Sinkhole Flooding and Aquifer Recharge in Arid to Dry Sub-Humid Regions: A Systematic Review in the Perspective of Climate Change
Abstract
:1. Introduction
2. Climate Change Effects on Sinkhole Flooding
3. Methods
4. Results
4.1. Types of Sinkhole Flooding
4.2. Flood Events Series
4.3. Sinkhole Discharge Capacity
4.4. Aquifer Recharge Process
4.5. Water Resource Planning
5. Discussion and Conclusions
Funding
Conflicts of Interest
Appendix A
Author (s) and Year | Main Objective | Exclusion Cause |
---|---|---|
Nebbache et al. (2001) [99] | particles transport | in humid region |
Massei et al. (2003) [100] | particles transport | in humid region |
Alberic (2004) [101] | river backflooding | in humid region |
Celico et al. (2004) [102] | contamination risk | no SF process |
Aquilina et al. (2006) [103] | epikarst hydrology | no SF process |
Massei et al. (2006) [104] | particles transport | in humid region |
Milanovic (2007) [105] | regional hydrogeology | no SF process |
Jardani et al. (2007) [106] | sinkhole occurrence | in humid region |
Fournier et al. (2008) [107] | particles transport | no SF process |
Polemio et al. (2009) [108] | vulnerability assessment | no SF process |
Guillaume et al. (2020) [109] | vulnerability assessment | no SF process |
References
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology, 1st ed.; Wiley: Chichester, UK, 2007; pp. 103–208. [Google Scholar]
- Parise, M. Chapter 110—Sinkholes. In Encyclopedia of Caves, 3rd ed.; White, W.B., Culver, D.C., Pipan, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 934–942. [Google Scholar]
- Crawford, N. Sinkhole flooding associated with urban development upon karst terrain: Bowling Green, Kentucky. In Sinkholes: Their Geology, Engineering and Environmental Impact. The Proceedings, First Multidisciplinary Conference on Sinkholes; Beck, B.F., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1984; pp. 283–292. [Google Scholar]
- Kemmerly, P. The need for recognition and implementation of a sinkhole-floodplain hazard designation in urban karst terrains. Environ. Geol. 1981, 3, 281–292. [Google Scholar] [CrossRef]
- Currens, J.C.; Graham, D.R. Flooding of sinking Creek, Garretts Spring karst drainage basin, Jessamine and Woodford counties, Kentucky, USA. Environ. Geol. 1993, 22, 337–344. [Google Scholar] [CrossRef]
- Gams, I.; Nicod, J.; Julian, M.; Anthony, E.; Sauro, U. Environmental change and human impacts on the Mediterranean karsts of France, Italy and dinaric region. Catena Suppl. 1993, 25, 59–98. [Google Scholar]
- Hart, E.A. Land use change and sinkhole flooding in Cookeville, Tennessee. Southeast Geogr. 2006, 46, 35–50. [Google Scholar] [CrossRef]
- Zhou, W. Drainage and flooding in karst terraines. Environ. Geol. 2007, 51, 963–973. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Stafford Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Vogt, J.; Naumann, G.; Carrao, H.; Barbosa, P. Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index. Int. J. Climatol. 2015, 35, 2210–2222. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Liu, H.; Huang, J.; Gao, Z.; Wang, G.; Li, D.; Yu, H.; Chen, X. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun. 2020, 11, 1665. [Google Scholar] [CrossRef] [Green Version]
- White, W.B.; Culver, D.C.; Herman, J.S.; Kane, T.C.; Mylroie, J.E. Karst Lands—The dissolution of carbonate rock produces unique landscapes and poses significant hydrological and environmental concerns. Am. Sci. 1995, 83, 450–459. [Google Scholar]
