What Is the Contribution of Urban Trees to Mitigate Pluvial Flooding?
Abstract
:1. Introduction
- Simple 2D-hydrodynamics to predict the extent of pluvial flooding in urban areas,
- Detailed representation of hydrology–vegetation interactions (i.e., interception).
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. LEAFlood (Landscape and vEgetAtion-Dependent Flood Model)
2.4. Calibration
2.5. Model Experiments with Different Tree Coverage
3. Results and Discussion
3.1. Interception
3.2. Runoff
- Parameter b of the Brooks-Corey retention curve: 13.1876;
- Scaling factor for Manning’s n roughness: 3.57788;
- Scaling factor for saturated hydraulic conductivity : 0.0700464.
3.3. The Role of Trees in Pluvial Flooding
3.4. Limitations
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melsen, L. It Takes a Village to Run a Model—The Social Practices of Hydrological Modeling. Water Resour. Res. 2022, 58, e2021WR030600. [Google Scholar] [CrossRef]
- Asadian, Y.; Weiler, M. A new approach in measuring rainfall interception by urban trees in coastal British Columbia. Water Qual. Res. J. 2009, 44, 16–25. [Google Scholar] [CrossRef]
- Coville, R.; Endreny, T.; Nowak, D.J. Modeling the Impact of Urban Trees on Hydrology. In Forest-Water Interactions; Levia, D.F., Carlyle-Moses, D.E., Iida, S., Michalzik, B., Nanko, K., Tischer, A., Eds.; Series Title: Ecological Studies; Springer International Publishing: Cham, Switzerland, 2020; Volume 240, pp. 459–487. [Google Scholar] [CrossRef]
- Downer, C.W.; Ogden, F.L.; Martin, W.D.; Harmon, R.S. Theory, development, and applicability of the surface water hydrologic model CASC2D. Hydrol. Process. 2002, 16, 255–275. [Google Scholar] [CrossRef]
- Mitasova, H.; Thaxton, C.; Hofierka, J.; McLaughlin, R.; Moore, A.; Mitas, L. Path sampling method for modeling overland water flow, sediment transport, and short term terrain evolution in Open Source GIS. Dev. Water Sci. 2004, 55, 1479–1490. [Google Scholar] [CrossRef]
- Tyrna, B.; Assmann, A.; Fritsch, K.; Johann, G. Large-scale high-resolution pluvial flood hazard mapping using the raster-based hydrodynamic two-dimensional model FloodAreaHPC: Large-scale high-resolution pluvial flood hazard mapping. J. Flood Risk Manag. 2018, 11, S1024–S1037. [Google Scholar] [CrossRef] [Green Version]
- Iffland, R.; Förster, K.; Westerholt, D.; Pesci, M.H.; Lösken, G. Robust Vegetation Parameterization for Green Roofs in the EPA Stormwater Management Model (SWMM). Hydrology 2021, 8, 12. [Google Scholar] [CrossRef]
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Cuo, L.; Lettenmaier, D.P.; Alberti, M.; Richey, J.E. Effects of a century of land cover and climate change on the hydrology of the Puget Sound basin. Hydrol. Process. 2009, 23, 907–933. [Google Scholar] [CrossRef]
- Dwarakish, G.; Ganasri, B. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geosci. 2015, 1, 1115691. [Google Scholar] [CrossRef]
- Strasser, U.; Förster, K.; Formayer, H.; Hofmeister, F.; Marke, T.; Meißl, G.; Nadeem, I.; Stotten, R.; Schermer, M. Storylines of combined future land use and climate scenarios and their hydrological impacts in an Alpine catchment (Brixental/Austria). Sci. Total Environ. 2019, 657, 746–763. [Google Scholar] [CrossRef]
- Wagner, P.D.; Bhallamudi, S.M.; Narasimhan, B.; Kumar, S.; Fohrer, N.; Fiener, P. Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environ. Model. Softw. 2019, 122, 103987. [Google Scholar] [CrossRef]
- Addor, N.; Melsen, L.A. Legacy, Rather than Adequacy, Drives the Selection of Hydrological Models. Water Resour. Res. 2019, 5, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Kraft, P.; Vaché, K.B.; Frede, H.G.; Breuer, L. CMF: A Hydrological Programming Language Extension For Integrated Catchment Models. Environ. Model. Softw. 2011, 26, 828–830. [Google Scholar] [CrossRef]
- Förster, K.; Westerholt, D.; Kraft, P.; Lösken, G. Unprecedented Retention Capabilities of Extensive Green Roofs—New Design Approaches and an Open-Source Model. Front. Water 2021, 3, 122. [Google Scholar] [CrossRef]
- Krebs, G.; Kokkonen, T.; Valtanen, M.; Setälä, H.; Koivusalo, H. Spatial resolution considerations for urban hydrological modelling. J. Hydrol. 2014, 512, 482–497. [Google Scholar] [CrossRef]
- Jackisch, N.; Brendt, T.; Weiler, M.; Lange, J. Evaluierung der Regenwasserbewirtschaftung im Vaubangelände, Freiburg i.Br; Technical Report. 2013. Available online: http://www.hydrology.uni-freiburg.de/forsch/regenwasservauban/Regenwasserprojekt_Vauban_Endbericht_Final.pdf (accessed on 15 June 2022).
