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Abstract: A snowpack’s δ2H and δ18O values evolve with snowfall, sublimation, evaporation, and
melt, which produces temporally variable snowpack, snowmelt, and runoff isotope signals. As a
snowpack ages, the relatively depleted δ2H and δ18O values of snow will become less depleted with
sublimation and evaporation, and the internal distribution of isotope signals is altered with melt
moving through and out of the snowpack. An examination of δ2H and δ18O values for snowpack,
snowmelt, and ephemeral creek water in the Palouse Range of northern Idaho indicated an evolution
from variably depleted snowpack to enriched snowmelt and relatively consistent isotope signals in
springtime ephemeral creeks. Within the primary snow band of the mountain range and during the
winter–spring period of 2019–2020, the snowpack had an isotope range of −130 to −75‰ for δ2H
and −18 to −10.5‰ for δ18O with resulting snowmelt values of −120 to −90‰ for δ2H and −16.5 to
−12.5‰ for δ18O. With runoff of snowmelt to ephemeral creeks, the isotope values compressed to
−107 to −104‰ for δ2H and −15.5 to −14.5‰ for δ18O. Aging of the snowpack produced increasing
densities in the base, middle, and upper layers along with a corresponding enrichment of isotope
values. The highest elevation site indicated the least enrichment of δ2H and δ18O in the snowpack
base layer, and the lowest elevation site indicated the strongest enrichment of δ2H and δ18O in the
snowpack base layer. Deuterium excess decreased with snowpack aging processes of accumulation
and melt release, along with the migration of water vapor and snowmelt within the snowpack. It is
likely that winter melt (early depleted signal) is a primary contributor to creeks and groundwater
along the Palouse Range, but the strong variability of snowpack isotope signals provides a wide
range of possible isotope signals to surface-water and groundwater systems at the mountain front.

Keywords: water isotopes; snowpack aging; snowmelt isotope evolution

1. Introduction

Snow is an important hydrologic reservoir that has been exploited as a natural cycle
of seasonally available water [1–6]. The stable isotopes of water (δ2H and δ18O) can be
used to identify source waters and flowpaths [7–14], but the tracing of snow/snowmelt
through a surface- and/or groundwater system can be difficult due to the temporal effect
on isotope values with sublimation/evaporation during accumulation (snowpack), melt,
and runoff/infiltration [15–22]. These temporal influences can result in dynamic water
stores that contribute potential source waters with variable isotopic signals throughout the
seasonal cycle of snowfall→ snowpack→ snowmelt [16,23–26]. However, a snowpack
typically contains fewer heavy isotopes (2H and 18O) compared to non-winter precipitation,
which can allow for the tracing of snowmelt to other hydrologic systems [16,27–30]. The
goal of this study was to evaluate the seasonal evolution, or trend, of snowpack isotope
signals at multiple elevations and depths, and in turn, understand snowmelt and runoff
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isotope signals in the snow-dominated Palouse Range of northern Idaho, USA (Figure 1).
It was expected that the isotopic lapse rate would produce different isotope signals in the
snowpack by elevation [16,25,27] and snowpack evolution, or snowpack aging, would
produce seasonal trends in δ2H, δ18O, and deuterium excess (d-excess). This study was
part of a larger study examining water isotope signals within the South Fork Palouse
River Basin and connections between source waters and surface-water and groundwater
systems [31–34].
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Idaho, USA. Snow sampling network consisted of three sample locations within the primary snow
band of Moscow Mountain.

Snowpack is a dynamic reservoir of water storage [35–37], where the physical and
isotopic properties of a snowpack evolve, or age, from the initial retention of ground snow
through to the final sublimation and melt [16,35,38–40]. The aging of a snowpack has a
strong influence on the isotopic composition, particularly the redistribution of isotope sig-
nals within a snowpack [18,20,40–42]. Migration of water and vapor in a snowpack will oc-
cur with sublimation/condensation and evaporation/melt/freeze that will alter the internal
distribution of isotope signals and subsequent snowmelt isotopic signals [20,27,41,43–45].
Melting of upper layers will produce isotopically different water that percolates through
the snowpack and may refreeze at lower layers or exit the snowpack through the sea-
sonal cycle [20,40,43,46]. Snowmelt isotope signals will vary with snow inputs and aging
of the snowpack from accumulation through final melt and produce seasonally variable
runoff isotope signals [16,19–21,27,41,44,46–54]. Additionally, these internal changes in
snowpack isotope signals and subsequent snowmelt and runoff isotope signals can vary
across a landscape because of temperature and insolation differences from elevation or
orientation [45,55,56]. The evolution of the snowpack at different elevations in the study
area likely contributes different snowmelt/runoff isotope signals to the surface-water and
groundwater systems fed by this mountain snowpack reservoir.

