Characterizing Hydrological Functioning of Three Large Karst Springs in the Salem Plateau, Missouri, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Hydrograph Separation
2.4. Statistical Time-Series Analysis
2.4.1. Autocorrelation
2.4.2. Spectral Analysis
2.4.3. Cross-Correlation
2.5. Mann-Kendall Test
3. Results
3.1. Spring Discharge and Rainfall
3.2. Hydrograph Separation
3.3. Statistical Time-Series Analysis
3.3.1. Autocorrelation
3.3.2. Spectral Analysis
3.3.3. Cross-Correlation
3.4. Mann-Kendall Trend Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- White, W.B. Analysis of karst aquifers. In Regional Ground-Water Quality; Alley, W.M., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1993; pp. 471–489. [Google Scholar]
- Kiraly, L. Karstification and groundwater flow. In Evolution of Karst: From Prekarst to Cessation; Gabrovšek, F., Ed.; Založba ZRC: Postojna, Slovenia, 2002; pp. 155–190. [Google Scholar]
- Goldscheider, N.; Drew, D. Methods in Karst Hydrogeology; Taylor and Francis: London, UK, 2007. [Google Scholar]
- White, W.B. Conceptual models for karstic aquifers. In Karst Modeling; Palmer, A.N., Palmer, M.V., Sasowsky, I.D., Eds.; Special Publication 5; Karst Waters Institute: Leesburg, VA, USA, 1999; pp. 11–16. [Google Scholar]
- Dreybrodt, W. The role of dissolution kinetics in the development of karst aquifers in limestone: A model simulation of karst evolution. J. Geol. 1990, 98, 639–655. [Google Scholar] [CrossRef]
- Fiorillo, F.; Malik, P. Hydraulic behavior of karst aquifers. Water 2019, 11, 1563. [Google Scholar] [CrossRef] [Green Version]
- Meinzer, O.E. Large Springs in the United States; U.S. Geological Survey Water-Supply Paper 557; U.S. Government Printing Office: Washington, DC, USA, 1927. [Google Scholar]
- Chen, Z.; Grasby, S.E.; Osadetz, K.G. Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J. Hydrol. 2004, 290, 43–62. [Google Scholar] [CrossRef]
- Fiorillo, F.; Esposito, L.; Guadagno, F.M. Analyses and forecast of water resources in an ultra-centenarian spring discharge series from Serino (Southern Italy). J. Hydrol. 2007, 336, 125–138. [Google Scholar] [CrossRef]
- Smith, B.A.; Hunt, B.B. Flow potential between stacked karst aquifers in Central Texas. In Advances in Research in Karst Media, 4th International Symposium on Karst; Andreo, B., Carrasco, F., Duran, J.J., LaMoreaux, J.W., Eds.; Springer: Heidelberg, Germany, 2010; pp. 43–48. [Google Scholar]
- Hartmann, A.; Liu, Y.; Olarinoye, T.; Berthelin, R.; Marx, V. Integrating field work and large-scale modeling to improve assessment of karst water resources. Hydrogeol. J. 2021, 29, 315–329. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Bonacci, O. Karst springs hydrographs as indicators of karst aquifers. Hydrolog. Sci. J. 1993, 38, 51–62. [Google Scholar] [CrossRef]
- Fiorillo, F. The recession of spring hydrographs, focused on karst aquifers. Water Resour. Manag. 2014, 28, 1781–1805. [Google Scholar] [CrossRef]
- Basha, H.A. Flow recession equations for karst systems. Water Resour. Res. 2020, 56, e2020WR027384. [Google Scholar] [CrossRef]
- Zhang, R.; Shu, L.; Zhu, J.; Yu, Z.; Jiang, P. Storage and drainage characteristics of a highly heterogeneous karst aquifer in Houzhai Basin. Groundwater 2016, 54, 878–887. [Google Scholar] [CrossRef]
