Snowpack Aging, Water Isotope Evolution, and Runoff Isotope Signals, Palouse Range, Idaho, USA
Abstract
:1. Introduction
2. Study Area Climate and Precipitation Isotope Signals
3. Sample Collection and Data Analysis
3.1. Sampling Sites
3.2. Snow Density and Isotope Trendlines
4. Results
4.1. Snowpack Depth and Density
4.2. Isotope Signals in the Snowpack Layers
4.3. Deuterium Excess
4.4. Persistence and Variability of the Snowmelt and Runoff Isotope Signals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simpkins, G. Snow-Related Water Woes. Nat. Clim Chang. 2018, 8, 945. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the World, Water Towers for Humanity: Typology, Mapping, and Global Significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef] [Green Version]
- Rodhe, A. Chapter 12—Snowmelt-Dominated Systems. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 391–433. ISBN 978-0-444-81546-0. [Google Scholar]
- Siirila-Woodburn, E.R.; Rhoades, A.M.; Hatchett, B.J.; Huning, L.S.; Szinai, J.; Tague, C.; Nico, P.S.; Feldman, D.R.; Jones, A.D.; Collins, W.D.; et al. A Low-to-No Snow Future and Its Impacts on Water Resources in the Western United States. Nat. Rev. Earth Environ. 2021, 2, 800–819. [Google Scholar] [CrossRef]
- Fayad, A.; Gascoin, S.; Faour, G.; López-Moreno, J.I.; Drapeau, L.; Page, M.L.; Escadafal, R. Snow Hydrology in Mediterranean Mountain Regions: A Review. J. Hydrol. 2017, 551, 374–396. [Google Scholar] [CrossRef]
- Armstrong, R.L.; Rittger, K.; Brodzik, M.J.; Racoviteanu, A.; Barrett, A.P.; Khalsa, S.-J.S.; Raup, B.; Hill, A.F.; Khan, A.L.; Wilson, A.M.; et al. Runoff from Glacier Ice and Seasonal Snow in High Asia: Separating Melt Water Sources in River Flow. Reg. Environ. Chang. 2019, 19, 1249–1261. [Google Scholar] [CrossRef] [Green Version]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and Oxygen-18 Isotope Composition of Precipitation and Atmospheric Moisture. Hydrol. Processes 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Frohlich, K.; Araguas-Araguas, L.; Rozanski, K. Isotopes in Groundwater Hydrology. In Isotope Tracers in Catchment Hydrology; Elsevier Science B.V.: Amsterdam, The Netherlands, 1998; pp. 203–246. ISBN 0-444-50155-X. [Google Scholar]
- Klaus, J.; McDonnell, J.J. Hydrograph Separation Using Stable Isotopes: Review and Evaluation. J. Hydrol. 2013, 505, 47–64. [Google Scholar] [CrossRef]
- Rodgers, P.; Soulsby, C.; Waldron, S. Stable Isotope Tracers as Diagnostic Tools in Upscaling Flow Path Understanding and Residence Time Estimates in a Mountainous Mesoscale Catchment. Hydrol. Processes 2005, 19, 2291–2307. [Google Scholar] [CrossRef]
- Maule, C.P.; Chanasyk, D.S.; Muehlenbachs, K. Isotopic Determination of Snow-Water Contribution to Soil Water and Groundwater. J. Hydrol. 1994, 155, 73–91. [Google Scholar] [CrossRef]
- Vogel, T.; Sanda, M.; Dusek, J.; Dohnal, M.; Votrubova, J. Using Oxygen-18 to Study the Role of Preferential Flow in the Formation of Hillslope Runoff. Vadose Zone J. 2010, 9, 252–259. [Google Scholar] [CrossRef]
- Maulé, C.P.; Stein, J. Hydrologic Flow Path Definition and Partitioning of Spring Meltwater. Water Resour. Res. 1990, 26, 2959–2970. [Google Scholar] [CrossRef]
