Contribution of Non-Rainfall Water Input to Surface Soil Moisture in a Tropical Dry Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data
2.3. Soil Moisture and Soil Temperature Data
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN 2010–2020: UN Decade for Deserts and the Fight Against Desertification. Available online: https://www.un.org/en/events/desertification_decade/whynow.shtml (accessed on 18 January 2022).
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, Present, and Future. Theor. Appl. Clim. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.M.A.; Nobre, C.A.; Ribeiro Neto, G.G.; Magalhaes, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; et al. Assessing Drought in the Drylands of Northeast Brazil under Regional Warming Exceeding 4 °C. Nat. Hazards 2020, 103, 2589–2611. [Google Scholar] [CrossRef]
- Miles, L.; Newton, A.C.; DeFries, R.S.; Ravilious, C.; May, I.; Blyth, S.; Gordon, J.E. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 2006, 33, 491–505. [Google Scholar] [CrossRef]
- Murphy, P.G.; Lugo, A.E. Ecology of tropical dry forest. Annual Review. Ecol. Syst. 1986, 17, 67–88. [Google Scholar] [CrossRef]
- Cifor, P.S. Tropical Dry Forests: Under Threat and Under-Researched. 2014. Available online: https://www.cifor.org/publications/pdf_files/factsheet/4875-factsheet.pdf (accessed on 18 January 2022).
- Andrade, E.M.; Sena, M.G.T.; da Silva, A.G.R.; Pereira, F.J.S.; Lopes, F.B. Uncertainties of the rainfall regime in a tropical semi-arid region: The case of the State of Ceará. Rev. Agro@ Mbiente -Line 2016, 10, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, M.J.S.; Andrade, E.M.; Abreu, I.; Lajinha, T. Long-term variation of precipitation indices in Ceará State, Northeast Brazil. Int. J. Climatol. 2013, 33, 2929–2939. [Google Scholar] [CrossRef]
- da Silva, J.M.C.; Leal, I.R.; Tabarelli, M. Caatinga; Springer: Cham, Switzerland, 2017; ISBN 9783319683386. [Google Scholar]
- Andrade, E.M.; Guerreiro, M.J.S.; Palácio, H.A.Q.; Campos, D.A. Ecohydrology in a Brazilian Tropical Dry Forest: Thinned Vegetation Impact on Hydrological Functions and Ecosystem Services. J. Hydrol. Reg. Stud. 2020, 27, 100649. [Google Scholar] [CrossRef]
- Guerreiro, M.S.; de Andrade, E.M.; de Queiroz Palacio, H.A.; Brasil, J.B.; Ribeiro Filho, J.C. Enhancing Ecosystem Services to Minimize Impact of Climate Variability in a Dry Tropical Forest with Vertisols. Hydrology 2021, 8, 46. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhao, W.; Luo, L.; Wang, L. Dew Formation Characteristics in the Gravel Desert Ecosystem and Its Ecological Roles on Reaumuria Soongorica. J. Hydrol. 2021, 603, 126932. [Google Scholar] [CrossRef]
- Kool, D.; Agra, E.; Drabkin, A.; Duncan, A.; Fendinat, P.P.; Leduc, S.; Lupovitch, G.; Nambwandja, A.N.; Ndilenga, N.S.; Nguyễn Thị, T.; et al. The Overlooked Non-Rainfall Water Input Sibling of Fog and Dew: Daily Water Vapor Adsorption on a !Nara Hummock in the Namib Sand Sea. J. Hydrol. 2021, 598, 126420. [Google Scholar] [CrossRef]
- Qiao, N.; Zhang, L.; Huang, C.; Jiao, W.; Maggs-Kölling, G.; Marais, E.; Wang, L. Satellite Observed Positive Impacts of Fog on Vegetation. Geophys. Res. Lett. 2020, 47, e2020GL088428. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Z.; Wang, H. Characteristics of Dew Formation in the Semi-Arid Loess Plateau of Central Shaanxi Province, China. Water 2019, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.M.; Li, C.; Guo, B.; Ma, J.X.; Ayup, M.; Chen, Z.S. Dew Formation and Its Long-Term Trend in a Desert Riparian Forest Ecosystem on the Eastern Edge of the Taklimakan Desert in China. J. Hydrol. 2012, 472–473, 90–98. [Google Scholar] [CrossRef]