- Jackisch, N.; Weiler, M. The hydrologic outcome of a Low Impact Development (LID) site including superposition with streamflow peaks. Urban Water J. 2017, 14, 143–159. [Google Scholar] [CrossRef]
- Steinbrich, A.; Henrichs, M.; Leistert, H.; Scherer, I.; Schuetz, T.; Uhl, M.; Weiler, M. Ermittlung eines naturnahen Wasserhaushalts als Planungsziel für Siedlungen (Determination of a natural water balance as reference for planning in urban areas). Hydrol. Und Wasserbewirtsch. 2018, 62, 400–409. [Google Scholar] [CrossRef]
- DWD Climate Data Center (CDC): Multi-Annual Station Means for the Climate Normal Reference Period 1981–2010, for Current Station Location and for Reference Station Location. Version V0.x. 2022. Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/multi_annual/mean_81-10/ (accessed on 12 March 2022).
- Leistert, H.; Steinbrich, A.; Schütz, T.; Weiler, M. Wie kann die hydrologische Komplexität von Städten hinreichend in einem Wasserhaushaltsmodell abgebildet werden? In M3—Messen, Modellieren, Managen in Hydrologie und Wasserressourcenbewirtschaftung. Beiträge zum Tag der Hydrologie am 22./23. März 2018 an der Technischen Universität Dresden. Tag der Hydrologie; Technischen Universität Dresden: Dresden, Germany, 2018; pp. 227–236. [Google Scholar]
- Steinbrich, A.; Leistert, H.; Weiler, M. Model-based quantification of runoff generation processes at high spatial and temporal resolution. Environ. Earth Sci. 2016, 75, 1423. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- van Hattum, T.; Blauw, M.; Jensen, M.B.; de Bruin, K. Towards Water Smart Cities: Climate Adaptation Is a Huge Opportunity to Improve the Quality of Life in Cities; Technical Report; Wageningen University & Research: Wageningen, The Netherlands, 2016. [Google Scholar]
- Coates, G.J. The sustainable urban district of Vauban in Freiburg, Germany. Int. J. Des. Nat. Ecodyn. 2013, 8, 265–286. [Google Scholar] [CrossRef] [Green Version]
- DWD Climate Data Center (CDC): Historical 10-Minute Station Observations of Pressure, Air Temperature (at 5 cm and 2 m Height), Humidity and Dew Point for Germany. Version V1. 2019. Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/10_minutes/air_temperature/ (accessed on 9 July 2021).
- DWD Climate Data Center (CDC): Historical 10-Minute Station Observations of Solar Incoming Radiation, Longwave Downward Radiation and Sunshine Duration for Germany. Version V1. 2022. Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/10_minutes/solar/ (accessed on 9 July 2021).
- DWD Climate Data Center (CDC): Historical 10-Minute Station Observations of Mean Wind Speed and Wind Direction for Germany. Version V1. 2019. Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/10_minutes/wind/ (accessed on 9 July 2021).
- Wübbelmann, T.; Förster, K. Landscape and vEgetAtion-Dependent Flood Model (LEAFlood). Available online: https://doi.org/10.5281/zenodo.6594181 (accessed on 30 May 2022). [CrossRef]
- Kraft, P. cmf Documentation. Available online: https://philippkraft.github.io/cmf/index.html (accessed on 23 March 2022).