- Yuan, F.; Sheng, Y.; Yao, T.; Fan, C.; Li, J.; Zhao, H.; Lei, Y. Evaporative Enrichment of Oxygen-18 and Deuterium in Lake Waters on the Tibetan Plateau. J. Paleolimnol. 2011, 46, 291–307. [Google Scholar] [CrossRef]
- Penna, D.; Ahmad, M.; Birks, S.J.; Bouchaou, L.; Brenčič, M.; Butt, S.; Holko, L.; Jeelani, G.; Martínez, D.E.; Melikadze, G.; et al. A New Method of Snowmelt Sampling for Water Stable Isotopes. Hydrol. Processes 2014, 28, 5637–5644. [Google Scholar] [CrossRef]
- Beria, H.; Larsen, J.R.; Ceperley, N.C.; Michelon, A.; Vennemann, T.; Schaefli, B. Understanding Snow Hydrological Processes through the Lens of Stable Water Isotopes. Wiley Interdiscip. Rev. Water 2018, 5, e1311. [Google Scholar] [CrossRef] [Green Version]
- Cooper, L.W.; Solis, C.; Kane, D.L.; Hinzman, L.D. Application of Oxygen-18 Tracer Techniques to Arctic Hydrological Processes. Arct. Alp. Res. 1993, 25, 247–255. [Google Scholar] [CrossRef]
- Cooper, L.W. Chapter 4—Isotopic Fractionation in Snow Cover. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 119–136. ISBN 978-0-444-81546-0. [Google Scholar]
- Laudon, H.; Hemond, H.F.; Krouse, R.; Bishop, K.H. Oxygen 18 Fractionation during Snowmelt: Implications for Spring Flood Hydrograph Separation. Water Resour. Res. 2002, 38, 1258. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Feng, X.; Kirchner, J.W.; Osterhuber, R.; Klaue, B.; Renshaw, C.E. Isotopic Evolution of a Seasonal Snowpack and Its Melt. Water Resour. Res. 2001, 37, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Laudon, H.; Seibert, J.; Köhler, S.; Bishop, K. Hydrological Flow Paths during Snowmelt: Congruence between Hydrometric Measurements and Oxygen 18 in Meltwater, Soil Water, and Runoff. Water Resour. Res. 2004, 40, W03102. [Google Scholar] [CrossRef]
- Schmieder, J.; Garvelmann, J.; Marke, T.; Strasser, U. Spatio-Temporal Tracer Variability in the Glacier Melt End-Member—How Does It Affect Hydrograph Separation Results? Hydrol. Processes 2018, 32, 1828–1843. [Google Scholar] [CrossRef] [Green Version]
- Ala-aho, P.; Tetzlaff, D.; McNamara, J.P.; Laudon, H.; Kormos, P.; Soulsby, C. Modeling the Isotopic Evolution of Snowpack and Snowmelt: Testing a Spatially Distributed Parsimonious Approach. Water Resour. Res. 2017, 53, 5813–5830. [Google Scholar] [CrossRef]
- Laudon, H.; Sjöblom, V.; Buffam, I.; Seibert, J.; Mörth, M. The Role of Catchment Scale and Landscape Characteristics for Runoff Generation of Boreal Streams. J. Hydrol. 2007, 344, 198–209. [Google Scholar] [CrossRef]
- N’da, A.B.; Bouchaou, L.; Reichert, B.; Hanich, L.; Ait Brahim, Y.; Chehbouni, A.; Beraaouz, E.H.; Michelot, J.-L. Isotopic Signatures for the Assessment of Snow Water Resources in the Moroccan High Atlas Mountains: Contribution to Surface and Groundwater Recharge. Env. Earth Sci. 2016, 75, 755. [Google Scholar] [CrossRef]
- Jeelani, G.; Bhat, N.A.; Shivanna, K. Use of Δ18O Tracer to Identify Stream and Spring Origins of a Mountainous Catchment: A Case Study from Liddar Watershed, Western Himalaya, India. J. Hydrol. 2010, 393, 257–264. [Google Scholar] [CrossRef]
- Moser, H.; Stichler, W. Deuterium and Oxygen-18 Contents as an Index of the Properties of Snow Covers. Int. Assoc. Hydrol. Sci. 1974, 114, 122–135. [Google Scholar]