- Mangin, A. Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J. Hydrol. 1984, 67, 25–43. [Google Scholar] [CrossRef]
- Padilla, A.; Pulido-Bosch, A. Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J. Hydrol. 1995, 68, 73–89. [Google Scholar] [CrossRef]
- Labat, D.; Ababou, R.; Mangin, A. Rainfall–runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 2000, 238, 149–178. [Google Scholar] [CrossRef]
- Labat, D.; Masbou, J.; Beaulieu, E.; Mangin, A. Scaling behavior of the fluctuations in stream flow at the outlet of karstic watersheds, France. J. Hydrol. 2011, 410, 162–168. [Google Scholar] [CrossRef]
- Amraoui, F.; Razack, M.; Bouchaou, L. Turbidity dynamic in karstic systems: Example of Ribaa and Bittit springs in the Middle Atlas (Morocco). Hydrolog. Sci. J. 2003, 48, 971–984. [Google Scholar] [CrossRef]
- Cox, W.D.; Meng, L.; Khedun, C.P.; Nordfelt, A.; Quiring, S.M. Discharge variability for an artesian spring of the Edwards Aquifer: Comal Springs (1933–2007). Int. J. Climatol. 2009, 29, 2324–2336. [Google Scholar] [CrossRef]
- Kovačič, G. Hydrological study of the Malenščica Karst Spring (SW Slovenia) by means of a time series analysis. Acta Carsologica 2009, 39, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.K.; Wang, D.; Bilskie, M.V.; Hagen, S.C. Quantifying changes of effective springshed area and net recharge through recession analysis of spring flow. Hydrol. Process. 2016, 30, 5053–5062. [Google Scholar] [CrossRef]
- Pavlić, K.; Parlov, J. Cross-correlation and cross-spectral analysis of the hydrographs in the northern part of the Dinaric karst of Croatia. Geosciences 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Uddameri, V.; Singaraju, S.; Hernandez, E.A. Is Standardized Precipitation Index (SPI) a useful indicator to forecast groundwater droughts?—Insights from a karst aquifer. J. Am. Water Resour. Assoc. 2019, 55, 70–88. [Google Scholar] [CrossRef]
- Fiorillo, F.; Leone, G.; Pagnozzi, M.; Esposito, L. Long-term trends in karst spring discharge and relation to climate factors and changes. Hydrogeol. J. 2021, 29, 347–377. [Google Scholar] [CrossRef]
- Olarinoye, T.; Gleeson, T.; Marx, V.; Seeger, S.; Adinehvand, R.; Allocca, V.; Andreo, B.; Apaéstegui, J.; Apolit, C.; Arfib, B.; et al. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Sci. Data 2020, 7, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hays, P.D.; Knierim, K.J.; Breaker, B.; Westerman, D.A.; Clark, B.R. Hydrogeology and Hydrologic Conditions of the Ozark Plateaus Aquifer System; U.S. Geological Survey Scientific-Investigations Report 2016-5137; U.S. Geological Survey: Reston, VA, USA, 2016. [Google Scholar]
- Dreiss, S.J. Regional scale transport in a Karst Aquifer: 1. Component separation of spring flow hydrographs. Water Resour. Res. 1989, 25, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Dreiss, S.J. Regional scale transport in a Karst Aquifer: 2. Linear systems and time moment analysis. Water Resour. Res. 1989, 25, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Vandike, J.E. The Hydrogeology of the Bennett Spring Area, Laclede, Dallas, Webster, and Wright Counties, Missouri; Water Resources Report 38; Missouri Division of Geology and Land Survey: Rolla, MO, USA, 1992. [Google Scholar]
