In Vivo Biomechanical Measurements of the Cornea
Abstract
:1. Introduction
2. Perturbation-Based Measurements
2.1. Ocular Response Analyzer
2.2. Corneal Visualization Scheimpflug Technology
2.3. Optical Coherence Elastography
2.4. Mechanical Waves
2.4.1. Supersonic Shear-Wave Imaging
2.4.2. Ultrasound Surface Wave Elastometry
3. Non-Perturbation-Based Measurements
3.1. Brillouin Microscopy
3.2. Phase-Decorrelation OCT
3.3. Finite Element Method
Stress–Strain Index Mapping
4. Corneal Biomechanics in Clinical Settings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salomão, M.Q.; Hofling-Lima, A.L.; Gomes Esporcatte, L.P.; Lopes, B.; Vinciguerra, R.; Vinciguerra, P.; Bühren, J.; Sena, N.; Luz Hilgert, G.S.; Ambrósio, R. The role of corneal biomechanics for the evaluation of ectasia patients. Int. J. Environ. Res. Public Health 2020, 17, 2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beshtawi, I.M.; Akhtar, R.; Hillarby, M.C.; O’Donnell, C.; Zhao, X.; Brahma, A.; Carley, F.; Derby, B.; Radhakrishnan, H. Biomechanical changes after repeated collagen cross-linking on human corneas assessed in vitro using scanning acoustic microscopy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Shajari, M.; Kolb, C.M.; Agha, B.; Steinwender, G.; Müller, M.; Herrmann, E.; Schmack, I.; Mayer, W.J.; Kohnen, T. Comparison of standard and accelerated corneal cross-linking for the treatment of keratoconus: A meta-analysis. Acta Ophthalmol. 2019, 97, e22–e35. [Google Scholar] [CrossRef] [Green Version]
- Pepose, J.S.; Feigenbaum, S.K.; Qazi, M.A.; Sanderson, J.P.; Roberts, C.J. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am. J. Ophthalmol. 2007, 143, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Seitz, B.; Torres, F.; Langenbucher, A.; Behrens, A.; Suárez, E. Posterior corneal curvature changes after myopic laser in situ keratomileusis. Ophthalmology 2001, 108, 666–672, discussion 73. [Google Scholar] [CrossRef]
- Slade, S.G.; Durrie, D.S.; Binder, P.S. A prospective, contralateral eye study comparing thin-flap LASIK (sub-Bowman keratomileusis) with photorefractive keratectomy. Ophthalmology 2009, 116, 1075–1082. [Google Scholar] [CrossRef]
- Baradaran-Rafii, A.; Eslani, M.; Sadoughi, M.M.; Esfandiari, H.; Karimian, F. Anwar versus Melles deep anterior lamellar keratoplasty for keratoconus: A prospective randomized clinical trial. Ophthalmology 2013, 120, 252–259. [Google Scholar] [CrossRef]
- Wu, W.; Dou, R.; Wang, Y. Comparison of corneal biomechanics between low and high myopic eyes-A meta-analysis. Am. J. Ophthalmol. 2019, 207, 419–425. [Google Scholar] [CrossRef]
- Wallace, H.B.; Misra, S.L.; Li, S.S.; McKelvie, J. Biomechanical changes in the cornea following cataract surgery: A prospective assessment with the Corneal Visualisation Scheimpflug Technology. Clin. Exp. Ophthalmol. 2019, 47, 461–468. [Google Scholar] [CrossRef]
- Liu, J.; Roberts, C.J. Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis. J. Cataract Refract. Surg. 2005, 31, 146–155. [Google Scholar] [CrossRef]
- Hatami-Marbini, H. Viscoelastic shear properties of the corneal stroma. J. Biomech. 2014, 47, 723–728. [Google Scholar] [CrossRef]
- Dupps, W.J., Jr. Hysteresis: New mechanospeak for the ophthalmologist. J. Cataract Refract. Surg. 2007, 33, 1499–1501. [Google Scholar] [CrossRef]
- Friedenwald, J.S. Contribution to the Theory and Practice of Tonometry. Am. J. Ophthalmol. 1937, 20, 985–1024. [Google Scholar] [CrossRef]
- Luce, D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 2005, 31, 156–162. [Google Scholar] [CrossRef]
- Wang, S.; Larin, K.V.; Li, J.; Vantipalli, S.; Manapuram, R.K.; Aglyamov, S.; Emelianov, S.; Twa, M.D. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity. Laser Phys. Lett. 2013, 10, 075605. [Google Scholar] [CrossRef]
- Tanter, M.; Touboul, D.; Gennisson, J.L.; Bercoff, J.; Fink, M. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans. Med. Imaging 2009, 28, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Dupps, W.J., Jr.; Netto, M.V.; Herekar, S.; Krueger, R.R. Surface wave elastometry of the cornea in porcine and human donor eyes. J. Refract. Surg. 2007, 23, 66–75. [Google Scholar] [CrossRef]