2. Study Area Climate and Precipitation Isotope Signals

To examine the evolution of the snowpack for evaluating snowmelt and runoff isotope
signals, a multi-elevation sampling network was established in the Palouse Range of north-
central Idaho, USA (Figure 1). The region’s climate is driven by its proximity to the Pacific
Ocean and the northern Rocky Mountains, which produces a winter maritime climate
and a summer continental climate [57–60]. Annually, this basin receives approximately
60 cm of precipitation (water equivalent), including 126 cm of snowfall [61]. The Palouse
Range snowpack averages a snow-water equivalent of 50 cm at its highest elevations [62].
The snowpack will develop in late fall and typically last until late spring. Ephemeral
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creeks will respond to snowmelt and precipitation in winter/spring and may contain flow
into summer. These creeks, along with subsurface water, feed downgradient intermittent
and perennial creeks along with providing recharge to the local aquifer system of the
basin [31,32,63,64]. The hydrologic reservoir and recharge source that is the Palouse
Range snowpack has produced variable isotope signals in connected surface-water and
groundwater systems [31–33,64].

Precipitation isotope values for the region were predicted to range from strongly
depleted winter values (e.g., January values of −169 to −133‰ for δ2H and −22 to −13‰
for δ18O) to relatively enriched summer rainfall (e.g., July values of −103 to −78‰ for
δ2H and −14 to −8‰ for δ18O) [65]. This seasonal contrast in precipitation isotope values
results from changes in the northern Pacific jet stream that seasonally shifts vapor sources
and precipitation patterns across the region [60,66–69]. These shifts result in relatively dry
summers with isotopically enriched late spring, summer, or fall rainfall and isotopically
depleted and dominant winter/spring precipitation [70–73]. Along with these seasonal
changes in isotope signals and precipitation patterns, d-excess typically is lower in the
warmer summer/fall precipitation and higher in the winter precipitation [71,74,75].

3. Sample Collection and Data Analysis
3.1. Sampling Sites

As part of a larger study examining water isotopes across the basin [31–33], three
Palouse Range sites were chosen for sampling of the snowpack and snowmelt in the
primary snow band (Figures 1 and 2) where snowfall typically occurs from late November
into April. Sites were chosen with glade-like characteristics that would minimize forest
effects and allow for snow accumulation in an open-field setting. The sites range in
elevation from 1430 m NAVD88 at Site #1, 1300 m at Site #2, to 1190 m at Site #3. As
described in Behrens et al. [31], a snowpack sampling transect was established at each site
to allow for interval trenching and collection of snow as a composite sample (full depth
of the snowpack) and samples from the top, middle, and base layers of the snowpack. A
snowmelt collector consisting of a 30-cm funnel pan with collection pipe and sampling
tube, was installed adjacent to each snowpack transect [31]. During sampling, the density
of the three sampling layers was determined through insertion and removal of a 160-cm3

tube (30 cm length × 2.5 cm diameter) that was weighed with a hanging scale (snowpack
density = snow weight/tube volume [76]). All isotope samples were collected and stored
for minimization of atmospheric influence (vacuum-sealed bags for snow, no headspace
in glass containers with polyseal caps for water). All isotope samples were analyzed at
Washington State University with a Los Gatos Research Liquid Water Isotope Analyzer
(instrument precision was ±0.25‰ for δ2H and ±0.05‰ for δ18O). Sampling frequency
was monthly from December through February, biweekly in March, and weekly from April
until the end of sampling. Snow was present at the sites until April 24 (site #3), May 8 (#2),
and May 29 (Site #1). After the loss of the snowpack at each site, rainfall was collected from
the snowmelt collectors until June 27. Ephemeral creeks (upper (A), middle (B), and lower
(C) ephemeral creeks) located between Sites #2 and #3 (Figure 2) were sampled from March
through June when runoff was accessible. The ephemeral creeks consist of small drainages
<1 m in width and are first order streams in the upper portion of the watershed.
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towards Moscow, Idaho, USA.