- Gillieson, D.; Thurgate, M. Karst and agriculture in Australia. Int. J. Speleol. 1999, 28, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Emmett, A.J.; Telfer, A.L. Influence of karst hydrology on water quality management in southeast South Australia. Environ. Geol. 1994, 23, 149–155. [Google Scholar] [CrossRef]
- Lopez-Chicano, M.; Calvache, M.L.; Martin-Rosales, W.; Gisbert, J. Conditioning factors in flooding of karstic poljes—The case of the Zafarraya polje (South Spain). Catena 2002, 49, 331–352. [Google Scholar] [CrossRef]
- Doglioni, A.; Simeone, V.; Giustolisi, O. The activation of ephemeral streams in karst catchments of semi-arid regions. Catena 2012, 99, 54–65. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, G.; Yuan, D.; Polk, J.S. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ. Earth Sci. 2013, 69, 2427–2435. [Google Scholar] [CrossRef]
- Delle Rose, M.; Fidelibus, C. Water resource management in karstic catchments: The case of the Asso Torrent basin (Southern Italy). Environ. Earth Sci. 2016, 75, 892. [Google Scholar] [CrossRef]
- Dvory, N.Z.; Ronen, A.; Livshitz, Y.; Adar, E.; Kuznetsov, M.; Yakirevich, A. Quantification of Groundwater Recharge from an Ephemeral Stream into a Mountainous Karst Aquifer. Water 2018, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Masciopinto, C.; De Giglio, O.; Scrascia, M.; Fortunato, F.; La Rosa, G.; Suffredini, E.; Pazzani, C.; Prato, R.; Montagna, M.T. Human health risk assessment for the occurrence of enteric viruses in drinking water from wells: Role of flood runoff injections. Sci. Total Environ. 2019, 666, 559–571. [Google Scholar] [CrossRef]
- Braga, L.T.P.; Velasquez, L.N.M.; Fleming, P.M. Groundwater recharge through the dolines in the semi-arid climate in Minas Gerais State, Brazil. Environ. Earth Sci. 2020, 79, 36. [Google Scholar] [CrossRef]
- Sohrt, J.; Ries, F.; Sauter, M.; Lange, J. Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena 2014, 123, 1–10. [Google Scholar] [CrossRef]
- Fidelibus, M.D.; Balacco, G.; Gioia, A.; Iacobellis, V.; Spilotro, G. Mass transport triggered by heavy rainfall: The role of endorheic basins and epikarst in a regional karst aquifer. Hydrol. Process. 2017, 31, 394–408. [Google Scholar] [CrossRef]
- Royster, D.L. Use of sinkholes for drainage. Transp. Res. Rec. 1984, 978, 18–25. [Google Scholar]
- Dillon, P.; Stuyfz, P.; Grischek, T.; Lluria, M.; Pyne, R.D.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernez, E.; et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Younger, P.L.; Teutsch, G.; Custodio, E.; Elliot, T.; Manzano, M.; Sauter, M. Assessments of the sensitivity to climate change of flow and natural water quality in four major carbonate aquifers of Europe. Geol. Soc. Spec. Publ. 2002, 193, 303–323. [Google Scholar] [CrossRef]
- Delle Rose, M.; Fidelibus, C.; Martano, P. Assessment of Specific Yield in Karstified Fractured Rock through the Water-Budget Method. Geosciences 2018, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Fleury, P.; Maréchal, J.C.; Ladouche, B. Karst flash-flood forecasting in the city of Nîmes (southern France). Eng. Geol. 2013, 164, 26–35. [Google Scholar] [CrossRef]
- Delle Rose, M.; Martano, P.; Fidelibus, C. The Recent Floods in the Asso Torrent Basin (Apulia, Italy): An Investigation to Improve the Stormwater Management. Water 2020, 12, 661. [Google Scholar] [CrossRef] [Green Version]
- Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T. Karst flash floods: An example from the Dinaric karst (Croatia). Nat. Hazards Earth Syst. Sci. 2006, 6, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- Allan, L.P.; Soden, B.J. Atmospheric Warming and the Amplification of Precipitation Extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Im, E.S.; Coppola, E.; Diffenbaugh, N.S.; Gao, X.J.; Mariotti, L.; Shi, Y. Higher Hydroclimatic Intensity with Global Warming. J. Clim. 2011, 24, 5309–5324. [Google Scholar] [CrossRef]