- Scarcelli, G.; Pineda, R.; Yun, S.H. Brillouin optical microscopy for corneal biomechanics. Investig. Ophthalmol. Vis. Sci. 2012, 53, 185–190. [Google Scholar] [CrossRef]
- Pandolfi, A.; Holzapfel, G.A. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J. Biomech. Eng. 2008, 130, 061006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studer, H.; Larrea, X.; Riedwyl, H.; Büchler, P. Biomechanical model of human cornea based on stromal microstructure. J. Biomech. 2010, 43, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Hjortdal, J.O. Regional elastic performance of the human cornea. J. Biomech. 1996, 29, 931–942. [Google Scholar] [CrossRef]
- Boyce, B.L.; Grazier, J.M.; Jones, R.E.; Nguyen, T.D. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 2008, 29, 3896–3904. [Google Scholar] [CrossRef]
- Elsheikh, A.; Anderson, K. Comparative study of corneal strip extensometry and inflation tests. J. R. Soc. Interface 2005, 2, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Pallikaris, I.G.; Kymionis, G.D.; Ginis, H.S.; Kounis, G.A.; Tsilimbaris, M.K. Ocular rigidity in living human eyes. Investig. Ophthalmol. Vis. Sci. 2005, 46, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, M.; Etesami, I.; Yavari, Z.; Naderan, M.; Abdollahinia, F.; Jabbarvand, M. Ocular response analyzer parameters in healthy, keratoconus suspect and manifest keratoconus eyes. Oman J. Ophthalmol. 2015, 8, 102–106. [Google Scholar] [CrossRef]
- Kling, S.; Marcos, S. Contributing factors to corneal deformation in air puff measurements. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5078–5085. [Google Scholar] [CrossRef] [Green Version]
- Touboul, D.; Roberts, C.; Kérautret, J.; Garra, C.; Maurice-Tison, S.; Saubusse, E.; Colin, J. Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J. Cataract Refract. Surg. 2008, 34, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Laiquzzaman, M.; Cunliffe, I.; Mantry, S. The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. Cont. Lens Anterior Eye 2006, 29, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Luz, A.; Lopes, B.; Hallahan, K.M.; Valbon, B.; Fontes, B.; Schor, P.; Dupps, W.J.; Ambrósio, R. Discriminant value of custom ocular response analyzer waveform derivatives in forme fruste keratoconus. Am. J. Ophthalmol. 2016, 164, 14–21. [Google Scholar] [CrossRef]
- Hallahan, K.M.; Sinha Roy, A.; Ambrosio, R.; Salomao, M.; Dupps, W.J. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology 2014, 121, 459–468. [Google Scholar] [CrossRef]
- Correia, F.F.; Ramos, I.; Roberts, C.J.; Steinmueller, A.; Krug, M.; Ambrósio, R. Impact of chamber pressure and material properties on the deformation response of corneal models measured by dynamic ultra-high-speed Scheimpflug imaging. Arq. Bras. Oftalmol. 2013, 76, 278–281. [Google Scholar] [CrossRef] [Green Version]
- Koprowski, R.; Ambrósio, R., Jr.; Reisdorf, S. Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement. J. Biophotonics 2015, 8, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Chang, R.T.; Wong, I.Y.; Lai, J.S.; Lee, J.W.; Singh, K. Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J. Glaucoma 2016, 25, e603–e609. [Google Scholar] [CrossRef] [PubMed]
- Salvetat, M.L.; Zeppieri, M.; Tosoni, C.; Felletti, M.; Grasso, L.; Brusini, P. Corneal deformation parameters provided by the Corvis-ST pachy-tonometer in healthy subjects and glaucoma patients. J. Glaucoma 2015, 24, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Asgari, S.; Mortazavi, M.; Ghaffari, R. Evaluation of corneal biomechanics after excimer laser corneal refractive surgery in high myopic patients using dynamic Scheimpflug technology. Eye Contact Lens 2017, 43, 371–377. [Google Scholar] [CrossRef]