- Bayala, J.; Prieto, I. Water acquisition, sharing and redistribution by roots: Applications to agroforestry systems. Plant Soil 2020, 453, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Aguirre-Gutiérrez, C.A.; Holwerda, F.; Goldsmith, G.R.; Delgado, J.; Yepez, E.; Carbajal, N.; Escoto-Rodríguez, M.; Arredondo, J.T. The Importance of Dew in the Water Balance of a Continental Semiarid Grassland. J. Arid Environ. 2019, 168, 26–35. [Google Scholar] [CrossRef]
- Bezerra, M.O.; Vollmer, D.; Acero, N.; Marques, M.C.; Restrepo, D.; Mendoza, E.; Coutinho, B.; Encomenderos, I.; Zuluaga, L.; Rodríguez, O.; et al. Operationalizing Integrated Water Resource Management in Latin America: Insights from Application of the Freshwater Health Index. Environ. Manag. 2022, 69, 815–834. [Google Scholar] [CrossRef]
- Li, Y.; Aemisegger, F.; Riedl, A.; Buchmann, N.; Eugster, W. The Role of Dew and Radiation Fog Inputs in the Local Water Cycling of a Temperate Grassland during Dry Spells in Central Europe. Hydrol. Earth Syst. Sci. 2021, 25, 2617–2648. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa Solos: Rio de Janeiro, Brazil, 2018; ISBN 978-85-7035-198-2. [Google Scholar]
- Black, C.A.; Evans, D.D.; White, J.L.; Esminger, L.E.; Clark, F.E. Methods of Soil Analysis, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1965; p. 770. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Pereira, L.R.; de Andrade, E.M.; de Queiroz Palácio, H.A.; Raymer, P.C.L.; Filho, J.C.R.; Pereira, F.J.S. Carbon Stocks in a Tropical Dry Forest in Brazil. Rev. Cienc. Agron. 2016, 47, 32–40. [Google Scholar] [CrossRef]
- INMET Banco de Dados Meteorológicos. Available online: https://portal.inmet.gov.br/ (accessed on 14 July 2021).
- Cobos, D.; Campbell, C. Correcting Temperature Sensitivity of ECH2O Soil Moisture Sensors Application Note; Decagon Devices: Pullman, WA, USA, 2007. [Google Scholar]
- Andrade, E.M.; Araújo Neto, J.R.; Guerreiro, M.J.S.; Santos, J.C.N.; Palácio, H.A.Q. Land Use Effect on the CN Model Parameters in a Tropical Dry Environment. Water Resour. Manag. 2017, 31, 4103–4116. [Google Scholar] [CrossRef]
- Wang, L.; Kaseke, K.F.; Ravi, S.; Jiao, W.; Mushi, R.; Shuuya, T.; Maggs-Kölling, G. Convergent Vegetation Fog and Dew Water Use in the Namib Desert. Ecohydrology 2019, 12, e2130. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.; Wei, W.; Yu, Y.; Zhang, H. Comparison of Deep Soil Moisture in Two Re-Vegetation Watersheds in Semi-Arid Regions. J. Hydrol. 2014, 513, 314–321. [Google Scholar] [CrossRef]
- Pina, A.L.C.B.; Zandavalli, R.B.; Oliveira, R.S.; Martins, F.R.; Soares, A.A. Dew Absorption by the Leaf Trichomes of Combretum Leprosum in the Brazilian Semiarid Region. Funct. Plant Biol. 2016, 43, 851–861. [Google Scholar] [CrossRef]
- Hanisch, S.; Lohrey, C.; Buerkert, A. Dewfall and Its Ecological Significance in Semi-Arid Coastal South-Western Madagascar. J. Arid Environ. 2015, 121, 24–31. [Google Scholar] [CrossRef]
- Pinheiro, E.A.R.; Costa, C.A.G.; de Araújo, J.C. Effective root depth of the Caatinga biome. J. Arid. Environ. 2013, 89, 1–4. [Google Scholar] [CrossRef]
- Fang, X.; Zhao, W.; Wang, L.; Feng, Q.; Ding, J.; Liu, Y.; Zhang, X. Variations of Deep Soil Moisture under Different Vegetation Types and Influencing Factors in a Watershed of the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2016, 20, 3309–3323. [Google Scholar] [CrossRef] [Green Version]