- Ries, F.; Lange, J.; Schmidt, S.; Puhlmann, H.; Sauter, M. Recharge estimation and soil moisture. Hydrol. Earth Syst. Sci. 2015, 19, 1439–1456. [Google Scholar] [CrossRef] [Green Version]
- Xanke, J.; Liesch, T.; Goeppert, N.; Klinger, J.; Gassen, N.; Goldscheider, N. Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan. Hydrogeol. J. 2017, 25, 1795–1809. [Google Scholar] [CrossRef]
- Jebreen, H.; Wohnlich, S.; Wisotzky, F.; Banning, A.; Niedermayr, A.; Ghanem, M. Recharge estimation in semi-arid karst catchments: Central West Bank, Palestine. Grundwasser 2018, 23, 91–101. [Google Scholar] [CrossRef]
- Yang, T.; Wang, C.; Chen, Y.; Chen, X.; Yu, Z. Climate change and water storage variability over an arid endorheic region. J. Hydrol. 2015, 529, 330–339. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; MacDonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nature Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Yapiyev, V.; Samarkhanov, K.; Tulegenova, N.; Jumassultanova, S.; Verhoef, A.; Saidaliyeva, Z.; Umirov, N.; Sagintayev, Z.; Namazbayeva, A. Estimation of water storage changes in small endorheic lakes in Northern Kazakhstan. J. Arid. Environ. 2019, 160, 42–55. [Google Scholar] [CrossRef]
- An, L.; Wang, J.; Huang, J.; Pokhrel, Y.; Hugonnet, R.; Wada, Y.; Cáceres, D.; Müller, S.H.; Song, C.; Berthier, E.; et al. Divergent causes of terrestrial water storage decline between drylands and humid regions globally. Geophys. Res. Lett. 2021, 48, e2021GL095035. [Google Scholar] [CrossRef]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2015, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Doll, P.; Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 2008, 12, 863–885. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming for climate projections. Earth Syst. Dynam. 2019, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Iacobellis, V.; Castorani, A.; Di Santo, A.R.; Gioia, A. Rationale for flood prediction in karst endorheic areas. J. Arid. Environ. 2015, 112, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Butscher, C.; Huggenberger, P. Modeling the temporal variability of karst groundwater vulnerability with implications for climate change. Environ Environ. Sci. Technol. 2009, 43, 1665–1669. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Somaratne, N. Characteristics of point recharge in karst aquifers. Water 2014, 6, 2782–2807. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Biomed. J. 2009, 339, b2535. [Google Scholar]
- Evaristo, J.; McDonnell, J.J. A role for meta-analysis in hydrology. Hydrol. Process. 2017, 31, 3588–3591. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Biomed. J. 2021, 372, 71. [Google Scholar]
- Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2018, 115, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Visser, M.; van Eck, N.J.; Waltman, L. Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- Dijdi, K.; Bakalowicz, M.; Benali, A.M. Mixed, classical and hydrothermal karstification in a carbonate aquifer Hydrogeological consequences. The case of the Saida aquifer system, Algeria. Comptes Rendus Geosci. 2008, 340, 462–473. [Google Scholar] [CrossRef]
- Batiot-Guilhe, C.; Seidel, J.L.; Jourde, H.; Hebrard, O.; Bailly-Comte, V. Seasonal variations of CO2 and 222Rn in a mediterranean sinkhole—Spring (Causse d’Aumelas, SE France). Int. J. Speleol. 2007, 36, 51–56. [Google Scholar] [CrossRef]
