Late Summer Water Sources in Rivers and Lakes of the Upper Yana River Basin, Northern Eurasia, Inferred from Hydrological Tracer Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Major Ions
4.2. Stable Water Isotopes
4.3. Trace Elements & REEs
5. Discussion
5.1. Water Runoff Sources
5.1.1. Region 1: Dulgalakh and Nelgese River Basins
5.1.2. Region 2: Derbeke Depression
5.1.3. Region 3: Dogdo River Basin
5.2. Icing Discharge Signatures
5.3. Sm and Gd Anomalies
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monhonval, A.; Mauclet, E.; Pereira, B.; Vandeuren, A.; Strauss, J.; Grosse, G.; Schirrmeister, L.; Fuchs, M.; Kuhry, P.; Opfergelt, S. Mineral element stocks in the Yedoma domain: A novel method applied to ice-rich permafrost regions. Front. Earth Sci. 2021, 9, 739365. [Google Scholar] [CrossRef]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.; Schuur, E.; Ping, C.-L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.; Koven, C.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6537–6593. [Google Scholar] [CrossRef] [Green Version]
- Strauss, J.; Schirrmeister, L.; Grosse, G.; Fortier, D.; Hugelius, G.; Knoblauch, C.; Romanovsky, V.; Schädel, C.; Schneider von Deimling, T.; Schuur, E.A.G.; et al. Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 2017, 172, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H. Dissolved organic carbon (DOC) in Arctic ground ice. Cryosphere 2015, 9, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Hugelius, G.; Loisel, J.; Chanburn, S.; Jackson, R.B.; Jones, M.; MacDonald, G.; Marushchak, M.; Olefeldt, D.; Packalen, M.; Siewert, M.; et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. USA 2020, 117, 20438–20446. [Google Scholar] [CrossRef]
- Turetsky, M.; Abbott, B.; Jones, M.; Anthony, K.; Olefeldt, D.; Schuur, E. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Van Huissteden, J. Thawing Permafrost. Permafrost Carbon in the Warming Arctic; Springer: Cham, Switzerland; p. 508. [CrossRef]
- Walvoord, M.A.; Striegl, R.G. Complex vulnerabilities of the water and aquatic carbon cycles to permafrost thaw. Front. Clim. 2021, 3, 730402. [Google Scholar] [CrossRef]
- Lafrenière, M.J.; Lamoureux, S.F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth-Sci. Rev. 2019, 191, 212–223. [Google Scholar] [CrossRef]
- Fabre, C.; Sauvage, S.; Tananaev, N.; Srinivasan, R.; Teisserenc, R.; Sánchez Perez, J.-M. Using modeling tools to better understand permafrost hydrology. Water 2017, 9, 418. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Kane, D.L.; Gieck, R.E.; Everett, K.R. Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Reg. Sci. Technol. 1991, 19, 95–110. [Google Scholar] [CrossRef]
- Tananaev, N.; Teisserenc, R.; Debolsky, M. Permafrost hydrology research domain: Process-based adjustment. Hydrology 2020, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.-K. Permafrost Hydrology; Springer: Berlin/Heidelberg, Germany, 2012; p. 575. [Google Scholar]
- Kokelj, S.V.; Burn, C.R. Geochemistry of the active layer and near-surface permafrost, Mackenzie delta region, Northwest Territories, Canada. Can. J. Earth Sci. 2005, 42, 37–48. [Google Scholar] [CrossRef]
- Creighton, A.L.; Parsekian, A.D.; Angelopoulos, M.; Jones, B.M.; Bondurant, A.; Engram, M.; Lenz, J.; Overduin, P.P.; Grosse, G.; Babcock, E.; et al. Transient electromagnetic surveys for the determination of talik depth and geometry beneath thermokarst lakes. J. Geophys. Res. Solid Earth 2018, 123, 9310–9323. [Google Scholar] [CrossRef]