- Zongxing, L.; Qi, F.; Wei, L.; Tingting, W.; Xiaoyan, G.; Zongjie, L.; Yan, G.; Yanhui, P.; Rui, G.; Bing, J.; et al. The Stable Isotope Evolution in Shiyi Glacier System during the Ablation Period in the North of Tibetan Plateau, China. Quat. Int. 2015, 380–381, 262–271. [Google Scholar] [CrossRef]
- Winograd, I.J.; Riggs, A.C.; Coplen, T.B. The Relative Contributions of Summer and Cool-Season Precipitation to Groundwater Recharge, Spring Mountains, Nevada, USA. Hydrogeol. J. 1998, 6, 77–93. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D.; Befus, K.M.; Bayani-Cardenas, M.; Ferguson, G.; Gleeson, T.; Luijendijk, E.; McDonnell, J.J.; Taylor, R.G.; Wada, Y.; et al. Global Aquifers Dominated by Fossil Groundwaters but Wells Vulnerable to Modern Contamination. Nat. Geosci. 2017, 10, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Behrens, D.; Langman, J.B.; Brooks, E.S.; Boll, J.; Waynant, K.; Moberly, J.G.; Dodd, J.K.; Dodd, J.W. Tracing δ18O and δ2H in Source Waters and Recharge Pathways of a Fractured-Basalt and Interbedded-Sediment Aquifer, Columbia River Flood Basalt Province. Geosciences 2021, 11, 400. [Google Scholar] [CrossRef]
- Duckett, K.A.; Langman, J.B.; Bush, J.H.; Brooks, E.S.; Dunlap, P.; Welker, J.M. Isotopic Discrimination of Aquifer Recharge Sources, Subsystem Connectivity and Flow Patterns in the South Fork Palouse River Basin, Idaho and Washington, USA. Hydrology 2019, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Duckett, K.A.; Langman, J.B.; Bush, J.H.; Brooks, E.S.; Dunlap, P.; Stanley, J.R. Noble Gases, Dead Carbon, and Reinterpretation of Groundwater Ages and Travel Time in Local Aquifers of the Columbia River Basalt Group. J. Hydrol. 2020, 581, 124400. [Google Scholar] [CrossRef]
- Medici, G.; Engdahl, N.B.; Langman, J.B. A Basin-Scale Groundwater Flow Model of the Columbia Plateau Regional Aquifer System in the Palouse (USA): Insights for Aquifer Vulnerability Assessment. Int. J. Environ. Res 2021, 15, 299–312. [Google Scholar] [CrossRef]
- Sturm, M. White Water: Fifty Years of Snow Research in WRR and the Outlook for the Future. Water Resour. Res. 2015, 51, 4948–4965. [Google Scholar] [CrossRef]
- Cohen, J.S.; Zeff, H.B.; Herman, J.D. Adaptation of Multiobjective Reservoir Operations to Snowpack Decline in the Western United States. J. Water Resour. Plan. Manag. 2020, 146, 04020091. [Google Scholar] [CrossRef]
- Rhoades, A.M.; Jones, A.D.; Ullrich, P.A. The Changing Character of the California Sierra Nevada as a Natural Reservoir. Geophys. Res. Lett. 2018, 45, 13,008–13,019. [Google Scholar] [CrossRef]
- Viallon-Galinier, L.; Hagenmuller, P.; Lafaysse, M. Forcing and Evaluating Detailed Snow Cover Models with Stratigraphy Observations. Cold Reg. Sci. Technol. 2020, 180, 103163. [Google Scholar] [CrossRef]
- Domine, F.; Morin, S.; Brun, E.; Lafaysse, M.; Carmagnola, C.M. Seasonal Evolution of Snow Permeability under Equi-Temperature and Temperature-Gradient Conditions. Cryosphere 2013, 7, 1915–1929. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Feng, X.; Faiia, A.M.; Posmentier, E.S.; Kirchner, J.W.; Osterhuber, R.; Taylor, S. Isotopic Evolution of a Seasonal Snowcover and Its Melt by Isotopic Exchange between Liquid Water and Ice. Chem. Geol. 2010, 270, 126–134. [Google Scholar] [CrossRef]