3.2. Snow Density and Isotope Trendlines

The results of the study were compared through seasonal shifts (trends) in snow
density and δ2H and δ18O values of snow, snowmelt, and ephemeral creek water. Snow
density values were compared by elevation and layer against time to evaluate the physical
alteration of the snowpack with aging. Linear regression trendlines (meteoric water lines) of
composite isotope values were used to evaluate isotopic shifts by elevation through changes
in trendline slope. Density and δ18O trendlines were compared to evaluate the influence
of snowpack aging on the isotope signal of the snowpack layers and redistribution of the
isotope signals within the snowpack. Trendlines of layer values were used to evaluate shifts
in each layer and expected snowmelt isotope signal from the release point (base layer). R
values of the trendlines are provided to indicate strength and variability of the correlation
(positively or negatively linear) for the trend direction. The goal of the linear regression
trendline is to indicate an overall increase or decrease with the seasonal transition from
winter to spring or the aging of the snowpack.

4. Results

Samples collected from the snow band of the Palouse Range in 2019–2020 produced
a range of δ2H and δ18O values (Figure 3) that indicate highly variable isotope signals:
snowpack values ranged from −130 to −75‰ for δ2H and −18 to −10.5‰ for δ18O and
snowmelt values ranged from −120 to −90‰ for δ2H and from −16.5 to −12‰ for δ18O.
With the transition of snowmelt to spring runoff, the range of isotope values decreased
to −107 to −104‰ for δ2H and −15.5 to −14.5‰ for δ18O in the three ephemeral creeks.
The range of snowpack isotope values highlights the variability of the snowpack isotope
distribution throughout the winter–spring period, which does not directly translate to
snowmelt and runoff. However, the transition to spring runoff did produce a relatively
consistent springtime isotope signal in the runoff that fed the ephemeral creeks. The
range of snowpack isotope signals indicates limited influence of elevation with the lowest
elevation site recording the most depleted isotope signal, but the highest elevation site
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recording the lowest median isotope value (median δ18O values of −14.7, −14.1, and
−14.3‰ for Sites #1–3, respectively). Site #2 had the largest field for snow accumulation,
which may account for the more enriched isotope signals in the snowpack because of
greater insolation and sublimation/evaporation.
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Figure 3. Distribution of δ2H (a) and δ18O (b) for snowpack (Sn), snowmelt (Mlt), and ephemeral
creeks (Crk) in the study area. Boxplots indicate the median, mean (�), interquartile range (25% to
75%), and whisker range of 5% to 95% along with outliers (×).

An examination of the snowpack composite δ2H and δ18O values collected from each
site indicate a relatively similar grouping along a meteoric water line (Figure 4). Individual
trendlines for Site #2 and Site #3 indicate a decrease in slope compared to Site #1, primarily
because of outliers at Site #2 and Site #3. These outliers were collected during the same
sample period in late March and do not appear to be reflective of the local meteoric water
lines for the snowpack at these sites. Removal of these two outliers results in trendlines of
similar slope for all three sites (7.2, 6.8, and 6.6, respectively for Sites #1–3), although there
are slightly lower slopes for lower elevation sites. This decreasing slope with elevation
is reflective of greater evaporation given warmer temperatures at the lower elevations.
The range of δ2H and δ18O values of the composite snowpack samples corresponds to
predicted values of Bowen [65] for northern Idaho, although the snowpack did not contain
the strongly depleted winter values (e.g., δ18O values < −20‰) of Bowen’s isoscapes.
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Figure 4. Linear regression trendlines (meteoric water lines) of δ2H and δ18O for snowpack composite
samples collected at the three study sites. Outliers shown in (a) were removed to produce (b).
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4.1. Snowpack Depth and Density