- Wicks, C.M.; Hoke, J.A. Prediction of the quality and quantity of Maramec Spring water. Groundwater 2000, 38, 218–225. [Google Scholar] [CrossRef]
- Winston, W.E.; Criss, R.E. Dynamic hydrologic and geochemical response in a perennial karst spring. Water Resour. Res. 2004, 40, W05106. [Google Scholar] [CrossRef]
- Imes, J.L.; Plummer, L.N.; Kleeschulte, M.J.; Schumacher, J.G. Recharge Area, Base-Flow and Quick-Flow Discharge Rates and Ages, and General Water Quality of Big Spring in Carter County, Missouri, 2000–2004; Scientific-Investigations Report 2007-5049; U.S. Geological Survey: Reston, VA, USA, 2007. [Google Scholar]
- Criss, R.E. A Darcian model for the flow of Big Spring and the hydraulic head in the Ozark aquifer, Missouri, USA. Acta Carsologica 2010, 39, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Frederickson, G.C.; Criss, R.E. Isotope hydrology and residence times of the unimpounded Meramec River Basin, Missouri. Chem. Geol. 1999, 157, 303–317. [Google Scholar] [CrossRef]
- Florea, L.J.; Vacher, H.L. Springflow hydrographs: Eogenetic vs. telogenetic karst. Groundwater 2006, 44, 352–361. [Google Scholar] [CrossRef]
- Vega, J.J. A Geochemical and Statistical Investigation of the Big Four Springs Region in Southern Missouri. Master’s Thesis, Missouri State University, Springfield, MO, USA, 2020. [Google Scholar]
- Owen, A.R.; Pavlowsky, R.T. Base flow hydrology and water quality of an Ozarks spring and associated recharge area, southern Missouri, USA. Environ. Earth Sci. 2011, 64, 169–183. [Google Scholar] [CrossRef]
- Vineyard, J.D.; Feder, G.L. Springs of Missouri; Water Resources Report Number 29; Missouri Division of Geology and Land Survey: Rolla, MO, USA, 1974. [Google Scholar]
- Weary, D.J.; Orndorff, R.C. Geologic context of large karst springs and caves in the Ozark National Scenic Riverways, Missouri. In U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, TX, USA, 16–18 May 2017; Kuniansky, E.L., Spangler, L.E., Eds.; Scientific-Investigations Report 2017-5023; U.S. Geological Survey: Reston, VA, USA, 2017; pp. 135–146. [Google Scholar]
- Missouri Spatial Data Information Service. The Missouri Map. Available online: https://arcg.is/1XznKW (accessed on 3 May 2022).
- National Water Information System. Available online: https://waterdata.usgs.gov/nwis/inventory (accessed on 30 March 2022).
- cli-MATE: MRCC Application Tools Environment. Available online: https://mrcc.purdue.edu/CLIMATE/ (accessed on 30 March 2022).
- Lim, K.J.; Engel, B.A.; Tang, Z.; Choi, J.; Kim, K.S.; Muthukrishnan, S.; Tripathy, D. Automated Web-based Hydrograph Analysis Tool, WHAT. J. Am. Water Resour. Assoc. 2005, 41, 1407–1416. [Google Scholar] [CrossRef]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Larocque, M.; Mangin, A.; Razack, M.; Banton, O. Contribution of correlation and spectral analyses to the regional study of a large karst aquifer. J. Hydrol. 1998, 205, 217–231. [Google Scholar] [CrossRef]
- Herman, E.K.; Toran, L.; White, W.B. Quantifying the place of karst aquifers in the groundwater to surface water continuum: A time series analysis of storm behavior in Pennsylvania water resources. J. Hydrol. 2009, 376, 307–317. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Xu, G.; Shu, L. Use of hydrologic time-series data for identification of hydrodynamic function and behavior in a karstic water system in China. Hydrogeol. J. 2011, 19, 1577–1585. [Google Scholar] [CrossRef]