- Earman, S.; Campbell, A.R.; Phillips, F.M.; Newman, B.D. Isotopic Exchange between Snow and Atmospheric Water Vapor: Estimation of the Snowmelt Component of Groundwater Recharge in the Southwestern United States. J. Geophys. Res. Atmos. 2006, 111, D09302. [Google Scholar] [CrossRef]
- Kendall, C.; Caldwell, E.A. Chapter 2—Fundamentals of Isotope Geochemistry. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; ISBN 978-0-08-092915-6. [Google Scholar]
- O’Neil, J.R. Hydrogen and Oxygen Isotope Fractionation between Ice and Water. J. Phys. Chem. 1968, 72, 3683–3684. [Google Scholar] [CrossRef]
- Stichler, W.; Rauert, W.; Martinec, J. Environmental Isotope Studies of an Alpine Snowpack. Hydrol. Res. 1981, 12, 297–308. [Google Scholar] [CrossRef]
- Dahlke, H.E.; Lyon, S.W. Early Melt Season Snowpack Isotopic Evolution in the Tarfala Valley, Northern Sweden. Ann. Glaciol. 2013, 54, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Dietermann, N.; Weiler, M. Spatial Distribution of Stable Water Isotopes in Alpine Snow Cover. Hydrol. Earth Syst. Sci. 2013, 17, 2657–2668. [Google Scholar] [CrossRef]
- Hood, E.; Williams, M.; Cline, D. Sublimation from a Seasonal Snowpack at a Continental, Mid-Latitude Alpine Site. Hydrol. Processes 1999, 13, 1781–1797. [Google Scholar] [CrossRef]
- Unnikrishna, P.V.; McDonnell, J.J.; Kendall, C. Isotope Variations in a Sierra Nevada Snowpack and Their Relation to Meltwater. J. Hydrol. 2002, 260, 38–57. [Google Scholar] [CrossRef]
- Gustafson, J.R.; Brooks, P.D.; Molotch, N.P.; Veatch, W.C. Estimating Snow Sublimation Using Natural Chemical and Isotopic Tracers across a Gradient of Solar Radiation. Water Resour. Res. 2010, 46, W12511. [Google Scholar] [CrossRef]
- Reba, M.L.; Pomeroy, J.; Marks, D.; Link, T.E. Estimating Surface Sublimation Losses from Snowpacks in a Mountain Catchment Using Eddy Covariance and Turbulent Transfer Calculations. Hydrol. Processes 2012, 26, 3699–3711. [Google Scholar] [CrossRef]
- Shanley, J.B.; Kendall, C.; Albert, M.R.; Hardy, J.P. Chemical and Isotopic Evolution of a Layered Eastern U.S. Snowpack and Its Relation to Stream-Water Composition. In Proceedings of the International Association of Hydrological Sciences: Biogeochemistry of Seasonally Snow-Covered Catchments. Symposium during the XXI Assembly of the International Union of Geodesy and Geophysic, Boulder, CO, USA, 2–14 July 1995; Volume 228, pp. 329–338. [Google Scholar]
- Soulsby, C.; Malcolm, R.; Helliwell, R.; Ferrier, R.C.; Jenkins, A. Isotope Hydrology of the Allt a’ Mharcaidh Catchment, Cairngorms, Scotland: Implications for Hydrological Pathways and Residence Times. Hydrol. Processes 2000, 14, 747–762. [Google Scholar] [CrossRef]
- Feng, X.; Taylor, S.; Renshaw, C.E.; Kirchner, J.W. Isotopic Evolution of Snowmelt 1. A Physically Based One-Dimensional Model. Water Resour. Res. 2002, 38, 1217. [Google Scholar] [CrossRef]
- Carey, S.K.; Quinton, W.L. Evaluating Snowmelt Runoff Generation in a Discontinuous Permafrost Catchment Using Stable Isotope, Hydrochemical and Hydrometric Data. Hydrol. Res. 2004, 35, 309–324. [Google Scholar] [CrossRef]