The range of isotope values for the snowpack, snowmelt, and ephemeral creeks
occurred during a relatively average year for snowpack accumulation. The 2019–2020
snowpack at the SNOTEL site and the adjacent Site #1 (located in the same field area) were
larger (160 cm peak) than the 30-year (1981–2010) average of 140 cm [62], but the 2019–2020
snowpack lasted a relatively similar duration compared to the 30-year average (Figure 5).
The lowest elevation site (#3) produced a similar accumulation trend compared to Site #1,
but the mid-elevation site (#2) indicated a later accumulation peak, although an expected
snowpack duration between the higher and lower elevation sites. The larger open field
quality of Site #2 appears to have delayed peak accumulation that may correlate to the
relatively more enriched isotope signals (Figure 3).
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Figure 5. Snowpack depth for 2019–2020 and average snowpack depth, 1981–2010, for the Natural
Resources and Conservation Service snow telemetry site at Moscow Mountain (site #989) [62] along
with trendlines of snowpack-depth measurements at the three study sites (#1–3).

Linear trends in density of the snowpack layers at the three study sites indicate the
highest densities and largest temporal increases in density at Site #1 (Figure 6), which is
expected given the higher elevation, greater snowfall, and longer duration of the snowpack
at this site (Figure 5). Sites #2 and #3 indicated overall smaller snowpack densities and
variable density trends between layers (Figure 6). The density trends of the base layers at
Site #2 and #3 were similar as opposed to the greater density increase in the base layer of
Site #1. The greater snowfall (physical mass overlying the base layer) and longer duration
(longer melt–refreeze sequence) of the snowpack at Site #1 likely allowed for increasing
density in the base layer that also produced the sharper increasing density trend in all layers
at this site. The difference in snowpack accumulation between Site #2 and #3 (Figure 5)
resulted in Site #3 having slightly higher densities although similar temporal trends (slope)
in the base layer density (Figure 6). At Site #2 and #3, the variability of isotope signals
(Figures 3 and 4), snowpack accumulation (Figure 5), and greater temperature influence
were apparent in the variable strength (R values) of the linear trend for density of all
layers. The difference in physical and isotopic characteristics and trends for the snowpack
at Site #2 highlight the effect of orientation and landscape given the larger clearing for
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snow accumulation that made it more available to insolation and wind effects. The greater
temperature influence and corresponding shorter duration of the snowpack at the lower
elevation Site #3 increased the variability of the snowpack density trends (R = 0.3 to 0.7) and
produced the lowest meteoric water line slope (Figure 4) indicative of greater evaporation.
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Figure 6. Linear regression trendlines of the density data collected for each layer at the three study sites.

4.2. Isotope Signals in the Snowpack Layers

The aging of the snowpack from accumulation through melt that produced variable
densities by layer also produced variable isotope signals by layer (Figure 7). Similar to
the density trends, the temporal relationships between δ2H and δ18O indicate variable
changes between layers at each site. Isotope trendlines for the snowpack layers at Site #1
indicate a decreasing slope from the top layer to base layer. This isotope signal evolution
with depth was not as apparent at the lower elevation sites (#2 and #3), but the base
layer at each of these sites had the lowest trendline slope. These base layers represent the
earliest or oldest snow that also receives melt from subsequent layers (accumulation of
the evaporation/sublimation signal as melt residual). The rotation of the layer trendlines
(lower slope) from top to base layer reflect the aging of the older snow or middle and base
layers. An examination of δ18O vs. time (Figure 7) indicates an enrichment trend in the base
layer with aging of the snowpack. Top layers at Site #1 and #3 indicate the most depleted
initial δ18O values that also became more enriched with time and became the most enriched
values of all the layers. The mid-elevation Site #2 had similar trends in δ18O values for the
top and base layers, and sampling of the middle layer captured a trend similar to that seen
in the top layer, but at a more depleted signal.
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Figure 7. Linear regression trendlines of δ2H and δ18O and δ18O with time for the snowpack sampling
sites by layer.

