.4. Evaluation of Pain and Knee Function
2.6. Statistical Analysis
3. Results
3.1. The CUHK-OA-M2 Delivered Effective Massage Force, Heating, and Laser Energy
3.2. The Pilot Test Indicated the Treatment Efficacy in Terms of Symptom Relief for Subjects with Knee OA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Felson, D. The epidemiology of knee osteoarthritis: Results from the Framingham Osteoarthritis Study. Semin. Arthritis Rheum. 1990, 20, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Xia, C.; Xu, H.; Ge, Q.; Shi, Z.; Kong, L.; Zhang, P.; Xu, R.; Zou, Z.; Wang, P.; et al. Defining disease progression in Chinese mainland people: Association between bone mineral density and knee osteoarthritis. J. Orthop. Transl. 2021, 26, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Almeida, G.; Kanade, T.; Hodgins, J. Classifying Human Motion Quality for Knee Osteoarthritis Using Accelerometers. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Altman, R.; Asch, E.; Bloch, D.; Bole, G.; Borenstein, D.; Brandt, K.; Christy, W.; Cooke, T.D.; Greenwald, R.; Hochberg, M.; et al. Development of criteria for the classification and reporting of osteoarthritis: Classification of osteoarthritis of the knee. Arthritis Rheumatol. 1986, 29, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, Z.; He, Y. Exosomes in the Pathogenesis, Progression, and Treatment of Osteoarthritis. Bioengineering 2022, 9, 99. [Google Scholar] [CrossRef]
- Scopaz, K.; Piva, S.; Wisniewski, S.; Fitzgerald, G. Relationships of fear, anxiety, and depression with physical function in patients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 2009, 90, 1866–1873. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Clement, N.; Bhonde, R.; Ikegawa, S.; Mascarenhas, V.V.; Di Matteo, B.; Ceppa, D.P.; Chen, C.; Chen, H.; Cuesta, M.A.; et al. Society for translational medicine-expert consensus on the treatment of osteoarthritis. J. Thorac. Dis. 2019, 11, 319. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, J.; Li, G.; Yuan, J.; Ebert, J.; Li, H.; Papadimitriou, J.; Wang, Q.; Wood, D.; Jones, C.W.; et al. Pathogenesis and clinical management of obesity-related knee osteoarthritis: Impact of mechanical loading. J. Orthop. Transl. 2020, 24, 66–75. [Google Scholar] [CrossRef]
- Gonzalez-Franco, M.; Gilroy, S.; Moore, J. Empowering Patients to Perform Physical Therapy at Home. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014. [Google Scholar]
- Zhang, W.; Moskowitz, R.; Nuki, G.; Abramson, S.; Altman, R.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Dougados, M.; et al. OARSI recommendations for the management of hip and knee osteoarthritis, part I: Critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthr. Cartil. 2007, 15, 981–1000. [Google Scholar] [CrossRef] [Green Version]
- Witt, C.; Brinkhaus, B.; Jena, S.; Linde, K.; Streng, A.; Wagenpfeil, S.; Hummelsberger, J.; Walther, H.U.; Melchart, D.; Willich, S.N.; et al. Acupuncture in patients with osteoarthritis of the knee: A randomised trial. Lancet 2005, 366, 136–143. [Google Scholar] [CrossRef]
- Özdemir, F.; Birtane, M.; Kokino, S. The clinical efficacy of low-power laser therapy on pain and function in cervical osteoarthritis. Clin. Rheumatol. 2001, 20, 181–184. [Google Scholar] [CrossRef]