- Marechal, J.C.; Ladouche, B.; Dorfliger, N. Karst flash flooding in a Mediterranean karst, the example of Fontaine de Nîmes. Eng. Geol. 2008, 99, 138–146. [Google Scholar] [CrossRef]
- Marechal, J.C.; Ladouche, B.; Dorfliger, N. Analyse hydrogéologique de la contribution de l’eau souterraine à la crue éclair des 6 et 8 septembre 2005 à Nîmes. Houille Blanche 2009, 95, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Bailly-Comte, V.; Jourde, H.; Pistre, S. Conceptualization and classification of groundwater–surface water hydrodynamic interactions in karst watersheds: Case of the karst watershed of the Coulazou River (Southern France). J. Hydrol. 2009, 376, 456–462. [Google Scholar] [CrossRef]
- Parise, M. Flood history in the karst environment of Castellana Grotte (Apulia, southern Italy). Nat. Hazards Earth Syst. Sci. 2003, 3, 593–604. [Google Scholar] [CrossRef]
- Liguori, V.; Manno, G. Environmental hazard and water quality: The River Platani basin. In Environmental Health Risk IV; Brebbia, C.A., Ed.; Wessex Institute of Technology: Southampton, UK, 2007; pp. 147–159. [Google Scholar]
- Apollonio, C.; Delle Rose, M.; Fidelibus, C.; Orlanducci, L.; Spasiano, D. Water management problems in a karst flood-prone endorheic basin. Environ. Earth Sci. 2018, 77, 676. [Google Scholar] [CrossRef]
- Mijatovic, B.F. Catastrophic flood in the Polje of Cetinje in February 1986, a typical example of the environmental impact of karst. Environ. Geol. Water. Sci. 1988, 12, 117–121. [Google Scholar] [CrossRef]
- Novel, J.P.; Dimadi, A.; Zervopoulou, A.; Bakalowicz, M. The Aggitis karst system, Eastern Macedonia, Greece: Hydrologic functioning and development of the karst structure. J. Hydrol. 2007, 334, 477–492. [Google Scholar] [CrossRef]
- Ljubenkov, I. Multicriteria flood mitigation in the Imotsko-Bekijsko Polje (Croatia, Bosnia and Herzegovina). J. Water Land Dev. 2015, 26, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Dasic, C.; Vasic, L. Flood protection and water utilization of karst poljes: Example of Gatačko Polje, Eastern Herzegovina. Environ. Earth Sci. 2020, 79, 233. [Google Scholar] [CrossRef]
- Demiroglu, M. Classification of karst springs for flash-flood-prone areas in western Turkey. Nat. Hazards Earth Syst. Sci. 2016, 16, 1473–1486. [Google Scholar] [CrossRef] [Green Version]
- Sagır, C.; Kurtulus, B.; Razack, M. Hydrodynamic characterization of Mugla Karst Aquifer using correlation and spectral analyses on the rainfall and springs water-level time series. Water 2020, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Mansour, M.; Peach, C.; Robins, N.; Hughes, A. Using a distributed recharge model to quantify recharge processes in a semi-arid karst catchment: An example from Wadi Natuf, West Bank. Water 2019, 11, 276. [Google Scholar] [CrossRef] [Green Version]
- Nassery, H.R.; Alijani, F.; Mirzaei, L. Environmental characterization of a karst polje: An example from Izeh polje, southwest Iran. Environ. Earth Sci. 2009, 59, 99–108. [Google Scholar] [CrossRef]
- Schulz, S.; de Rooij, G.H.; Michelsen, N.; Rausch, R.; Siebert, C.; Schüth, C.; Al-Saud, M.; Merz, R. Estimating groundwater recharge for an arid karst system using a combined approach of time-lapse camera monitoring and water balance modelling. Hydrol. Process. 2015, 30, 771–782. [Google Scholar] [CrossRef]
- Soldo, B.; Mahmoudi Sivand, S.; Afrasiabian, A.; Đurin, B. Effect of Sinkholes on Groundwater Resources in Arid and Semi-Arid Karst Area in Abarkooh, Iran. Environments 2020, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Herczeg, A.L.; Leaney, F.W.J.; Stadter, M.F.; Allan, G.L.; Fifield, L.K. Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia. J. Hydrol. 1997, 192, 271–299. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, G. Problems of Flood and Drought in a Typical Peak Cluster Depression Karst Area (SW China). In Advances in Research in Karst Media; Andreo, B., Carrasco, F., Duran, J.J., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 107–113. [Google Scholar]