- Stephani, E.; Drage, J.; Miller, D.; Jones, B.M.; Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permafr. Periglac. Processes 2020, 31, 239–254. [Google Scholar] [CrossRef]
- Connon, R.F.; Quinton, W.L.; Craig, J.R.; Hanisch, J.; Sonnentag, O. The hydrology of interconnected bog complexes in discontinuous permafrost terrain. Hydrol. Processes 2015, 29, 3831–3847. [Google Scholar] [CrossRef]
- Streletsky, D.A.; Tananaev, N.I.; Opel, T.; Shiklomanov, N.I.; Nyland, K.; Streletskaya, I.D.; Tokarev, I.; Shiklomanov, A.I. Permafrost hydrology in changing climatic conditions: Seasonal variability of stable isotope composition in rivers in discontinuous permafrost. Environ. Res. Lett. 2015, 10, 095003. [Google Scholar] [CrossRef]
- Tananaev, N.; Isaev, V.; Sergeev, D.; Kotov, P.; Komarov, O. Hydrological connectivity in a permafrost tundra landscape near Vorkuta, North-European Arctic Russia. Hydrology 2021, 8, 106. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Voss, C.I.; Wellmen, T.P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour. Res. 2012, 48, W07524. [Google Scholar] [CrossRef]
- Gibson, C.M.; Chasmer, L.E.; Thompson, D.K.; Quinton, W.L.; Flannigan, M.D.; Olefeldt, D. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 2018, 9, 3041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, D.M.; Walvoord, M.A.; Minsley, B.J.; Ebel, B.A.; Voss, C.I.; Singha, K. Wildfire-initiated talik development exceeds current thaw projections: Observations and models from Alaska’s continuous permafrost zone. Geophys. Res. Lett. 2020, 47, e2020GL087565. [Google Scholar] [CrossRef]
- Jafarov, E.; Coon, E.T.; Harp, D.R.; Wilson, C.J.; Painter, S.L.; Atchley, A.L.; Romanovsky, V.E. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environ. Res. Lett. 2018, 13, 105006. [Google Scholar] [CrossRef]
- Jan, A.; Painter, S.L. Permafrost thermal conditions are sensitive to shifts in snow timing. Environ. Res. Lett. 2020, 15, 84026. [Google Scholar] [CrossRef]
- O’Neill, H.B.; Burn, C.R. Talik formation at a snow fence in continuous permafrost, Western Arctic Canada. Permafr. Periglac. Processes 2017, 28, 558–565. [Google Scholar] [CrossRef]
- Devoie, É.G.; Craig, J.R.; Connon, R.F.; Quinton, W.L. Taliks: A tipping point in discontinuous permafrost degradation in peatlands. Water Resour. Res. 2019, 55, 9838–9857. [Google Scholar] [CrossRef]
- Connon, R.F.; Devoie, É.; Hayashi, M.; Veness, T.; Quinton, W. The influence of shallow taliks on permafrost thaw and active layer dynamics in Subarctic Canada. J. Geophys. Res. Earth Surf. 2018, 123, 281–297. [Google Scholar] [CrossRef]
- Lamontagne-Hallé, P.; McKenzie, J.M.; Kurylyk, B.L.; Zipper, S.C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 2018, 13, 84017. [Google Scholar] [CrossRef]
- Douglas, T.A.; Hiemstra, C.A.; Anderson, J.E.; Barbato, R.A.; Bjella, K.L.; Deeb, E.J.; Gelvin, A.B.; Nelsen, P.E.; Newman, S.D.; Saari, S.P.; et al. Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar. Cryosphere 2021, 15, 3555–3575. [Google Scholar] [CrossRef]
- Linnel, K.A.; Kaplar, C.W. Description and Classification of Frozen Soils; CRREL Tech. Rep. 150: Hanover, NH, USA, 1966; p. 12. [Google Scholar]
- Walvoord, M.A.; Voss, C.I.; Ebel, B.A.; Minsley, B.J. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environ. Res. Lett. 2019, 14, 015003. [Google Scholar] [CrossRef]
- St. Jacques, J.-M.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 2009, 36, L01401. [Google Scholar] [CrossRef]