- Dari, J.; Morbidelli, R.; Saltalippi, C.; Massari, C.; Brocca, L. Spatial-Temporal Variability of Soil Moisture: Addressing the Monitoring at the Catchment Scale. J. Hydrol. 2019, 570, 436–444. [Google Scholar] [CrossRef]
- Feng, H.; Liu, Y. Combined Effects of Precipitation and Air Temperature on Soil Moisture in Different Land Covers in a Humid Basin. J. Hydrol. 2015, 531, 1129–1140. [Google Scholar] [CrossRef]
- Wang, L.; Kaseke, K.F.; Seely, M.K. Effects of Non-rainfall Water Inputs on Ecosystem Functions. WIREs Water 2017, 4, e1179. [Google Scholar] [CrossRef]
Soil Physical/Chemical Parameters | |||
---|---|---|---|
Attributes | Depth (10 cm) | Attributes | Depth (10 cm) |
Clay (%) | 34 | H + Al (cmolc kg−1) | 0.83 |
Sand (%) | 24 | C (g kg−1) | 17.76 |
Silt (%) | 42 | p (mg kg−1) | 180 |
Ca (cmolc/kg) | 38.8 | CE (ds m−1) | 0.59 |
Mg (cmolc/kg) | 4.5 | M.O (g kg−1) | 30.62 |
Na (cmolc/kg) | 0.17 | Ph (H2O) | 7.3 |
K (cmolc/kg) | 1.34 | Texture | Clay loam |
Depth (cm) | SM (%) ± SD | Min (%) | Max (%) | Amplitude (%) | CV (%) | Average Temp (°C) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | Night | Day | Night | Day | Night | Day | Night | Day | Night | Day | Night | ||
Jun | 5 | 11.31 ± 0.82 | 11.86 ± 0.71 | 10.1 | 10.5 | 13.41 | 13.39 | 3.31 | 2.89 | 7.2 | 6 | 26.6 | 25.3 |
10 | 14.24 ± 1.39 | 15.21 ± 1.27 | 12.18 | 13.19 | 17.8 | 17.87 | 5.62 | 4.68 | 9.8 | 8.3 | |||
Jul | 5 | 9.25 ± 0.80 | 9.84 ± 0.63 | 5.91 | 7.98 | 11.12 | 11.12 | 5.21 | 3.14 | 8.7 | 6.4 | 27.5 | 26 |
10 | 11.35 ± 1.13 | 12.45 ± 0.82 | 8.37 | 9.85 | 13.95 | 13.98 | 5.58 | 4.13 | 9.9 | 6.6 | |||
Aug | 5 | 6.00 ± 0.28 | 7.26 ± 0.87 | 2.45 | 4.98 | 8.84 | 8.85 | 6.39 | 3.87 | 21.4 | 12 | 30.5 | 27.2 |
10 | 7.22 ± 1.66 | 8.97 ± 1.14 | 2.87 | 6.01 | 10.93 | 11 | 8.06 | 4.99 | 23 | 12.8 |
Date | Total Daily Radiation (kJ/m2) | Date | Total Daily Radiation (kJ/m2) |
---|---|---|---|
19 Jul | 13,548.38 | 4-Aug | 13,564 |
20 Jul | 9978.3 | 5-Aug | 7656.48 |
21 Jul | 7582.51 | 6-Aug | 7348.23 |
22 Jul | 11,904.18 | 7-Aug | 13,351.67 |
23 Jul | 7344.14 | 8-Aug | 13,138.74 |
24 Jul | 12,408.54 | 16-Aug | 12,270.43 |
17-Aug | 8779.38 | ||
18-Aug | 14,608.16 | ||
26-Aug | 14,419.86 | ||
27-Aug | 10,868.2 | ||
28-Aug | 15,675.22 | ||
Mean radiation | 10,936 | Mean radiation | 13,442 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerreiro, M.S.; de Andrade, E.M.; de Sousa, M.M.M.; Brasil, J.B.; Filho, J.C.R.; de Queiroz Palácio, H.A. Contribution of Non-Rainfall Water Input to Surface Soil Moisture in a Tropical Dry Forest. Hydrology 2022, 9, 102. https://doi.org/10.3390/hydrology9060102
Guerreiro MS, de Andrade EM, de Sousa MMM, Brasil JB, Filho JCR, de Queiroz Palácio HA. Contribution of Non-Rainfall Water Input to Surface Soil Moisture in a Tropical Dry Forest. Hydrology. 2022; 9(6):102. https://doi.org/10.3390/hydrology9060102
Chicago/Turabian StyleGuerreiro, Maria Simas, Eunice Maia de Andrade, Marcos Makeison Moreira de Sousa, José Bandeira Brasil, Jacques Carvalho Ribeiro Filho, and Helba Araújo de Queiroz Palácio. 2022. "Contribution of Non-Rainfall Water Input to Surface Soil Moisture in a Tropical Dry Forest" Hydrology 9, no. 6: 102. https://doi.org/10.3390/hydrology9060102
APA StyleGuerreiro, M. S., de Andrade, E. M., de Sousa, M. M. M., Brasil, J. B., Filho, J. C. R., & de Queiroz Palácio, H. A. (2022). Contribution of Non-Rainfall Water Input to Surface Soil Moisture in a Tropical Dry Forest. Hydrology, 9(6), 102. https://doi.org/10.3390/hydrology9060102