4.3. Deuterium Excess

While the δ2H and δ18O relationship can indicate the effects of evaporation/sublimation,
the second order isotopic parameter of d-excess can indicate vapor re-circulation/transport or
the conditions in an evolving system such as a snowpack. D-excess is a function of the isotopic
composition of hydrogen (δ2H) and oxygen (δ18O) in water (d-excess = δ2H − 8 × δ18O) [77],
where the d-excess will be altered during circulation because of diffusivity differences from differ-
ences in molecular weight (e.g., 1H2H16O = 19 g·mol/mol compared to 1H1H18O = 20 g·mol/mol).
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D-excess responds to humidity/evaporation changes at the vapor source and with precipitation
(subcloud evaporation) [74,75,78]. Redistribution in a system, such as through the movement of
vapor and melt in a snowpack, can produce additional isotope signal differences as melt water and
water vapor migrate through a snowpack and undergo freezing (re-deposition) or are lost from
the system. Snowfall in the study area is expected to have a relatively large d-excess that is
greater with elevation [75], which will be altered with aging of the snowpack. The linear
trends of d-excess with time (Figure 8) indicate an overall decrease in d-excess in all layers
at all three snowpack sites. This trend is inverse to the enrichment trend in δ18O with time
(Figure 7). This d-excess trend is reflective of vapor and melt migration in the snowpack
during aging, which corresponds to the enrichment trend of δ18O.
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Figure 8. Linear regression trendlines of deuterium excess with time at the three snowpack sites.
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The decreasing d-excess trend is not the same for each layer at each site or between
sites, indicating different internal signals from the snow/vapor/melt/freeze/loss distribu-
tion of the water. D-excess values at Site #1 indicated similar temporal trends, although
with a larger decrease in d-excess in the base layer. This initially larger d-excess and
greater decrease in d-excess in the base layer of Site #1 is expected given the duration
of the snowpack where early winter, upper elevation snow contained a relatively large
d-excess value that decreased with later distribution of melt and loss as snowmelt from the
snowpack. A similar base layer d-excess trend was not present at the lower elevation sites,
which reflects differing evolution of the snowpack at these sites because of the different
temperature regimes. The lower initial d-excess and lower slope of the d-excess trend in
the base layers of Site #2 and #3 indicate differences in base layer water accumulations and
release as snowmelt. This difference in the base layers of the lower elevation sites aligns
with the greater variability in δ2H and δ18O values recorded for the snowmelt collected at
Site #3 compared to Site #1.

4.4. Persistence and Variability of the Snowmelt and Runoff Isotope Signals

The aging of the snowpack produced variable snowpack isotope signals but less
variable signals in the subsequent snowmelt and ephemeral creeks (Figure 3). The wide
range of snowpack isotope values (e.g., δ18O range of −18 to −10.5‰) translated to a
slightly smaller range of snowmelt isotope values (e.g., δ18O range of −16.5 to −12‰) and
a very limited range of relatively depleted isotope values in the springtime, ephemeral
creeks (e.g., δ18O range of −15.5 to −14.5‰). The compression of the isotope signal from
snowpack→ snowmelt→ runoff indicates substantial loss of snowpack water through
evaporation/sublimation and early (winter) melt that was visible in the enrichment of
the snowpack isotope signals (Figure 7) and the alteration of d-excess values (Figure 8)
from winter through spring. The snowpack-to-snowmelt evolution produced a consistent,
relatively depleted isotope signal for runoff in the upper watershed, ephemeral creeks.
This consistent isotope signal in the springtime ephemeral creeks was not influenced by
subsequent enriched rainfall (Figure 9). The compressed range of relatively depleted
isotope signals in the springtime ephemeral creeks suggests a strong influence from early
melt (winter melt) because of the relative weighting of the creek water towards the depleted
portion of the snowpack and snowmelt δ2H and δ18O range of values.
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Figure 9. Temporal trends of δ18O values for spring rainfall collected at the three snowpack sampling
locations (Sites #1–3) and the three (A, B, and C) ephemeral creeks located between sites #2 and #3.