- Gur, A.; Cosut, A.; Jale-Sarac, A.; Cevik, R.; Nas, K.; Uyar, A. Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: A double-blind and randomized-controlled trial. Lasers Surg. Med. 2003, 33, 330–338. [Google Scholar] [CrossRef]
- Tascioglu, F.; Armagan, O.; Tabak, Y.; Corapci, I.; Oner, C. Low power laser treatment in patients with knee osteoarthritis. Swiss Med. Wkly. 2004, 134, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Beckerman, H.; de Bie, R.A.; Bouter, L.M.; De Cuyper, H.J.; Oostendorp, R.A. The efficacy of laser therapy for musculoskeletal and skin disorders: A criteria-based meta-analysis of randomized clinical trials. Phys. Ther. 1992, 72, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, R.; Armati, P.; Laakso, E.-L.; Bjordal, J.M.; Baxter, G.D. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: A systematic review. Photomed. Laser Surg. 2011, 29, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, L.; Grygorczyk, R.; Shen, X.; Schwarz, W. Modulation of extracellular ATP content of mast cells and DRG neurons by irradiation: Studies on underlying mechanism of low-level-laser therapy. Mediat. Inflamm. 2015, 2015, 630361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosso, M.P.d.O.; Buchaim, D.V.; Kawano, N.; Furlanette, G.; Pomini, K.T.; Buchaim, R.L. Photobiomodulation Therapy (PBMT) in Peripheral Nerve Regeneration: A Systematic Review. Bioengineering 2018, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, M.C.; Altman, R.D.; April, K.T.; Benkhalti, M.; Guyatt, G.; McGowan, J.; Towheed, T.; Welch, V.; Wells, G.; Tugwell, T.; et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 2012, 64, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, S.; Watanabe, A.; Oda, H.; Ikeda, H. Effectiveness of thermotherapy using a heat and steam generating sheet for cartilage in knee osteoarthritis. J. Phys. Ther. Sci. 2014, 26, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Cortés Godoy, V.; Gallego Izquierdo, T.; Lázaro Navas, I. Effectiveness of massage therapy as co-adjuvant treatment to exercise in osteoarthritis of the knee: A randomized control trial. J. Back Musculoskelet. Rehabil. 2014, 27, 521–529. [Google Scholar] [CrossRef]
- Nelson, N.L.; Churilla, J.R. Massage Therapy for Pain and Function in Patients With Arthritis: A Systematic Review of Randomized Controlled Trials. Am. J. Phys. Med. Rehabil. 2017, 96, 665–672. [Google Scholar] [CrossRef]
- Perlman, A.I.; Sabina, A.; Williams, A.-L.; Njike, V.Y.; Katz, D.L. Massage therapy for osteoarthritis of the knee: A randomized controlled trial. Arch. Intern. Med. 2006, 166, 2533–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, A.; Ramlee, M.H. Low Level Laser Therapy and It’s Effects on Different Musculoskeletal Conditions. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020. [Google Scholar]
- Shindo, Y.; Matsushita, T.; Nakamura, K.; Kato, K.; Kurosaki, H.; Takahashi, K. Improvement of resonant cavity applicator for thermotherapy of osteoarthritis. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015. [Google Scholar]
- Fatemy, E.; Bakhtiyari, A.; Alizadeh, A.; Ghasemi, F.; Mahmoudi, S.; Ghorbani, R. The effect of Swedish massage on knee osteoarthritis. Ann. Mil. Health Sci. Res. 2010, 8, 200–204. [Google Scholar]
- Sato, T.; Mochizuki, T.; Katsumi, R.; Takahashi, Y. Functionally Oriented Alignment of the Lower Extremity Reflecting the Direction of Gait for Healthy Elderly, Knee Osteoarthritis, and Total Knee Arthroplasty Subjects. J. Med. Biol. Eng. 2020, 40, 887–898. [Google Scholar] [CrossRef]
