Soil Water Balance and Shallow Aquifer Recharge in an Irrigated Pasture Field with Clay Soils in the Willamette Valley, Oregon, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Data Collection
2.2.1. Soil Water Content and Soil Physical Properties
2.2.2. Irrigation
2.2.3. Groundwater Level
2.3. Soil Water Balance Method (SWBM)
2.4. Shallow Aquifer Recharge
2.5. Statistical Analyses
3. Results
3.1. Soil Properties
3.2. Soil Water Balance
3.3. Groundwater Levels and Aquifer Recharge
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Soil Physical Properties and Textural Classification
Station | Soil Depth (m) | ρb (Mg m−3) | Clay (%) | Silt (%) | Sand (%) | Soil Texture |
---|---|---|---|---|---|---|
North | 0.2 | 1.5 ± 0.01 | 30.1 | 45.9 | 24.0 | clay loam |
0.5 | 1.5 ± 0.01 | 30.7 | 39.9 | 29.3 | clay loam | |
0.8 | 1.4 ± 0.004 | 36.1 | 19.3 | 44.7 | clay loam | |
West | 0.2 | 1.5 ± 0.04 | 44.9 | 30.5 | 24.7 | clay |
0.5 | 1.4 ± 0.02 | 43.5 | 43.1 | 13.3 | silty clay | |
0.8 | 1.6 ± 0.01 | 33.5 | 57.1 | 9.3 | silty clay loam | |
East | 0.2 | 1.7 ± 0.06 | 42.9 | 35.8 | 21.3 | clay |
0.5 | 1.7 ± 0.04 | 44.2 | 32.5 | 23.3 | clay | |
0.8 | 1.6 ± 0.03 | 44.2 | 34.5 | 21.3 | clay | |
South | 0.2 | 1.0 ± 0.01 | 21.4 | 24.6 | 54.0 | sandy clay loam |
0.5 | 1.1 ± 0.01 | 34.1 | 26.6 | 39.3 | clay loam | |
0.8 | 1.2 ± 0.02 | 39.4 | 23.3 | 37.3 | clay loam |
References
- Arnold, L.R. Estimates of Deep-Percolation Return Flow beneath a Flood- and a Sprinkler-Irrigated Site in Weld County, Colorado, 2008–2009; U.S. Geological Survey Scientific Investigations Report 2011–5001; US Geological Survey: Reston, VA, USA, 2011; 225p. [Google Scholar]
- Gutiérrez-Jurado, K.Y.; Fernald, A.G.; Guldan, S.J.; Ochoa, C.G. Surface water and groundwater interactions in traditionally irrigated fields in Northern New Mexico, U.S.A. Water 2017, 9, 102. [Google Scholar] [CrossRef]
- Li, D. Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China. Agric. Water Manag. 2020, 240, 106326. [Google Scholar] [CrossRef]
- Fernald, A.G.; Cevik, S.Y.; Ochoa, C.G.; Tidwell, V.C.; King, J.P.; Guldan, S.J. River Hydrograph Retransmission Functions of Irrigated Valley Surface Water–Groundwater Interactions. J. Irrig. Drain. Eng. 2010, 136, 823–835. [Google Scholar] [CrossRef]
- Ochoa, C.G.; Fernald, A.G.; Guldan, S.J.; Tidwell, V.C.; Shukla, M.K. Shallow Aquifer Recharge from Irrigation in a Semiarid Agricultural Valley in New Mexico. J. Hydrol. Eng. 2013, 18, 1219–1230. [Google Scholar] [CrossRef]
- Bethune, M.G.; Selle, B.; Wang, Q.J. Understanding and predicting deep percolation under surface irrigation. Water Resour. Res. 2008, 44, 1–16. [Google Scholar] [CrossRef]
- Bethune, M. Towards effective control of deep drainage under border-check irrigated pasture in the Murray-Darling Basin: A review. Aust. J. Agric. Res. 2004, 55, 485–494. [Google Scholar] [CrossRef]
- Lal, R.; Shukla, M.K. Principles of Soil Physics; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Baram, S.; Kurtzman, D.; Dahan, O. Water percolation through a clayey vadose zone. J. Hydrol. 2012, 424–425, 165–171. [Google Scholar] [CrossRef]
- Kurtzman, D.; Scanlon, B.R. Groundwater Recharge through Vertisols: Irrigated Cropland vs. Natural Land, Israel. Vadose Zone J. 2011, 10, 662–674. [Google Scholar] [CrossRef]
- Boyko, K.; Fernald, A.G.; Bawazir, A.S. Improving groundwater recharge estimates in alfalfa fields of New Mexico with actual evapotranspiration measurements. Agric. Water Manag. 2021, 244, 106532. [Google Scholar] [CrossRef]
- Grogan, D.S.; Wisser, D.; Prusevich, A.; Lammers, R.B.; Frolking, S. The use and re-use of unsustainable groundwater for irrigation: A global budget. Environ. Res. Lett. 2017, 12, 034017. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Sophocleous, M.A. Combining the soil water balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. J. Hydrol. 1991, 124, 229–241. [Google Scholar] [CrossRef]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Nimmer, M.; Thompson, A.; Misra, D. Modeling Water Table Mounding and Contaminant Transport beneath Storm-Water Infiltration Basins. J. Hydrol. Eng. 2010, 15, 963–973. [Google Scholar] [CrossRef]
- Childs, E.C. The nonsteady state of the water table in drained land. J. Geophys. Res. 1960, 65, 780–782. [Google Scholar] [CrossRef]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Series Classification Database. Available online: http://websurvey.sc.egov.usda.gov/ (accessed on 6 February 2021).