- Clark, M.; Kavetski, D.; Fenicia, F. Pursuing the method of multiple working hypotheses for hydrological modeling: Hypothesis testing in hydrology. Water Resour. Res. 2011, 47, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Schulla, J. Model Description WaSiM (Water Balance Simulation Model)—Completely Revised Version of 2012 with 2013 to 2015 Extensions; Hydrology Software Consulting J. Schulla: Zurich, Switzerland, 2015. [Google Scholar]
- Rutter, A.; Kershaw, K.; Robins, P.; Morton, A. A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 1971, 9, 367–384. [Google Scholar] [CrossRef]
- Kartieranleitung, B. Ad-hoc-AG Boden. Bodenkdundliche Kartieranleitung Hann. 2005, 5, 438. [Google Scholar]
- Gregory, J.H.; Dukes, M.D.; Jones, P.H.; Miller, G.L. Effect of urban soil compaction on infiltration rate. J. Soil Water Conserv. 2006, 61, 117–124. [Google Scholar]
- Refsgaard, J.C. Terminology, Modelling Protocol and Classification of Hydrological Model Codes. In Distributed Hydrological Modelling; Abbott, M.B., Refsgaard, J.C., Eds.; Water Science and Technology Library; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; Volume 22, pp. 17–39. [Google Scholar]
- Klemes, V. Operational testing of hydrological simulation models. Hydrolog. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Shehu, B.; Willems, W.; Stockel, H.; Thiele, L.; Haberlandt, U. Regionalisation of Rainfall Depth-Duration-Frequency curves in Germany. Hydrol. Earth Syst. Sci. Discuss. 2022, preprint. [Google Scholar] [CrossRef]
- Förster, K.; Garvelmann, J.; Meißl, G.; Strasser, U. Modelling forest snow processes with a new version of WaSiM. Hydrol. Sci. J. 2018, 63, 1540–1557. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J. How well does your model fit the data? J. Hydroinform. 2001, 3, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Houska, T.; Kraft, P.; Chamorro-Chavez, A.; Breuer, L. SPOTting Model Parameters Using a Ready-Made Python Package. PLoS ONE 2015, 10, e0145180. [Google Scholar] [CrossRef]
- Alves, P.L.; Formiga, K.T.M.; Traldi, M.A.B. Rainfall interception capacity of tree species used in urban afforestation. Urban Ecosyst. 2018, 21, 697–706. [Google Scholar] [CrossRef]
- Förster, K.; Gelleszun, M.; Meon, G. A weather dependent approach to estimate the annual course of vegetation parameters for water balance simulations on the meso- and macroscale. Adv. Geosci. 2012, 32, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, J.W. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 2006, 42, W03S04. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Cristiano, E.; ten Veldhuis, M.c.; Van De Giesen, N. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas–a review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [Google Scholar] [CrossRef] [Green Version]
- Gires, A.; Tchiguirinskaia, I.; Schertzer, D.; Schellart, A.; Berne, A.; Lovejoy, S. Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data. Atmos. Res. 2014, 138, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Jensen, N.; Pedersen, L. Spatial variability of rainfall: Variations within a single radar pixel. Atmos. Res. 2005, 77, 269–277. [Google Scholar] [CrossRef]
- Pitt, R.; Lantrip, J.; O’Connor, T.P. Infiltration through disturbed urban soils. J. Water Manag. Model. 2000, 1–22. [Google Scholar] [CrossRef]
- Markovi, G.; Zele, M.; Káposztásová, D.; Hudáková, G. Rainwater infiltration in the urban areas. WIT Trans. Ecol. Environ. 2014, 181, 313–320. [Google Scholar]
- Pedersen, A.N.; Pedersen, J.W.; Vigueras-Rodriguez, A.; Brink-Kjær, A.; Borup, M.; Mikkelsen, P.S. The Bellinge data set: Open data and models for community-wide urban drainage systems research. Earth Syst. Sci. Data 2021, 13, 4779–4798. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Livesley, S.; Baptista, M.D.; Thom, J.; Szota, C. Urban Trees as Green Infrastructure for Stormwater Mitigation and Use. In Forest-Water Interactions; Levia, D.F., Carlyle-Moses, D.E., Iida, S., Michalzik, B., Nanko, K., Tischer, A., Eds.; Series Title: Ecological Studies; Springer International Publishing: Cham, Switzerland, 2020; Volume 240, pp. 397–432. [Google Scholar] [CrossRef]