- Lou, S.Z.; Su, F.C.; Chen, Y.C. Effects of Arch Support Insoles on Gait Patterns of Patients with Knee Osteoarthritis. J. Med. Biol. Eng. 2015, 35, 202–208. [Google Scholar] [CrossRef]
- Salim, G.M.; Zawawi, M.A. Optical Sensor Assembly on knee Brace for continuous knee monitoring application. J. Med. Biol. Eng. 2022, 42, 595–603. [Google Scholar] [CrossRef]
- Nematollahi, M.; Baghbaderani, K.S.; Amerinatanzi, A.; Zamanian, H.; Elahinia, M. Application of NiTi in Assistive and Rehabilitation Devices: A Review. Bioengineering 2019, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Colborn, G.L.; Lumsden, A.B.; Taylor, B.S.; Skandalakis, J.E. The surgical anatomy of the popliteal artery. Am. Surg. 1994, 60, 238–246. [Google Scholar]
- Vloka, J.D.; Hadžić, A.; Kitain, E.; Lesser, J.B.; Kuroda, M.; April, E.W.; Thys, D.M. Anatomic considerations for sciatic nerve block in the popliteal fossa through the lateral approach. Reg. Anesth. J. Neural Blockade Obstet. Surg. Pain Control. 1996, 21, 414–418. [Google Scholar]
- Farrah, J.; Saharay, M.; Georgiannos, S.N.; Scurr, J.H.; Smith, P.D.C. Variable venous anatomy of the popliteal fossa demonstrated by duplex scanning. Dermatol. Surg. 1998, 24, 901–903. [Google Scholar] [CrossRef]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar]
- Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.Y.; Carroll, J.D.; Hamblin, M.R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef] [Green Version]
- Cotler, H.B.; Chow, R.T.; Hamblin, M.R.; Carroll, J. The use of low level laser therapy (lllt) for musculoskeletal pain. MOJ Orthop Rheumatol 2015, 2, 00068. [Google Scholar] [CrossRef] [PubMed]
- Farivar, S.; Malekshahabi, T.; Shiari, R. Biological effects of low level laser therapy. J. Lasers Med. Sci. 2014, 5, 58–62. [Google Scholar] [PubMed]
- Gao, Z.; Guo, X.; Chen, J.; Duan, C. Hyaluronic acid inhibited the upregulation of heat shock protein 70 in human chondrocytes from osteoarthritis and Kashin-Beck disease. Biocell 2019, 43, 99–102. [Google Scholar]
- Hojo, T.; Fujioka, M.; Otsuka, G.; Inoue, S.; Kim, U.; Kubo, T. Effect of heat stimulation on viability and proteoglycan metabolism of cultured chondrocytes: Preliminary report. J. Orthop. Sci. 2003, 8, 396–399. [Google Scholar] [CrossRef]
- Ito, A.; Aoyama, T.; Tajino, J.; Nagai, M.; Yamaguchi, S.; Iijima, H.; Kuroki, H.; Zhang, X.; Akiyama, H.; Kuroki, H. Effects of the thermal environment on articular chondrocyte metabolism: A fundamental study to facilitate establishment of an effective thermotherapy for osteoarthritis. J. Jpn. Phys. Ther. Assoc. 2014, 17, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Son, Y.; Kim, H.; Choi, W.; Chun, C.; Chun, J. RNA-binding protein ZFP36L1 regulates osteoarthritis by modulating members of the heat shock protein 70 family. Nat. Commun. 2019, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Ko, T.; Lee, S.; Lee, D. Manual therapy and exercise for oa knee: Effects on muscle strength, proprioception, and functional performance. J. Phys. Ther. Sci. 2009, 21, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Han, X.; Wang, L.; Zhang, W.; Cui, J.; He, Z.; Xie, K.; Jiang, X.; Du, J.; Ai, S.; et al. Associations of osteoclastogenesis and nerve growth in subchondral bone marrow lesions with clinical symptoms in knee osteoarthritis. J. Orthop. Transl. 2022, 32, 69–76. [Google Scholar] [CrossRef]
