Importance of Fog and Cloud Water Contributions to Soil Moisture in the Andean Páramo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Instrumentation
2.3. Selection of Events and Determination of Effective Precipitation
2.4. Identification of Events Consisting of Fog and Rainfall Combined
2.5. Relationship between Effective Precipitation and Meteorological Variables
3. Results
3.1. Selection of Events and Determination of Effective Precipitation
3.2. Identification of Events Consisting of Fog and Rainfall Combined
3.3. Relationship between Effective Precipitation and Meteorological Variables
4. Discussion
4.1. Quantification of Effective Precipitation
4.2. The Impact of Cloud-Water Deposition on Effective Precipitation
4.3. Relationship between Effective Precipitation and Meteorological Variables
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Josse, C.; Cuesta, F.; Navarro, G.; Barrena, V.; Becerra, M.T.; Cabrera, E.; Chacón-Moreno, E.; Ferreira, W.; Peralvo, M.; Saito, J.; et al. Climate Change and Biodiversity in the Tropical Andes. Mt. Res. Dev. 2012, 32, 258. [Google Scholar] [CrossRef]
- Schoolmeester, T.; Saravia, M.; Andresen, M.; Postigo, J.; Valverde, A.; Jurek, M.; Alfthan, B.; Giada, S. Outlook on Climate Change Adaptation in the Tropical Andes mountains. In Mountain Adaptation Outlook Series 2016; United Nations Environment Programme, GRID-Arendal and CONDESAN: Nairobi, Kenya; Arendal, Norway; Vienna, Austria; Lima, Peru, 2016. [Google Scholar]
- Young, B.E.; Young, K.R.; Josse, C. Vulnerability of tropical andean ecosystems to climate change. In Climate Change and Biodiversity in the Tropical Andes; Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE): Montevideo, Uruguay, 2011; pp. 170–181. [Google Scholar]
- Walmsley, J.L.; Schemenauer, R.S.; Bridgman, H.A. A Method for Estimating the Hydrologic Input from Fog in Mountainous Terrain. J. Appl. Meteorol. 1996, 35, 2237–2249. [Google Scholar] [CrossRef] [Green Version]
- Aparecido, L.M.T.; Teodoro, G.S.; Mosquera, G.; Brum, M.; de Barros, F.V.; Pompeu, P.V.; Rodas, M.; Lazo, P.; Müller, C.S.; Mulligan, M.; et al. Ecohydrological drivers of Neotropical vegetation in montane ecosystems. Ecohydrology 2018, 11, e1932. [Google Scholar] [CrossRef]
- Delay, J.K.; Giambelluca, T.W. History of fog and cloud water interception research in hawai’i. In Tropical Montane Cloud Forests: Science for Conservation and Management; International Hydrology Series; Cambridge University Press: Cambridge, UK, 2011; pp. 332–341. [Google Scholar] [CrossRef]
- Katata, G. Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements. J. Geophys. Res. Atmos. 2014, 119, 8137–8159. [Google Scholar] [CrossRef]
- Berrones, G.; Crespo, P.; Wilcox, B.P.; Tobón, C.; Célleri, R. Assessment of fog gauges and their effectiveness in quantifying fog in the Andean páramo. Ecohydrology 2021, 14, e2300. [Google Scholar] [CrossRef]
- Wright, C.; Kagawa-Viviani, A.; Gerlein-Safdi, C.; Mosquera, G.M.; Poca, M.; Tseng, H.; Chun, K.P. Advancing ecohydrology in the changing tropics: Perspectives from early career scientists. Ecohydrology 2018, 11, e1918. [Google Scholar] [CrossRef]
- Crespo, P.J.; Feyen, J.; Buytaert, W.; Bücker, A.; Breuer, L.; Frede, H.G.; Ramirez, M. Identifying controls of the rainfall-runoff response of small catchments in the tropical Andes (Ecuador). J. Hydrol. 2011, 407, 164–174. [Google Scholar] [CrossRef]
- Buytaert, W.; Sevink, J.; De Leeuw, B.; Deckers, J. Clay mineralogy of the soils in the south Ecuadorian páramo region Geoderma. Geoderma 2005, 127, 114–129. [Google Scholar] [CrossRef]