- Schmieder, J.; Hanzer, F.; Marke, T.; Garvelmann, J.; Warscher, M.; Kunstmann, H.; Strasser, U. The Importance of Snowmelt Spatiotemporal Variability for Isotope-Based Hydrograph Separation in a High-Elevation Catchment. Hydrol. Earth Syst. Sci. 2016, 20, 5015–5033. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.L.; Flores, A.N.; Heilig, A.; Kohn, M.J.; Marshall, H.-P.; McNamara, J.P. Isotopic Evidence for Lateral Flow and Diffusive Transport, but Not Sublimation, in a Sloped Seasonal Snowpack, Idaho, USA. Geophys. Res. Lett. 2016, 43, 3298–3306. [Google Scholar] [CrossRef] [Green Version]
- Finklin, A.I. Climate of Priest River Experimental Forest, Northern Idaho; Gen. Tech. Rep. INT-159; US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, Utah, USA, 1983; Volume 159, 53p. [Google Scholar] [CrossRef] [Green Version]
- Rutz, J.J.; Steenburgh, W.J.; Ralph, F.M. Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States. Mon. Weather Rev. 2014, 142, 905–921. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, S. AMO- and ENSO-Driven Summertime Circulation and Precipitation Variations in North America. J. Clim. 2012, 25, 6477–6495. [Google Scholar] [CrossRef] [Green Version]
- Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D. Meteorological Characteristics and Overland Precipitation Impacts of Atmospheric Rivers Affecting the West Coast of North America Based on Eight Years of SSM/I Satellite Observations. J. Hydrometeorol. 2008, 9, 22–47. [Google Scholar] [CrossRef]
- Western Regional Climate Center Cooperative Climatological Data Summaries, NOAA Cooperative Stations, Pullman Experimental Station-Climate Summary. Available online: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?id6152 (accessed on 9 January 2021).
- Northwest River Forecast Center Temperature and Precipitation Monthly Means. Available online: https://www.nwrfc.noaa.gov/snow/snowplot.cgi?MSCI1 (accessed on 19 April 2021).
- Sánchez-Murillo, R.; Brooks, E.S.; Elliot, W.J.; Boll, J. Isotope Hydrology and Baseflow Geochemistry in Natural and Human-Altered Watersheds in the Inland Pacific Northwest, USA. Isot. Environ. Health Stud. 2015, 51, 231–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candel, J.; Brooks, E.; Sánchez-Murillo, R.; Grader, G.; Dijksma, R. Identifying Groundwater Recharge Connections in the Moscow (USA) Sub-Basin Using Isotopic Tracers and a Soil Moisture Routing Model. Hydrogeol. J. 2016, 24, 1739–1751. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.J. Statistical and Geostatistical Mapping of Precipitation Water Isotope Ratios. In Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping; West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 139–160. ISBN 978-90-481-3354-3. [Google Scholar]
- Ellis, A.W.; Barton, N.P. Characterizing the North Pacific Jet Stream for Understanding Historical Variability in Western United States Winter Precipitation. Phys. Geogr. 2012, 33, 105–128. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G. Uncovering the Role of the East Asian Jet Stream and Heterogeneities in Atmospheric Rivers Affecting the Western United States. Proc. Natl. Acad. Sci. USA 2018, 115, 891–896. [Google Scholar] [CrossRef] [Green Version]
- Lackmann, G.M.; Gyakum, J.R. Heavy Cold-Season Precipitation in the Northwestern United States: Synoptic Climatology and an Analysis of the Flood of 17–18 January 1986. Weather Forecast. 1999, 14, 687–700. [Google Scholar] [CrossRef]