- Ali, A.; Rosenberger, L.; Weiss, T.R.; Milak, C.; Perlman, A.I. Massage Therapy and Quality of Life in Osteoarthritis of the Knee: A Qualitative Study. Pain Med. 2016, 18, 1168–1175. [Google Scholar] [CrossRef]
- Brosseau, L.; Yonge, K.; Welch, V.; Marchand, S.; Judd, M.; Wells, G.A. Thermotherapy for treatment of osteoarthritis. Cochrane Database Syst. Rev. 2003, 2003, CD00452. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Naim, J.O.; McGowan, M.; Ippolito, K.; Lanzafame, R.J. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem. Photobiol. 1997, 66, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Tomazoni, S.S.; Leal-Junior, E.C.P.; Pallotta, R.C.; Teixeira, S.; de Almeida, P.; Lopes-Martins, R.Á.B. Effects of photobiomodulation therapy, pharmacological therapy, and physical exercise as single and/or combined treatment on the inflammatory response induced by experimental osteoarthritis. Lasers Med. Sci. 2017, 32, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Esnouf, A.; Wright, P.A.; Moore, J.C.; Ahmed, S. Depth of Penetration of an 850nm Wavelength Low Level Laser in Human Skin. Acupunct. Electro-Ther. Res. 2007, 32, 81–86. [Google Scholar] [CrossRef] [PubMed]
Module | Components | No. | Stimulation Therapy * |
---|---|---|---|
Module 1 | Actuator (DC motor, GA6-N20) | 1 | Massage therapy |
Roller A | 5 | ||
Roller B | 5 | ||
Module 2 | 660 nm laser generator | 2 | LLLT |
850 nm laser generator | 6 | ||
Heat sink | 1 | ||
Module 3 | Heating wire (nickel-chromium alloy) | 295 cm | HT |
Massage Therapy | |
Parameter | Magnitude |
No. of rollers Nr | 5 |
Rotation direction | From posterior to anterior |
Rotation speed Sr | 20 rpm |
Stimulation pulse Mp | 100 times/min |
Massage pressure | 9–30 kPa |
Stimulation depth Dp | 3–15 mm |
Low-level laser therapy | |
Parameter | Magnitude |
Power density (Peak) | 20 mW/cm2 |
Power density (Effective) | 5 mW/cm2 |
Dose | 3–20 J/cm2 |
Irradiation area | 5–10 cm2 |
Laser wavelength | 660 nm and 850 nm |
Heat therapy | |
Parameter | Magnitude |
Temperature | 40–42 degrees centigrade |
Irradiance mW/cm2 | |||
---|---|---|---|
Measurement Point | Left Side | Middle | Right Side |
Experiment | 6.6 | 19.1 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Chu, K.; He, X.; Li, Y.; Zhou, L.; Xu, X.; Liao, W.-H.; Qin, L. Hybrid Therapeutic Device (CUHK-OA-M2) for Relieving Symptoms Induced by Knee Osteoarthritis. Bioengineering 2023, 10, 95. https://doi.org/10.3390/bioengineering10010095
Zou L, Chu K, He X, Li Y, Zhou L, Xu X, Liao W-H, Qin L. Hybrid Therapeutic Device (CUHK-OA-M2) for Relieving Symptoms Induced by Knee Osteoarthritis. Bioengineering. 2023; 10(1):95. https://doi.org/10.3390/bioengineering10010095
Chicago/Turabian StyleZou, Li, Kisum Chu, Xuan He, Ye Li, Liangbin Zhou, Xiayi Xu, Wei-Hsin Liao, and Ling Qin. 2023. "Hybrid Therapeutic Device (CUHK-OA-M2) for Relieving Symptoms Induced by Knee Osteoarthritis" Bioengineering 10, no. 1: 95. https://doi.org/10.3390/bioengineering10010095
APA StyleZou, L., Chu, K., He, X., Li, Y., Zhou, L., Xu, X., Liao, W. -H., & Qin, L. (2023). Hybrid Therapeutic Device (CUHK-OA-M2) for Relieving Symptoms Induced by Knee Osteoarthritis. Bioengineering, 10(1), 95. https://doi.org/10.3390/bioengineering10010095