- VanderPlas, J. Understanding the Lomb-Scargle periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Panagopoulos, G.; Lambrakis, N. The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst system: Application on two typical karst aquifers of Greece. J. Hydrol. 2006, 329, 368–376. [Google Scholar] [CrossRef]
- Kurniawan, I.A.; Adji, T.N.; Nurkholis, A.; Haryono, E.; Fatoni, H.; Waskito, W.A.; Cahyadi, A.; Agniy, R.F. Karst aquifer response by time series analysis applications in Jonggrangan karst, Java Island, Indonesia. Environ. Earth Sci. 2019, 78, 379. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, version 3.3.1; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Mayowa, O.O.; Pour, S.H.; Shahid, S.; Mohsenipour, M.; Harun, S.B.; Heryansyah, A.; Tarmizi, I. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia. J. Earth Syst. Sci. 2015, 124, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Zang, H.; Zheng, X.; Xu, Y. Climate change and its influence on the karst groundwater recharge in the Jinci Spring region, northern China. Water 2017, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability: Application of Statistical Techniques; Von Storch, H., Navarra, A., Eds.; Springer: New York, NY, USA, 1995; pp. 11–26. [Google Scholar]
- Chen, X.; Gelder, V. Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China. Hydrol. Earth Syst. Sci. 2008, 12, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Razavi, S.; Vogel, R. Prewhitening of hydroclimatic time series? Implication for inferred change and variability across time scales. J. Hydrol. 2018, 557, 109–115. [Google Scholar] [CrossRef]
- Collischonn, W.; Fan, F.M. Defining parameters for Eckhardt’s digital baseflow filter. Hydrol. Process. 2013, 27, 2614–2622. [Google Scholar] [CrossRef]
- Sloto, R.A.; Krause, M.Y. HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis; U.S. Geological Survey Water-Resources Investigations Report 96-4040; U.S. Geological Survey: Lemoyne, PA, USA, 1996. [Google Scholar]
- Paiva, I.; Cunha, L. Characterization of the hydrodynamic functioning of the Degracias-Sicó Karst Aquifer, Portugal. Hydrogeol. J. 2020, 28, 2613–2629. [Google Scholar] [CrossRef]
- Pavlowsky, R.T.; Owen, M.R.; Bradley, R.A. Historical Rainfall Analysis for the Big Barren Creek Watershed, Southeast Missouri (1955–2015); Report EDR-16-001; Ozarks Environmental and Water Resources Institute, Missouri State University: Springfield, MO, USA, 2016. [Google Scholar]
Site | Data Type | Site Number | Elevation (m) | Period of Record |
---|---|---|---|---|
Bennett Spring | Discharge | 6923500 | 264 | 1928–2019 |
Big Spring | Discharge | 7067500 | 131 | 1921–2019 |
Greer Spring | Discharge | 7071000 | 172 | 1921–2019 |
Lebanon 2W | Precipitation | 234825 | 380 | 1892–2019 |
Van Buren 1 NE | Precipitation | 238569 | 151 | 1937–2006 |
Van Buren 7.2 SW | Precipitation | US1MOFSA035 | 199 | 2001–2019 |
Alton | Precipitation | 230127 | 248 | 1940–2019 |
West Plains | Precipitation | 23880 | 337 | 1948–2019 |