- Vinciguerra, R.; Ambrósio, R., Jr.; Elsheikh, A.; Hafezi, F.; Yong Kang, D.S.; Kermani, O.; Koh, S.; Lu, N.; Padmanabhan, P.; Roberts, C.J.; et al. Detection of postlaser vision correction ectasia with a new combined biomechanical index. J. Cataract Refract. Surg. 2021, 47, 1314–1318. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.J.; Mahmoud, A.M.; Bons, J.P.; Hossain, A.; Elsheikh, A.; Vinciguerra, R.; Vinciguerra, P.; Ambrósio, R. Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic Scheimpflug analyzer. J. Refract. Surg. 2017, 33, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, G.; Hassan, Z.; Csutak, A.; Szalai, E.; Berta, A.; Modis, L. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J. Refract. Surg. 2013, 29, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Bak-Nielsen, S.; Pedersen, I.B.; Ivarsen, A.; Hjortdal, J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea 2015, 34, 71–77. [Google Scholar] [CrossRef]
- Vinciguerra, R.; Elsheikh, A.; Roberts, C.J.; Ambrósio, R.; Kang, D.S.; Lopes, B.T.; Morenghi, E.; Azzolini, C.; Vinciguerra, P. Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J. Refract. Surg. 2016, 32, 550–561. [Google Scholar] [CrossRef]
- Schmitt, J. OCT elastography: Imaging microscopic deformation and strain of tissue. Opt. Express 1998, 3, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Ford, M.R.; Dupps, W.J., Jr.; Rollins, A.M.; Sinha, R.A.; Hu, Z. Method for optical coherence elastography of the cornea. J. Biomed. Opt. 2011, 16, 016005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Li, J.; Singh, M.; Wu, C.; Liu, C.H.; Raghunathan, R.; Aglyamov, S.R.; Vantipalli, S.; Twa, M.D.; Larin, K.V. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model. J. Mech. Behav. Biomed. Mater. 2017, 66, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Larin, K.V. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt. Lett. 2014, 39, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Li, J.; Han, Z.; Wu, C.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography. J. Refract. Surg. 2016, 32, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Aglyamov, S.R.; Li, J.; Singh, M.; Wang, S.; Vantipalli, S.; Wu, C.; Liu, C.H.; Twa, M.D.; Larin, K.V. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation. J. Biomed. Opt. 2015, 20, 20501. [Google Scholar] [CrossRef] [Green Version]
- Twa, M.D.; Li, J.; Vantipalli, S.; Singh, M.; Aglyamov, S.; Emelianov, S.; Larin, K.V. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking. Biomed. Opt. Express 2014, 5, 1419–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Stefano, V.S.; Ford, M.R.; Seven, I.; Dupps, W.J. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography. PLoS ONE 2018, 13, e0209480. [Google Scholar] [CrossRef] [Green Version]
- Kling, S. Optical coherence elastography by ambient pressure modulation for high-resolution strain mapping applied to patterned cross-linking. J. R. Soc. Interface 2020, 17, 20190786. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Caneiro, D.; Karnowski, K.; Kaluzny, B.J.; Kowalczyk, A.; Wojtkowski, M. Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system. Opt. Express 2011, 19, 14188–14199. [Google Scholar] [CrossRef]
- Wang, S.; Larin, K.V. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. Biomed. Opt. Express 2014, 5, 3807–3821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, G.; Aglyamov, S.R.; Larin, K.V.; Twa, M.D. In Vivo Human Corneal Shear-wave Optical Coherence Elastography. Optom. Vis. Sci. 2021, 98, 58–63. [Google Scholar] [CrossRef]
- Li, C.; Guan, G.; Huang, Z.; Johnstone, M.; Wang, R.K. Noncontact all-optical measurement of corneal elasticity. Opt. Lett. 2012, 37, 1625–1627. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Qian, X.; Chen, R.; Wodnicki, R.; Sun, Y.; Li, R.; Li, Y.; Shung, K.K.; Chen, Z.; Zhou, Q. 2-D Ultrasonic Array-Based Optical Coherence Elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1096–1104. [Google Scholar] [CrossRef]