- Leventeli, Y.; Halihan, T.; Dailey, M.; Hurt, K.; Kellogg, W. Design for an “engineered sinkhole” to improve, recharge and reduce evapotranspiration in an upstream flood control structure. In Sustainable Irrigation Management, Technologies and Policies III; Brebbia, C.A., Ed.; Wessex Institute of Technology: Southampton, UK, 2010; pp. 145–152. [Google Scholar]
- Jones, N.A.; Hansen, J.; Springer, A.E.; Valle, C.; Tobin, B.W. Modeling intrinsic vulnerability of complex karst aquifers: Modifying the COP method to account for sinkhole density and fault location. Hydrogeol. J. 2019, 27, 2857–2868. [Google Scholar] [CrossRef]
- Dar, F.A.; Perrin, J.; Riotte, J.; Gebauer, H.D.; Narayana, A.C.; Ahmed, S. Karstification in the Cuddapah Sedimentary Basin, southern India: Implications for groundwater resources. Acta Carsologica 2011, 40, 457–472. [Google Scholar] [CrossRef]
- Sorensen, L. A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands, 1st ed.; UNEP-WCMC: Cambridge, UK, 2007; pp. 9–10. [Google Scholar]
- Zhang, S.; Yang, Y.; McVicar, T.; Yang, D. An Analytical Solution for the Impact of Vegetation Changes on Hydrological Partitioning Within the Budyko Framework. Water Resour. Res. 2018, 54, 519–537. [Google Scholar] [CrossRef]
- Kimura, R.; Moriyama, T. Recent Trends of Annual Aridity Indices and Classification of Arid Regions with Satellite-Based Aridity Indices. Remote Sens. Earth Sys. Sci. 2019, 2, 88–95. [Google Scholar] [CrossRef]
- Ogden, A.E. Investigation of sinkhole flooding problems in Knoxville, Tennessee. In Karst Geohazards: Engineering and Environmental Problems in Karst Terrane; Beck, B.F., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1995; pp. 291–296. [Google Scholar]
- Field, M.S. Simulating drainage from a flooded sinkhole. Acta Carsologica 2010, 39, 361–378. [Google Scholar] [CrossRef] [Green Version]
- Bonacci, O. Karst Hydrology with Special Reference to the Dinaric Karst; Springer: Berlin/Heidelberg, Germany, 1987; p. 184. [Google Scholar]
- Vías, J.M.; Andreo, B.; Perles, J.M.; Carrasco, F.; Vadillo, I. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J. 2006, 14, 912–925. [Google Scholar] [CrossRef]
- Horton, R.E. The role of infiltration in the hydrologic cycle. Trans. Am. Geophys. Union. 1933, 14, 446–460. [Google Scholar] [CrossRef]
- Gallart, F.; Amaxidis, Y.; Botti, P.; Canè, G.; Castillo, V.; Chapman, P.; Froebrich, J.; García-Pintado, J.; Latron, J.; Llorensictja-Csic, P.; et al. Investigating hydrological regimes and processes in a set of catchments with temporary waters in Mediterranean Europe. Hydrol. Sci. J. 2008, 53, 618–628. [Google Scholar] [CrossRef]
- Gwenzi, W.; Nyamadzawo, G. Hydrological Impacts of Urbanization and Urban Roof Water Harvesting in Water-limited Catchments: A Review. Environ. Process. 2014, 1, 573–593. [Google Scholar] [CrossRef] [Green Version]
- Gunkel, A.; Shadeed, S.; Hartmann, A.; Wagener, T.; Lange, J. Model signatures and aridity indices enhance the accuracy of water balance estimations in a data-scarce Eastern Mediterranean catchment. J. Hydrol. Reg. Stud. 2015, 4, 487–501. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Shen, Y.; Sun, A.; Hong, Y.; Longuevergne, L.; Yang, Y.; Li, B.; Chen, L. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ. 2014, 155, 145–160. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, H.; Feng, J.; Lu, T.; Yang, L.; Sun, J.; Shi, M. Dynamic evolution of karst water levels and its controlling and influencing factors in Northern China: A case study in the Dawu water source area. Carbonates Evaporites 2020, 35, 47. [Google Scholar] [CrossRef]