Bennett Spring | |||||
1928–1941 (n = 4748 days) | Mean | Std. Error | Median | Max. | Min. |
Discharge | 4.30 | 0.05 | 3.43 | 73.1 | 1.6 |
Surface Runoff | 0.38 | 0.02 | 0.11 | 41.1 | 0 |
Baseflow | 3.92 | 0.04 | 3.28 | 37.7 | 1.6 |
1965–1995 (n = 10,957 days) | Mean | Std. Error | Median | Max. | Min. |
Discharge | 5.56 | 0.04 | 4.33 | 180 | 2.1 |
Surface Runoff | 0.47 | 0.02 | 0.11 | 123 | 0 |
Baseflow | 5.09 | 0.03 | 4.17 | 56.3 | 2.0 |
2007–2019 (n = 4383 days) | Mean | Std. Error | Median | Max. | Min. |
Discharge | 5.39 | 0.07 | 4.10 | 88.6 | 2.1 |
Surface Runoff | 0.46 | 0.03 | 0.10 | 50.6 | 0 |
Baseflow | 4.93 | 0.05 | 3.95 | 37.9 | 1.2 |
Big Spring | |||||
1921–1996 (n = 27,394 days) | Mean | Std. Error | Median | Max. | Min. |
Discharge | 12.7 | 0.03 | 11.2 | 56.6 | 6.68 |
Surface Runoff | 0.95 | 0.01 | 0.58 | 32.3 | 0 |
Baseflow | 11.7 | 0.02 | 10.5 | 34.7 | 4.81 |
2000–2019 (n = 6939 days) | Mean | Std. Error | Median | Max. | Min. |
Discharge | 13.3 | 0.05 | 12.2 | 37.9 | 7.22 |
Surface Runoff | 0.74 | 0.01 | 0.44 | 17.6 | 0 |
Baseflow | 12.6 | 0.05 | 11.7 | 33.7 | 4.12 |
Greer Spring | |||||
1921–2019 (n = 35,794 days) | Mean | Std. Error | Median | Max. | Min. |
Discharge | 9.91 | 0.02 | 9.42 | 28.9 | 2.94 |
Surface Runoff | 1.39 | 0.01 | 1.03 | 19.8 | 0 |
Baseflow | 8.52 | 0.02 | 8.18 | 21.4 | 2.57 |
Variable (Time Interval) | Spring | Kendall tau | Z-Value | Sen’s Slope | p-Value |
Discharge (1965–1995) | Bennett | 0.222 | 34.7 | 0.009 | <0.001 |
Big | 0.122 | 19.2 | 0.008 | <0.001 | |
Greer | 0.129 | 20.2 | 0.009 | <0.001 | |
Discharge (1928–1996) | Big | 0.122 | 19.2 | 0.007 | <0.001 |
Discharge (1921–2019) | Greer | 0.096 | - | - | <0.001 |
Discharge (2007–2019) | Bennett | −0.115 | −11.3 | −0.005 | <0.001 |
Big | 0.016 | 1.59 | 0.002 | 0.11 * | |
Greer | 0.02 | 2.04 | 0.01 | 0.04 | |
Variable (Time Interval) | Station | Kendall tau | Z-Value | Sen’s Slope | p-Value |
Precipitation (1960–1983) | Van Buren | 0.025 | 4.83 | 0.0001 | <0.001 |
Precipitation (1965–1995) | Lebanon | −0.015 | −2.94 | 0.00004 | <0.001 |
Precipitation (1928–1996) | West Plains | 0.008 | 1.47 | 0.0001 | 0.14 * |
Precipitation (2000–2019) | West Plains | −0.006 | −9.01 | −0.000004 | 0.36 * |
Precipitation (2007–2019) | Lebanon | −0.023 | −2.58 | −0.0004 | 0.009 |
Van Buren | 0.014 | 1.74 | −0.00003 | 0.08 * | |
Alton | 0.067 | 8.01 | 0.0003 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, S.K.; Fryar, A.E. Characterizing Hydrological Functioning of Three Large Karst Springs in the Salem Plateau, Missouri, USA. Hydrology 2022, 9, 96. https://doi.org/10.3390/hydrology9060096
Sarker SK, Fryar AE. Characterizing Hydrological Functioning of Three Large Karst Springs in the Salem Plateau, Missouri, USA. Hydrology. 2022; 9(6):96. https://doi.org/10.3390/hydrology9060096
Chicago/Turabian StyleSarker, Shishir K., and Alan E. Fryar. 2022. "Characterizing Hydrological Functioning of Three Large Karst Springs in the Salem Plateau, Missouri, USA" Hydrology 9, no. 6: 96. https://doi.org/10.3390/hydrology9060096
APA StyleSarker, S. K., & Fryar, A. E. (2022). Characterizing Hydrological Functioning of Three Large Karst Springs in the Salem Plateau, Missouri, USA. Hydrology, 9(6), 96. https://doi.org/10.3390/hydrology9060096