- Bercoff, J.; Tanter, M.; Fink, M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.M.; Aubry, J.F.; Fink, M.; Bercoff, J.; Tanter, M. In Vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7545–7552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touboul, D.; Gennisson, J.L.; Nguyen, T.M.; Robinet, A.; Roberts, C.J.; Tanter, M.; Grenier, N. Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1976–1984. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.M.; Aubry, J.F.; Touboul, D.; Fink, M.; Gennisson, J.L.; Bercoff, J.; Tanter, M. Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: A pilot study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5948–5954. [Google Scholar] [CrossRef]
- Ferraioli, G.; Parekh, P.; Levitov, A.B.; Filice, C. Shear wave elastography for evaluation of liver fibrosis. J. Ultrasound Med. 2014, 33, 197–203. [Google Scholar] [CrossRef]
- Chen, X.M.; Cui, L.G.; He, P.; Shen, W.W.; Qian, Y.J.; Wang, J.R. Shear wave elastographic characterization of normal and torn achilles tendons: A pilot study. J. Ultrasound Med. 2013, 32, 449–455. [Google Scholar] [CrossRef]
- Detorakis, E.T.; Drakonaki, E.E.; Ginis, H.; Karyotakis, N.; Pallikaris, I.G. Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes. Acta Med. 2014, 57, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sit, A.J.; Lin, S.C.; Kazemi, A.; McLaren, J.W.; Pruet, C.M.; Zhang, X. In Vivo noninvasive measurement of Young’s modulus of elasticity in human eyes: A feasibility study. J. Glaucoma 2017, 26, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Rocha, K.M.; Ramos-Esteban, J.C.; Qian, Y.; Herekar, S.; Krueger, R.R. Comparative study of riboflavin-UVA cross-linking and “flash-linking” using surface wave elastometry. J. Refract. Surg. 2008, 24, S748–S751. [Google Scholar] [CrossRef] [PubMed]
- Scarcelli, G.; Yun, S.H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photon. 2008, 2, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Scarcelli, G.; Yun, S.H. In vivo Brillouin optical microscopy of the human eye. Opt. Express 2012, 20, 9197–9202. [Google Scholar] [CrossRef] [Green Version]
- Scarcelli, G.; Besner, S.; Pineda, R.; Yun, S.H. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4490–4495. [Google Scholar] [CrossRef] [Green Version]
- Scarcelli, G.; Kling, S.; Quijano, E.; Pineda, R.; Marcos, S.; Yun, S.H. Brillouin microscopy of collagen crosslinking: Noncontact depth-dependent analysis of corneal elastic modulus. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1418–1425. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Scarcelli, G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat. Protoc. 2021, 16, 1251–1275. [Google Scholar] [CrossRef]
- Blackburn, B.J.; Gu, S.; Ford, M.R.; de Stefano, V.; Jenkins, M.W.; Dupps, W.J.; Rollins, A.M. Noninvasive assessment of corneal crosslinking with phase-decorrelation optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2019, 60, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Pandolfi, A.; Manganiello, F. A model for the human cornea: Constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 2006, 5, 237–246. [Google Scholar] [CrossRef]
- Woo, S.L.; Kobayashi, A.S.; Schlegel, W.A.; Lawrence, C. Nonlinear material properties of intact cornea and sclera. Exp. Eye Res. 1972, 14, 29–39. [Google Scholar] [CrossRef]
- Simonini, I.; Pandolfi, A. Customized finite element modelling of the human cornea. PLoS ONE 2015, 10, e0130426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.; Abass, A.; Lopes, B.; Eliasy, A.; Hayes, S.; Boote, C.; Meek, K.M.; Movchan, A.; Movchan, N.; Elsheikh, A. Fibril density reduction in keratoconic corneas. J. R. Soc. Interface 2021, 18, 20200900. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.S.; Hayes, S.; Whitford, C.; Sanchez-Weatherby, J.; Shebanova, O.; Vergari, C.; Winlove, C.P.; Terrill, N.; Sorensen, T.; Elsheikh, A.; et al. The hierarchical response of human corneal collagen to load. Acta Biomater. 2018, 65, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Eliasy, A.; Lopes, B.; Abass, A.; Vinciguerra, R.; Vinciguerra, P.; Ambrósio, R.; Roberts, C.J.; Elsheikh, A. Stress–strain index map: A new way to represent corneal material stiffness. Front. Bioeng. Biotechnol. 2021, 9, 640434. [Google Scholar] [CrossRef]