- Ma, X.; Xie, F.; Li, J.; Zheng, X.; Tian, W.; Ding, R.; Sun, C.; Zhang, J. Effects of Arctic Stratospheric Ozone Changes on Spring Precipitation in the Northwestern United States. Atmos. Chem. Phys. 2019, 19, 861–875. [Google Scholar] [CrossRef] [Green Version]
- Welker, J.M. Isotopic (δ18O) Characteristics of Weekly Precipitation Collected across the USA: An Initial Analysis with Application to Water Source Studies. Hydrol. Processes 2000, 14, 1449–1464. [Google Scholar] [CrossRef]
- Li, S.; Levin, N.E.; Chesson, L.A. Continental Scale Variation in 17O-Excess of Meteoric Waters in the United States. Geochim. Et Cosmochim. Acta 2015, 164, 110–126. [Google Scholar] [CrossRef]
- Kennedy, C.D.; Bowen, G.J.; Ehleringer, J.R. Temporal Variation of Oxygen Isotope Ratios (Δ18O) in Drinking Water: Implications for Specifying Location of Origin with Human Scalp Hair. Forensic Sci. Int. 2011, 208, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Bowen, G.J.; Cai, Z.; Fiorella, R.P.; Putman, A.L. Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications. Annu. Rev. Earth Planet. Sci. 2019, 47, 453–479. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, K.; Gibson, J.J.; Aggarwal, P.K. Deuterium Excess in Precipitation and Its Climatological Significance; International Atomic Energy Agency (IAEA): Vienna, Austria, 2002; pp. 54–66. [Google Scholar]
- Bershaw, J.; Hansen, D.D.; Schauer, A.J. Deuterium Excess and 17O-Excess Variability in Meteoric Water across the Pacific Northwest, USA. Tellus B Chem. Phys. Meteorol. 2020, 72, 1–17. [Google Scholar] [CrossRef]
- U.S., Department of Agriculture, U.S. Soil Conservation Service, West National Technical Center, Water Supply Forecasting Center, Snow Survey Sampling Guide, Agriculture Handbook 169, GPO 594-305, 1984. Available online: https://www.nrcs.usda.gov/wps/wcm/connect/wcc/89bb470a-b54c-4d22-a205-42e47c886293/SnowSurveySamplingGuideHandout.pdf?MOD=AJPERES&CVID=mnjJXyZ&CVID=mnjJXyZ (accessed on 19 April 2021).
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Gat, J.R.; Carmi, I. Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area. J. Geophys. Res. 1970, 75, 3039–3048. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langman, J.B.; Martin, J.; Gaddy, E.; Boll, J.; Behrens, D. Snowpack Aging, Water Isotope Evolution, and Runoff Isotope Signals, Palouse Range, Idaho, USA. Hydrology 2022, 9, 94. https://doi.org/10.3390/hydrology9060094
Langman JB, Martin J, Gaddy E, Boll J, Behrens D. Snowpack Aging, Water Isotope Evolution, and Runoff Isotope Signals, Palouse Range, Idaho, USA. Hydrology. 2022; 9(6):94. https://doi.org/10.3390/hydrology9060094
Chicago/Turabian StyleLangman, Jeff B., Julianna Martin, Ethan Gaddy, Jan Boll, and David Behrens. 2022. "Snowpack Aging, Water Isotope Evolution, and Runoff Isotope Signals, Palouse Range, Idaho, USA" Hydrology 9, no. 6: 94. https://doi.org/10.3390/hydrology9060094
APA StyleLangman, J. B., Martin, J., Gaddy, E., Boll, J., & Behrens, D. (2022). Snowpack Aging, Water Isotope Evolution, and Runoff Isotope Signals, Palouse Range, Idaho, USA. Hydrology, 9(6), 94. https://doi.org/10.3390/hydrology9060094