- Buytaert, W.; Cuesta-Camacho, F.; Tobón, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 2011, 20, 19–33. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrology of tropical montane cloud forests: A re-evaluation. Land Use Water Resour. Res. 2001, 1, 1.1–1.18. [Google Scholar]
- Bendix, J.; Rollenbeck, R.; Göttlicher, D.; Cermak, J. Cloud occurrence and cloud properties in Ecuador. Clim. Res. 2006, 30, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Ingraham, N.L.; Mark, A.F.; Frew, R.D. Fog deposition by snow tussock grassland on the Otago uplands: Response to a recent review of the evidence. J. Hydrol. N. Z. 2008, 47, 107–122. [Google Scholar]
- Tobón, C.; Gil Morales, E.G. Capacidad de interceptación de la niebla por la vegetación de los páramos andinos. Av. Recrusos Hidráulicos 2007, 15, 35–46. [Google Scholar]
- Cárdenas, M.F.; Tobón, C.; Buytaert, W. Contribution of occult precipitation to the water balance of páramo ecosystems in the Colombian Andes. Hydrol. Processes 2017, 31, 4440–4449. [Google Scholar] [CrossRef]
- Sampurno Bruijnzeel, L.A.; Eugster, W.; Burkard, R. Fog as a Hydrologic Input. In Encyclopedia of Hydrological Sciences; Anderson, M., McDonnell, J.J., Eds.; John Wiley & Sons: Chichester, UK, 2005; pp. 559–582. [Google Scholar] [CrossRef]
- Katata, G.; Nagai, H.; Kajino, M.; Ueda, H.; Hozumi, Y. Numerical study of fog deposition on vegetation for atmosphere-land interactions in semi-arid and arid regions. Agric. For. Meteorol. 2010, 150, 340–353. [Google Scholar] [CrossRef]
- Chang, S.-C.; Lai, I.-L.; Wu, T. Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmos. Res. 2002, 64, 159–167. [Google Scholar] [CrossRef]
- Eugster, W.; Burkard, R.; Klemm, O.; Wrzesinsky, T. Fog Deposition Measurements with the Eddy Covariance Method. In Proceedings of the Second International Conference on Fog and Fog Collection Fog Conference, St. John’s, NL, Canada, 15–20 July 2001; Volume 2001, pp. 1–4. [Google Scholar]
- Holwerda, F.; Burkard, R.; Eugster, W.; Scatena, F.N.; Meesters, A.G.C.A.; Bruijnzeel, L.A. Estimating fog deposition at a Puerto Rican elfin cloud forest site: Comparison of the water budget and eddy covariance methods. Hydrol. Processes 2006, 20, 2669–2692. [Google Scholar] [CrossRef]
- Schmid, S.; Burkard, R.; Frumau, K.F.A.; Tobón, C.; Bruijnzeel, L.A.; Siegwolf, R.; Eugster, W. Using eddy covariance and stable isotope mass balance techniques to estimate fog water contributions to a Costa Rican cloud forest during the dry season. Hydrol. Processes 2011, 25, 429–437. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface soil moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Tobón, C. Ecohydrology of Tropical Andean Cloud Forests. In The Andean Cloud Forest; Myster, R.W., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Ingraham, N.L.; Mark, A.F. Isotopic assessment of the hydrologic importance of fog deposition on tall snow tussock grass on southern New Zealand uplands. Austral Ecol. 2000, 25, 402–408. [Google Scholar] [CrossRef]
- Fischer, D.T.; Still, C.J.; Ebert, C.M.; Baguskas, S.A.; Park Williams, A. Fog drip maintains dry season ecological function in a California coastal pineforest. Ecosphere 2016, 7, e01364. [Google Scholar] [CrossRef] [Green Version]
- Eugster, W.; Burkard, R.; Holwerda, F.; Scatena, F.N.; Bruijnzeel, L.A. Sampurno. Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agric. For. Meteorol. 2006, 139, 288–306. [Google Scholar] [CrossRef] [Green Version]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Rojas, G.; Silva, B.; Rollenbeck, R.; Célleri, R.; Bendix, J. The breathing of the Andean highlands: Net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador. Agric. For. Meteorol. 2019, 265, 30–47. [Google Scholar] [CrossRef]