- Oregon State University, Corvallis, Oregon, USA—Climate Summary. Available online: https://wrcc.dri.edu/cgibin/cliMAIN.pl?or1862 (accessed on 31 January 2022).
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods; Agronomy Monographs 9; American Society of Agronomy: Madison, WI, USA, 1986; Volume 9. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Method of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986. [Google Scholar]
- Bureau of Reclamation. Available online: https://www.usbr.gov/pn/agrimet/cropcurves/PASTcc.html (accessed on 12 January 2022).
- Dingman, S.L. Ground water in the hydrologic cycle. In Physical Hydrology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 325–388. [Google Scholar]
- Ochoa, C.G.; Fernald, A.G.; Guldan, S.J.; Shukla, M.K. Deep percolation and its effects on shallow groundwater level rise following flood irrigation. Trans. ASABE 2007, 50, 73–81. [Google Scholar] [CrossRef]
- Wangemann, S.G.; Kohl, R.A.; Molumeli, P.A. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Trans. ASAE 2000, 43, 1517–1523. [Google Scholar] [CrossRef]
- Ochoa, C.G.; Fernald, A.G.; Guldan, S.J.; Shukla, M.K. Water Movement through a Shallow Vadose Zone: A Field Irrigation Experiment. Vadose Zone J. 2009, 8, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, J.R. Effect of Burrowing Mammals on the Hydrology of a Drained Riparian Ecosystem. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2002. [Google Scholar]
- Römkens, M.J.M.; Prasad, S.N. Rain Infiltration into swelling/shrinking/cracking soils. Agric. Water Manag. 2006, 86, 196–205. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, Z.-y.; Wang, C.; Chen, Y.; Zhang, Z.-m. Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods. Geoderma 2020, 358, 113978. [Google Scholar] [CrossRef]
- Greve, A.K.; Acworth, R.I.; Kelly, B.F.J. Detection of subsurface soil cracks by vertical anisotropy profiles of apparent electrical resistivity. Geophysics 2010, 75, WA85–WA93. [Google Scholar] [CrossRef]
- Greve, A.K.; Andersen, M.S.; Acworth, R.I. Monitoring the transition from preferential to matrix flow in cracking clay soil through changes in electrical anisotropy. Geoderma 2012, 179–180, 46–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Z.; Hou, F.; Cheng, J. Characterizing preferential flow paths in texturally similar soils under different land uses by combining drainage and dye-staining methods. Water 2021, 13, 219. [Google Scholar] [CrossRef]
- Liu, M.; Guo, L.; Yi, J.; Lin, H.; Lou, S.; Zhang, H.; Li, T. Characterising preferential flow and its interaction with the soil matrix using dye tracing in the Three Gorges Reservoir Area of China. Soil Res. 2018, 56, 588–600. [Google Scholar] [CrossRef]
Year | Station | n | IR | P | DS | AET | DP |
---|---|---|---|---|---|---|---|
2020 | North | 6 | 250 | 9 | 302 | 42 | 20 |
West | 6 | 214 | 9 | 114 | 45 | 94 | |
East | 6 | 280 | 9 | 238 | 52 | 69 | |
South | 6 | 253 | 9 | 118 | 45 | 98 | |
2021 | North | 13 | 368 | 0 | 202 | 96 | 92 |
West | 13 | 386 | 0 | 150 | 99 | 153 | |
East | 13 | 379 | 0 | 233 | 95 | 101 | |
South | 13 | 391 | 0 | 285 | 99 | 99 |
2020 | 2021 | |||
---|---|---|---|---|
Station | Re | IRR | Re | IRR |
North | 128 | 358 | 340 | 438 |
East | 137 | 526 | 352 | 460 |
West | 137 | 385 | 190 | 628 |
South | 130 | 528 | 278 | 745 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, D.G.; Ochoa, C.G.; Godwin, D.; Tomasek, A.A.; Zamora Re, M.I. Soil Water Balance and Shallow Aquifer Recharge in an Irrigated Pasture Field with Clay Soils in the Willamette Valley, Oregon, USA. Hydrology 2022, 9, 60. https://doi.org/10.3390/hydrology9040060
Gómez DG, Ochoa CG, Godwin D, Tomasek AA, Zamora Re MI. Soil Water Balance and Shallow Aquifer Recharge in an Irrigated Pasture Field with Clay Soils in the Willamette Valley, Oregon, USA. Hydrology. 2022; 9(4):60. https://doi.org/10.3390/hydrology9040060
Chicago/Turabian StyleGómez, Daniel G., Carlos G. Ochoa, Derek Godwin, Abigail A. Tomasek, and María I. Zamora Re. 2022. "Soil Water Balance and Shallow Aquifer Recharge in an Irrigated Pasture Field with Clay Soils in the Willamette Valley, Oregon, USA" Hydrology 9, no. 4: 60. https://doi.org/10.3390/hydrology9040060
APA StyleGómez, D. G., Ochoa, C. G., Godwin, D., Tomasek, A. A., & Zamora Re, M. I. (2022). Soil Water Balance and Shallow Aquifer Recharge in an Irrigated Pasture Field with Clay Soils in the Willamette Valley, Oregon, USA. Hydrology, 9(4), 60. https://doi.org/10.3390/hydrology9040060