Given the dominance of the depleted isotope signal in ephemeral creek runoff (~−15‰
for δ18O, Figure 9) and no discernible difference in runoff isotope signals between the
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three ephemeral creeks over the springtime sampling period, it appears the snowpack
→ snowmelt→ runoff process is dominated by high elevation and/or early melt with a
sufficient diversity of pathways to create a steady isotopic signal for upper watershed, creek
water. Base layer isotope signals of Site #1 (δ18O median of −14.9‰) and Site #2 (δ18O
median of −14.2‰) along with a Site #1 snowmelt median of −14.9‰ (Figure 3) suggest
large contributions of upper elevation snowmelt to the ephemeral creek runoff. However,
the wide range of snowmelt values at Site #3 (Figure 3, δ18O median of −15.3‰) indicates
the availability of relatively depleted runoff at lower elevations. Such a range of snowmelt
and runoff isotope signals parallels the wide range of isotope signals found in a downgra-
dient perennial creek (Crumarine Creek: range of −17.7 to −13.7‰ (mean = −15.2‰) by
Sanchez-Murillo et al. [63] and isotope signals in two downgradient, shallow groundwa-
ter wells (range of −16.0 to −14.8‰ (well 9) and −15.6 to −14.6‰ (well 14)) by Candel
et al. [64] (Figure 10). The wide range of snowpack and snowmelt isotope signals can
produce a consistent isotope signal for high elevation, ephemeral creek water, but other
pathways (e.g., snowmelt infiltration/percolation = subsurface water) can allow for sub-
stantial variation in isotope signals in lower elevation surface-water and groundwater
systems (Figure 10).
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Figure 10. Groupings of δ2H and δ18O values indicative of the evolution and variability of the isotope
signals from snowpack and snowmelt to local surface-water and groundwater systems. Crumarine
Creek and groundwater values are from Sanchez-Murillo et al. [63] and Candel et al. [64], respectively.

5. Conclusions

As a snowpack ages, δ2H and δ18O values will vary according to the inputted snow
values and will evolve in their distribution within the snowpack as melt moves through
and out of the snowpack. An examination of δ2H and δ18O values for snowpack, snowmelt,
and ephemeral creek water in a snow-dominated basin of northern Idaho indicated an
evolution of δ2H and δ18O values from variably depleted snowpack to enriched snowmelt
and relatively consistent isotope signals in springtime ephemeral creeks. Spatial and
temperature influences on the winter/spring snowpack produced an isotope range of −130
to −75‰ for δ2H and −18 to −10.5‰ for δ18O, which produced snowmelt values ranging
−120 to −90‰ for δ2H and −16.5 to −12‰ for δ18O. With the transport of snowmelt to
springtime ephemeral creeks, the isotope values compressed to −107 to −104‰ for δ2H
and −15.5 to −14.5‰ for δ18O. The aging of the snowpack produced increasing densities
in the base, middle, and top layers along with a corresponding temporal enrichment of
isotope values. However, the snowpack produced a variable pattern of isotope enrichment
at the three different sampling elevations. The highest elevation site indicated the least
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enrichment of the isotope signal in the snowpack base layer, and the lowest elevation site
indicated the strongest enrichment of the isotope signal in the snowpack base layer. The
linear trends of d-excess with time indicate an overall decrease in d-excess in all layers at
all three snowpack sites, which was inverse to the enrichment trend in δ18O with time. The
decreasing d-excess trend was not the same for each layer at each site, or between sites,
indicating different internal signals from snow/vapor/melt/freeze/loss distribution of
the water. The d-excess trends are reflective of vapor and melt migration in the snowpack,
which is a substantial influence on isotope signals during snowpack aging and can produce
a relatively consistent temporal trend of enriched isotope signals.

The accumulation of the snowpack provides a dominant water source for infiltration
and runoff from the mountain system, which provides water to the creek system and
recharge to the local aquifer system. The evolution of the isotope signal from snowpack to
snowmelt to ephemeral creek aligns with some groundwater isotope signals found in the
lower elevations along the mountain front, but more strongly depleted isotope signals have
been found in other groundwater and perennial creek water in the same area. It is likely
that winter melt (early depleted signal) is a primary contributor to creeks and groundwater,
but this early melt was not well captured by the current study. However, the snowpack and
snowmelt isotope signals recorded for this study captured the evolution of and variation in
isotope signals that feed the surface-water and groundwater systems of the basin.
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