- Cotton, G.K.; Strasser, H. High Resolution Urban Hydrologic Modeling. In Proceedings of the World Environmental and Water Resources Congress 2012: Crossing Boundaries, Albuquerque, NM, USA, 20–24 May 2012; pp. 1889–1898. [Google Scholar]
- Kraft, P.; Multsch, S.; Vaché, K.; Frede, H.G.; Breuer, L. Using Python as a coupling platform for integrated catchment models. Adv. Geosci. 2010, 27, 51–56. [Google Scholar] [CrossRef] [Green Version]
Data | Type | Resolution | Units | Geodata | Climate Data | Measured | Source |
---|---|---|---|---|---|---|---|
DEM | Raster | 1 m | m | x | Freiburg University | ||
Throughfall | Timeseries | 1 min | mm/min | x | Freiburg University | ||
Land use map | Shapefile | - | - | x | Freiburg University | ||
Precipitation | Timeseries | 1 min | mm/min | x | Freiburg University | ||
Relative humidity | Timeseries | 5 min | % | x | Freiburg station [26] | ||
Runoff | Timeseries | 5 min | L/s | x | Freiburg University | ||
Soil class map | Shapefile | - | - | x | Freiburg University | ||
Sunshine hours | Timeseries | 5 min | h/h | x | Freiburg station [27] | ||
Temperature | Timeseries | 5 min | C | x | Freiburg station [26] | ||
Tree coverage | Shapefile | - | - | x | Freiburg University | ||
Tree number | Aerial image | unit | trees | x | Google Earth | ||
Wind speed | Timeseries | 5 min | m/s | x | Freiburg station [28] |
Process/ Parameter | Setting |
---|---|
Interception | Rutter Interception |
Throughfall | |
Canopy Overflow | |
Infiltration | Green Ampt |
Brooks Corey Retention curve | |
Layer depth | 0.5 m |
Saturated Conductivity () | 0.3 m/d (base value) |
Porosity | 0.3 |
Surface Runoff | Kinematic |
Land Use | Manning’s n | Saturated Conductivity [m/Day] |
---|---|---|
Urban Sealed Area | 0.013 | 0 |
Green Area | 0.03 | 0.25 |
Green Roofs | 0.03 | 0.72 |
Vegetative Swale | 0.03 | 0.7 |
Water | 0.03 | 0.015 |
Event | Start Date | Time | Duration [h] | Peak Intensity [mm/h] | Return Period [a] | Rainfall Event [mm] | Total −10 d [mm] | Peak Runoff [L/s] | Saturated Depth [m] | c/v |
---|---|---|---|---|---|---|---|---|---|---|
#1 | 17 June 2011 | 16:15 | 17 | 16.5 | <1 | 23.4 | 41.6 | 361 | 0.50 | c |
#2 | 30 May 2012 | 13:40 | 15 | 27.9 | ∼5 | 35.3 | 35.3 | 339 | 20.0 | c |
#3 | 13 June 2012 | 12:00 | 19 | 25.1 | 1–5 | 27.4 | 82.9 | 595 | 0.25 | v |
#4 | 9 October 2012 | 00:40 | 28 | 14.2 | <1 | 32.7 | 15.4 | 291 | 7.00 | v |
Event | Quarter Scale | Tree Scale (Avg.) | ||||||
---|---|---|---|---|---|---|---|---|
[L/s] | [%] | Volume [L] | Volume [%] | [L/s] | [%] | Volume [L] | Volume [%] | |
#1 | 83 | 25% | 368,550 | 15% | 0.135 | 0.04% | 603 | 0.02% |
#2 | 96 | 27% | 432,141 | 18% | 0.156 | 0.04% | 707 | 0.03% |
#3 | 104 | 17% | 409,373 | 11% | 0.170 | 0.04% | 670 | 0.02% |
#4 | 57 | 19% | 332,064 | 15% | 0.093 | 0.03% | 543 | 0.02% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina Camarena, K.S.; Wübbelmann, T.; Förster, K. What Is the Contribution of Urban Trees to Mitigate Pluvial Flooding? Hydrology 2022, 9, 108. https://doi.org/10.3390/hydrology9060108
Medina Camarena KS, Wübbelmann T, Förster K. What Is the Contribution of Urban Trees to Mitigate Pluvial Flooding? Hydrology. 2022; 9(6):108. https://doi.org/10.3390/hydrology9060108
Chicago/Turabian StyleMedina Camarena, Karina Sinaí, Thea Wübbelmann, and Kristian Förster. 2022. "What Is the Contribution of Urban Trees to Mitigate Pluvial Flooding?" Hydrology 9, no. 6: 108. https://doi.org/10.3390/hydrology9060108
APA StyleMedina Camarena, K. S., Wübbelmann, T., & Förster, K. (2022). What Is the Contribution of Urban Trees to Mitigate Pluvial Flooding? Hydrology, 9(6), 108. https://doi.org/10.3390/hydrology9060108