- Padrón, R.S.; Wilcox, B.P.; Crespo, P.; Célleri, R. Rainfall in the Andean Páramo—New Insights from High-Resolution Monitoring in Southern. J. Hydrometeorol. 2017, 16, 985–996. [Google Scholar] [CrossRef]
- Ochoa-Sánchez, A.; Crespo, P.; Carrillo-Rojas, G.; Sucozhañay, A.; Célleri, R. Actual evepotranspiration in the high andean grasslands: A comparison of measurement and estimation methods. Front. Earth Sci. 2019, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB World Reference Base for Soil Resources. 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Ochoa-Sánchez, A.; Crespo, P.; Célleri, R. Quantification of rainfall interception in the high Andean tussock grasslands. Ecohydrology 2018, 11, e1946. [Google Scholar] [CrossRef]
- Montenegro-Díaz, P.; Ochoa-Sánchez, A.; Célleri, R. Impact of tussock grasses removal on soil water content dynamics of a tropical mountain hillslope. Ecohydrology 2019, 12, e2146. [Google Scholar] [CrossRef]
- Orellana-Alvear, J.; Célleri, R.; Rollenbeck, R.; Bendix, J. Analysis of rain types and their Z-R relationships at different locations in the high andes of southern Ecuador. J. Appl. Meteorol. Climatol. 2017, 56, 3065–3080. [Google Scholar] [CrossRef]
- Fleischbein, K.; Wilcke, W.; Valarezo, C.; Zech, W.; Knoblich, K. Water budgets of three small catchments under montane forest in Ecuador: Experimental and modelling approach. Hydrol. Processes 2006, 20, 2491–2507. [Google Scholar] [CrossRef]
- Clark, K.E.; Torres, M.A.; West, A.J.; Hilton, R.G.; New, M.; Horwath, A.B.; Fisher, J.B.; Rapp, J.M.; Robles Caceres, A.; Malhi, Y. The hydrological regime of a forested tropical Andean catchment. Hydrol. Earth Syst. Sci. 2014, 18, 5377–5397. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Meng, F.R.; Zhang, Y.; Liu, Y.; Li, H. Water input from fog drip in the tropical seasonal rain forest of Xishuangbanna, South-West China. J. Trop. Ecol. 2004, 20, 517–524. [Google Scholar] [CrossRef]
- Gomez-Peralta, D.; Oberbauer, S.F.; McClain, M.E.; Philippi, T.E. Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. For. Ecol. Manag. 2008, 255, 1315–1325. [Google Scholar] [CrossRef]
- Chang, S.C.; Yeh, C.F.; Wu, M.J.; Hsia, Y.J.; Wu, J.T. Quantifying fog water deposition by in situ exposure experiments in a mountainous coniferous forest in Taiwan. For. Ecol. Manag. 2006, 224, 11–18. [Google Scholar] [CrossRef]
- Herckes, P.; Mirabel, P.; Wortham, H. Cloud water deposition at a high-elevation site in the Vosges Mountains (France). Sci. Total Environ. 2002, 296, 59–75. [Google Scholar] [CrossRef]
- Liu, W.J.; Ping Zhang, Y.; Mei Li, H.; Hong Liu, Y. Fog drip and its relation to groundwater in the tropical seasonal rain forest of Xishuangbanna, Southwest China: A preliminary study. Water Res. 2005, 39, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, B.H.; Teuling, A.J.; Ganzeveld, L.; Hegger, Z.; Leemans, R. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover. J. Hydrol. 2017, 552, 151–167. [Google Scholar] [CrossRef]
- Goodman, J. The Collection of Fog Drip. Water Resour. Res. 1985, 21, 392–394. [Google Scholar] [CrossRef]
- Giambelluca, T.W.; Delay, J.K.; Nullet, M.A.; Scholl, M.; Gingerich, S.B. Interpreting canopy water balance and fog screen observations: Separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai’i. In Tropical Montane Cloud Forests: Science for Conservation and Management; Cambridge University Press: Cambridge, UK, 2011; pp. 342–351. [Google Scholar] [CrossRef]