- Berthelin, R.; Rinderer, M.; Andreo, B.; Baker, A.; Kilian, D.; Leonhardt, G.; Lotz, A.; Lichtenwoehrer, K.; Mudarra, M.; Padilla, I.Y.; et al. A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe. Geosci. Instrum. Method. Data Syst. 2020, 9, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Flores, G.; Gutiérrez-Aguirre, M.A.; Cervantes-Martínez, A.; Marín-Celestino, A.E. Historical analysis of a karst aquifer: Recharge, water extraction, and consumption dynamics on a tourist island (Cozumel, Mexico). Int. J. Limnol. 2021, 57, 16. [Google Scholar] [CrossRef]
- Lucon, T.N.; Costa, A.T.; Galvao, P.; Leite, M.G.P.; Madeira, T.; Nogueira, L.B. Recharge sources and hydraulic communication of karst aquifer, São Miguel watershed, MG, Brazil. J. S. Am. Earth Sci. 2020, 100, 102591. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Ross, A.; Hasnain, S. Factors affecting the costs of managed aquifer recharge schemes. Sustain. Water Resour. Manag. 2018, 4, 179–190. [Google Scholar] [CrossRef]
- Katz, B.G.; Griffin, D.W.; Davis, J.H. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators. Sci. Total. Environ. 2009, 407, 2872–2886. [Google Scholar] [CrossRef]
- Daher, W.; Pistre, S.; Kneppers, A.; Bakalowicz, M.; Najem, W. Karst and artificial recharge, theoretical and practical problems: A preliminary approach to artificial recharge assessment. J. Hydrol. 2011, 408, 189–202. [Google Scholar] [CrossRef]
- Nebbache, S.; Feeny, V.; Poudevigne, I.; Alard, D. Turbidity and nitrate transfer in karstic aquifers in rural areas: The Brionne Basin case-study. J. Environ. Manag. 2001, 62, 389–398. [Google Scholar] [CrossRef]
- Massei, N.; Wang, H.Q.; Dupont, J.P.; Rodet, J.; Laignel, B. Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring. J. Hydrol. 2003, 275, 109–121. [Google Scholar] [CrossRef]
- Alberic, P. River backflooding into a karst resurgence (Loiret, France). J. Hydrol. 2004, 286, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Celico, F.; Musilli, I.; Naclerio, G. The impacts of pasture- and manure-spreading on microbial groundwater quality in carbonate aquifers. Envirom. Geol. 2004, 46, 233–236. [Google Scholar] [CrossRef]
- Aquilina, L.; Ladouche, B.; Dorfliger, N. Water storage and transfer in the epikarst of karstic systems during high flow periods. J. Hydrol. 2006, 327, 472–485. [Google Scholar] [CrossRef]
- Massei, N.; Dupont, J.P.; Mahler, B.J.; Laignel, B.; Fournier, M.; Valdes, D.; Ogier, S. Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J. Hydrol. 2006, 329, 244–257. [Google Scholar] [CrossRef]
- Milanovic, S. Hydrogeological characteristics of some deep siphonal springs in Serbia and Montenegro karst. Environ. Geol. 2007, 51, 755–759. [Google Scholar] [CrossRef]
- Jardani, A.; Revil, A.; Santos, F.; Fauchard, C.; Dupont, J.P. Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophys. Prospect. 2007, 55, 749–760. [Google Scholar] [CrossRef]
- Fournier, M.; Massei, B.; Mahler, J.; Bakalowicz, M.; Dupont, J.P. Application of multivariate analysis to suspended matter particle size distribution in a karst aquifer. Hydrol. Process. 2008, 22, 2337–2345. [Google Scholar] [CrossRef]
- Polemio, M.; Casarano, D.; Limoni, P.P. Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat. Hazards Earth Syst. Sci. 2009, 9, 1461–1470. [Google Scholar] [CrossRef]