- Tananaev, N.; Makarieva, O.; Lebedeva, L. Trends in annual and extreme flows in the Lena River basin, Northern Eurasia. Geophys. Res. Lett. 2016, 43, 10764–10772. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Yang, Y. Effects of permafrost degradation on the hydrological regime in the source regions of the Yangtze and Yellow Rivers, China. Water 2017, 9, 897. [Google Scholar] [CrossRef] [Green Version]
- Piovano, T.; Tetzlaff, D.; Carey, S.K.; Shatilla, N.J.; Smith, A.; Soulsby, C. Spatially distributed tracer-aided runoff modelling and dynamics of storage and water ages in a permafrost-influenced catchment. Hydrol. Earth Syst. Sci. 2019, 23, 2507–2523. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, D.; Buttle, J.; Carey, S.K.; McGuire, K.; Laudon, H.; Soulsby, C. Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: A review. Hydrol. Processes 2015, 29, 3475–3490. [Google Scholar] [CrossRef]
- Ala-aho, P.; Soulsby, C.; Pokrovsky, O.S.; Kirpotin, S.N.; Karlsson, J.; Serikova, S.; Vorobyev, S.N.; Manasypov, R.M.; Loiko, S.; Tetzlaff, D. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J. Hydrol. 2018, 556, 279–293. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J.J. (Eds.) Isotope Tracers in Catchment Hydrology; Elsevier Science B.V.: Amsterdam, The Netherlands, 1998; p. 839. [Google Scholar]
- Tetzlaff, D.; Piovano, T.; Ala-Aho, P.; Smith, A.; Carey, S.K.; Marsh, P.; Wookey, P.A.; Street, L.E.; Soulsby, C. Using stable isotopes to estimate travel times in a data-sparse Arctic catchment: Challenges and possible solutions. Hydrol. Processes 2018, 32, 1936–1952. [Google Scholar] [CrossRef] [PubMed]
- Throckmorton, H.M.; Newman, B.D.; Heikoop, J.M.; Perkins, G.B.; Feng, X.; Graham, D.E.; O’Malley, D.; Vesselinov, V.V.; Young, J.; Wullschleger, S.D.; et al. Active layer hydrology in an arctic tundra ecosystem: Quantifying water sources and cycling using water stable isotopes. Hydrol. Processes 2016, 30, 4972–4986. [Google Scholar] [CrossRef]
- Park, H.; Tanoue, M.; Sugimoto, A.; Ichiyanagi, K.; Iwahana, G.; Hiyama, T. Quantitative separation of precipitation and permafrost waters used for evapotranspiration in a boreal forest: A numerical study using tracer model. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006645. [Google Scholar] [CrossRef]
- Pokrovsky, O.; Manasypov, R.; Loiko, S.; Krickov, I.; Pokrovsky, B.; Kolesnichenko, L.; Kopysov, S.; Zemtzov, V.; Kulizhsky, S.; Vorobyev, S.; et al. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers. Biogeosciences 2015, 12, 6301–6320. [Google Scholar] [CrossRef] [Green Version]
- Pokrovsky, O.; Manasypov, R.; Loiko, S.; Krickov, I.; Kopysov, S.; Kolesnichenko, L.; Vorobyev, S.; Kirpotin, S. Trace element transport in western Siberian rivers across a permafrost gradient. Biogeosciences 2016, 13, 1877–1900. [Google Scholar] [CrossRef] [Green Version]
- Raudina, T.; Loiko, S.; Lim, A.; Krickov, I.; Shirokova, L.; Istigechev, G.; Kuzmina, D.; Kulizhsky, S.; Vorobyev, S.; Pokrovsky, O. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia. Biogeosciences 2017, 14, 3561–3584. [Google Scholar] [CrossRef] [Green Version]
- Gandois, L.; Tananaev, N.; Prokushkin, A.; Solnyshkin, I.; Teisserenc, R. Seasonality of DOC export from a Russian Subarctic catchment underlain by discontinuous permafrost, highlighted by high-frequency monitoring. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006152. [Google Scholar] [CrossRef]
- Hiyama, T.; Asai, K.; Kolesnikov, A.; Gagarin, L.; Shepelev, V. Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia. Environ. Res. Lett. 2013, 8, 035040. [Google Scholar] [CrossRef]