- Célleri, R.; Feyen, J. The Hydrology of Tropical Andean Ecosystems: Importance, Knowledge Status, and Perspectives. Mt. Res. Dev. 2009, 29, 350–355. [Google Scholar] [CrossRef]
- Holwerda, F.; Bruijnzeel, L.A.; Muñoz-Villers, L.E.; Equihua, M.; Asbjornsen, H. Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. J. Hydrol. 2010, 384, 84–96. [Google Scholar] [CrossRef]
- Tav, J.; Masson, O.; Burnet, F.; Paulat, P.; Bourrianne, T.; Conil, S.; Pourcelot, L. Determination of fog-droplet deposition velocity from a simple weighing method. Aerosol Air Qual. Res. 2018, 18, 103–113. [Google Scholar] [CrossRef]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
Variable | Type of Event | |
---|---|---|
Fog Only | Cloud Water | |
Number of events | 45 | 37 |
Duration of events (h) | 77 | 215 |
Total depth (mm) | 24.4 | 122.2 |
Fog (mm) | 24.4 | 83.9 |
Drizzle (mm) | 0 | 17.3 |
Light rain (mm) | 0 | 20.3 |
Rain (mm) | 0 | 0.7 |
Heavy rain (mm) | 0 | 0.03 |
Number of events Class I (EP > 0 mm) | 9 | 21 |
Number of events Class II (EP = 0 mm) | 36 | 16 |
Effective Precipitation (mm) | 1.1 | 20.4 |
VWC (m3 m3) | 0.7 | 0.7 |
Wind speed (m s−1) | 3.1 | 2.7 |
Vapor Pressure Deficit (hPa) | 0.6 | 0.2 |
Relative Humidity (%) | 95.8 | 99.7 |
Temperature (°C) | 4.1 | 5.3 |
Dew Temperature (°C) | 3.4 | 5.2 |
Radiation (W m−2) | 21.9 | 18.1 |
Radiation (MJ m2) | 0.05 | 0.14 |
Reference | Ecosystem | Location | Altitude (m.a.s.l) | Study Period | CW Input (mm) | FO Input (mm) | EP from CW (mm) | EP from FO (mm) | Method |
---|---|---|---|---|---|---|---|---|---|
This study | Andean Páramo | Southern Ecuador | 3770 | September 2017–December 2019 | 122.2 | 24.4 | 20.4 | 1.1 | Volumetric water content, change in soil water storage |
Cárdenas et al. [17] | Andean Páramo | Colombia-Romerales | 3700–4150 | 7 months | 120 | - | Soil moisture content | ||
Clark et al. [38] | Andean tropical montane cloud forest/puna transition | Eastern Andes of Perú | 2805–3195 | 1998–2012 | 316 ± 116/year | - | 316 ± 116/year | - | Isotopic mixing model |
Gomez-Peralta et al. [40] | Andean tropical montane cloud forest | Yanachaga-Chemillén National Park-central Perú | 2468–2815 | 1 year | - | 221 | - | 221 | Analysis of the components of precipitation |
Chang et al. [41] | Mountainous coniferous forest | Northeastern Taiwan | 1650 | 2003–2004 | - | 328/year | - | 328/year | Lovett micrometeorological model |
Liu et al. [39] | Tropical seasonal rain forest | Southwest China | 750 | 1999–2002 | - | 89.4/year | - | 89.4/year | Fog drip measurement |
Herckes et al. [42] | High-elevation site, Vosges Mountains | Eastern France | 1146 | 1 year | 55.5/year | - | 55.5/year | - | One-dimensional cloud water deposition model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berrones, G.; Crespo, P.; Ochoa-Sánchez, A.; Wilcox, B.P.; Célleri, R. Importance of Fog and Cloud Water Contributions to Soil Moisture in the Andean Páramo. Hydrology 2022, 9, 54. https://doi.org/10.3390/hydrology9040054
Berrones G, Crespo P, Ochoa-Sánchez A, Wilcox BP, Célleri R. Importance of Fog and Cloud Water Contributions to Soil Moisture in the Andean Páramo. Hydrology. 2022; 9(4):54. https://doi.org/10.3390/hydrology9040054
Chicago/Turabian StyleBerrones, Gina, Patricio Crespo, Ana Ochoa-Sánchez, Bradford P. Wilcox, and Rolando Célleri. 2022. "Importance of Fog and Cloud Water Contributions to Soil Moisture in the Andean Páramo" Hydrology 9, no. 4: 54. https://doi.org/10.3390/hydrology9040054
APA StyleBerrones, G., Crespo, P., Ochoa-Sánchez, A., Wilcox, B. P., & Célleri, R. (2022). Importance of Fog and Cloud Water Contributions to Soil Moisture in the Andean Páramo. Hydrology, 9(4), 54. https://doi.org/10.3390/hydrology9040054