- Guillaume, L.; Peyraube, N.; Lastennet, R.; Denis, A.; Sabidussi, J.; Fournier, M.; Viennet, D.; Gon, J.; Villanueva, J.D. Tracing water perturbation using NO3, doc, particles size determination, and bacteria: A method development for karst aquifer water quality hazard assessment. Sci. Total Environ. 2020, 725, 138512. [Google Scholar]
Author (s) and Year | Location | Main Objective | SF Type |
---|---|---|---|
Mijatovic (1988) * [64] | Balkan Peninsula | flood management | 2 |
Herczeg et al. (1997) [74] | South Australia | aquifer recharge | 1 |
Lopez-Chicano et al. (2002) [16] | Iberian Peninsula | flood management | 3 |
Parise (2003) * [61] | Italian Peninsula | flood management | 1 |
Novel et al. (2007) [65] | Balkan Peninsula | aquifer recharge | 2 |
Liguori & Manno (2007) [62] | Italian Peninsula | contamination risk | 2 |
Batiot-Guilhe et al. (2007) [57] | South Cont. Europe | multiple objectives | 2 |
Marechal et al. (2008) [58] | South Cont. Europe | flood management | 2,3 |
Dijdi et al. (2008) [56] | North Africa | contamination risk | und. |
Nassery et al. (2009) * [71] | Middle East | contamination risk | und. |
Marechal et al. (2009) [59] | South Cont. Europe | flood management | 2,3 |
Bailly-Comte et al. (2009) [60] | South Cont. Europe | flood management | 2 |
Leventeli et al. (2010) * [76] | Cent. North America | aquifer recharge | und. |
Guo & Jiang (2010) * [75] | South China | multiple objectives | 1 |
Dar et al. (2011) [78] | South India | aquifer recharge | und. |
Guo et al. (2013) * [18] | South China | multiple objectives | 1 |
Somaratne (2014) [48] | South Australia | aquifer recharge | 3 |
Iacobellis et al. (2015) [45] | Italian Peninsula | flood management | 1 |
Ljubenkov (2015) * [66] | Balkan Peninsula | flood management | 1 |
Schulz et al. (2015) [72] | Middle East | aquifer recharge | 1 |
Delle Rose & Fidelibus (2016) [19] | Italian Peninsula | flood management | 1 |
Demiroglu (2016) * [68] | Anatolian Peninsula | flood management | und. |
Xanke et al. (2017) * [36] | Middle East | aquifer recharge | 1,2 |
Dvory et al. (2018) [20] | Middle East | aquifer recharge | und. |
Apollonio et al. (2018) [63] | Italian Peninsula | flood management | 1 |
Masciopinto et al. (2019) [21] | Italian Peninsula | contamination risk | und. |
Jones et al. (2019) [77] | West North America | contamination risk | und. |
Mansour et al. (2019) * [70] | Middle East | aquifer recharge | und. |
Braga et al. (2020) [22] | South East Brazil | aquifer recharge | 1 |
Sagir et al. (2020) [69] | Anatolian Peninsula | multiple objectives | 2 |
Dasic et al. (2020) [67] | Balkan Peninsula | flood management | 2,3 |
Soldo et al. (2020) * [73] | Middle East | contamination risk | und. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delle Rose, M. Sinkhole Flooding and Aquifer Recharge in Arid to Dry Sub-Humid Regions: A Systematic Review in the Perspective of Climate Change. Hydrology 2022, 9, 25. https://doi.org/10.3390/hydrology9020025
Delle Rose M. Sinkhole Flooding and Aquifer Recharge in Arid to Dry Sub-Humid Regions: A Systematic Review in the Perspective of Climate Change. Hydrology. 2022; 9(2):25. https://doi.org/10.3390/hydrology9020025
Chicago/Turabian StyleDelle Rose, Marco. 2022. "Sinkhole Flooding and Aquifer Recharge in Arid to Dry Sub-Humid Regions: A Systematic Review in the Perspective of Climate Change" Hydrology 9, no. 2: 25. https://doi.org/10.3390/hydrology9020025
APA StyleDelle Rose, M. (2022). Sinkhole Flooding and Aquifer Recharge in Arid to Dry Sub-Humid Regions: A Systematic Review in the Perspective of Climate Change. Hydrology, 9(2), 25. https://doi.org/10.3390/hydrology9020025