- Magnon, C.; Hall, S.J.; Lin, J.; Xue, X.; Gerber, L.; Freedland, S.J.; Frenette, P.S. Autonomic nerve development contributes to prostate cancer progression. Science 2013, 341, 1236361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliasy, A.; Chen, K.J.; Vinciguerra, R.; Lopes, B.T.; Abass, A.; Vinciguerra, P.; Ambrósio, R.; Roberts, C.J.; Elsheikh, A. Determination of Corneal Biomechanical Behavior in-vivo for Healthy Eyes Using CorVis ST Tonometry: Stress–strain Index. Front. Bioeng. Biotechnol. 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, P.; Lopes, B.T.; Eliasy, A.; Abass, A.; Elsheikh, A. In Vivo biomechanical changes associated with keratoconus progression. Curr. Eye Res. 2022, 47, 982–986. [Google Scholar] [CrossRef]
- Lopes, B.T.; Elsheikh, A. In Vivo corneal stiffness mapping by the stress–strain index maps and Brillouin microscopy. Curr. Eye Res. 2022, 1–7. [Google Scholar] [CrossRef]
- Winkler, M.; Shoa, G.; Xie, Y.; Petsche, S.J.; Pinsky, P.M.; Juhasz, T.; Brown, D.J.; Jester, J.V. Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7293–7301. [Google Scholar] [CrossRef]
- Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, H.; Li, Y.; Wang, Y.; Han, X.; Zhu, Y.; Zhang, Y.; Huang, G. Quantitative Assessment of Biomechanical Properties of the Human Keratoconus Cornea Using Acoustic Radiation Force Optical Coherence Elastography. Transl. Vis. Sci. Technol. 2022, 11, 4. [Google Scholar] [CrossRef]
- Bowen, J.M.; Sobey, G.J.; Burrows, N.P.; Colombi, M.; Lavallee, M.E.; Malfait, F.; Francomano, C.A. Ehlers-Danlos syndrome, classical type. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, R.J.; Shaw, E.L.; Glasgow, B.J. Keratectasia after laser in situ keratomileusis (LASIK): Evaluation of the calculated residual stromal bed thickness. Am. J. Ophthalmol. 2002, 134, 771–773. [Google Scholar] [CrossRef] [PubMed]
- Wollensak, G.; Spoerl, E.; Seiler, T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003, 135, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Zhang, R.; He, L.Y. Corneal hysteresis and glaucoma. Int. Ophthalmol. 2019, 39, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
Method | Principle | Advantages | Disadvantages |
---|---|---|---|
Ocular Response Analyzer (ORA) | analysis of corneal deformation based on air puffs | the first corneal-mechanics-related instrument that reflects corneal hysteresis versus corneal resistance factor (CRF) | interrupted by IOP and CCT |
Corvis ST | direct detection of corneal deformation by using ORA | reflects the corneal biomechanical and tomographic biomechanical indices to accurately record the corneal shape changes | only the uniaxial behavior of the cornea can be analyzed |
Optical Coherence Elastography | a tomographic imaging technique for optical coherent elasticity of the cornea | Young’s modulus and viscoelasticity of the cornea can be assessed | difficult to achieve fine measurements in vivo |
Brillouin Microscopy | analysis of spectral data from echo signals based on Brillouin scattering | the cornea can be described on a three-dimensional level | measurement range limitations and long acquisition times |
SSI Mapping | evaluation techniques combining the corneal fiber structure and finite element method | not subject to intraocular pressure (IOP) and central corneal thickness (CCT) | only two-dimensional data are available |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Wang, K.; Liu, Z. In Vivo Biomechanical Measurements of the Cornea. Bioengineering 2023, 10, 120. https://doi.org/10.3390/bioengineering10010120
Li F, Wang K, Liu Z. In Vivo Biomechanical Measurements of the Cornea. Bioengineering. 2023; 10(1):120. https://doi.org/10.3390/bioengineering10010120
Chicago/Turabian StyleLi, Fanshu, Kehao Wang, and Ziyuan Liu. 2023. "In Vivo Biomechanical Measurements of the Cornea" Bioengineering 10, no. 1: 120. https://doi.org/10.3390/bioengineering10010120
APA StyleLi, F., Wang, K., & Liu, Z. (2023). In Vivo Biomechanical Measurements of the Cornea. Bioengineering, 10(1), 120. https://doi.org/10.3390/bioengineering10010120