- Hiyama, T.; Dashtseren, A.; Asai, K.; Kanamori, H.; Iijima, Y.; Ishikawa, M. Groundwater age of spring discharges under changing permafrost conditions: The Khangai Mountains in central Mongolia. Environ. Res. Lett. 2021, 015008. [Google Scholar] [CrossRef]
- Malov, A. Tritium records to trace groundwater recharge and mixing in the western Russian Arctic. Environ. Earth. Sci. 2021, 80, 583. [Google Scholar] [CrossRef]
- Wan, C.; Li, K.; Shen, S.; Gibson, J.J.; Ji, K.; Yi, P.; Yu, Z. Using tritium and 222Rn to estimate groundwater discharge and thawing permafrost contributing to surface water in permafrost regions on Qinghai-Tibet Plateau. J. Radioanal. Nucl. Chem. 2019, 322, 561–578. [Google Scholar] [CrossRef]
- Bond, M.J.; Carr, J. Permafrost thaw and implications for the fate and transport of tritium in the Canadian north. J. Environ. Radioact. 2018, 192, 295–311. [Google Scholar] [CrossRef]
- Frampton, A.; Destouni, G. Impact of degrading permafrost on subsurface solute transport pathways and travel times. Water Resour. Res. 2015, 51, 7680–7701. [Google Scholar] [CrossRef]
- Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Processes 2009, 23, 169–182. [Google Scholar] [CrossRef]
- Pokrovsky, O.; Manasypov, R.; Kopysov, S.; Krickov, I.; Shirokova, L.; Loiko, S.; Lim, A.; Kolesnichenko, L.; Vorobyev, S.; Kirpotin, S. Impact of permafrost thaw and climate warming on riverine export fluxes of carbon, nutrients and metals in western Siberia. Water 2020, 12, 1817. [Google Scholar] [CrossRef]
- Gibson, J.J.; Yi, Y.; Birks, S.J. Isotopic tracing of hydrologic drivers including permafrost thaw status for lakes across Northeastern Alberta, Canada: A 16-year, 50-lake assessment. J. Hydrol. Reg. Stud. 2019, 26, 100643. [Google Scholar] [CrossRef]
- Jessen, S.; Holmslykke, H.D.; Rasmussen, K.; Richardt, N.; Holm, P.E. Hydrology and pore water chemistry in a permafrost wetland, Ilulissat, Greenland. Water Resour. Res. 2014, 50, 4760–4774. [Google Scholar] [CrossRef]
- Roberts, K.E.; Lamoureux, S.F.; Kyser, T.K.; Muir, D.C.G.; Lafrenière, M.J.; Iqualuk, D.; Pieńkowski, A.J.; Normandeau, A. Climate and permafrost effects on the chemistry and ecosystems of High Arctic lakes. Sci. Rep. 2017, 7, 13292. [Google Scholar] [CrossRef] [Green Version]
- Parham, L.M.; Prokushkin, A.S.; Pokrovsky, O.S.; Titov, S.V.; Grekova, E.; Shirokova, L.S.; McDowell, W.H. Permafrost and fire as regulators of stream chemistry in basins of the Central Siberian Plateau. Biogeochemistry 2013, 116, 55–68. [Google Scholar] [CrossRef]
- Evans, S.G.; Ge, S. Contrasting hydrogeologic responses to warming in permafrost and seasonally frozen ground hillslopes. Geophys. Res. Lett. 2017, 44, 1803–1813. [Google Scholar] [CrossRef]
- Crites, H.; Kokelj, S.V.; Lacelle, D. Icings and groundwater conditions in permafrost catchments of northwestern Canada. Sci. Rep. 2020, 10, 3283. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Jan, A.; Painter, S.L.; Coon, E.T.; Carey, M.P.; O’Donnell, J.A.; Koch, J.C. Permafrost promotes shallow groundwater flow and warmer headwater streams. Water Resour. Res. 2021, 57, e2020WR027463. [Google Scholar] [CrossRef]
- Ensom, T.; Makarieva, O.; Morse, P.; Kane, D.; Alekseev, V.; Marsh, P. The distribution and dynamics of aufeis in permafrost regions. Permafr. Periglac. Processes 2020, 31, 383–395. [Google Scholar] [CrossRef]
- Alekseev, V.R. Influence of icings on river aufeis fluviogenesis. Ice Snow 2013, 53, 95–106. [Google Scholar] [CrossRef]
- Tolstikhin, O.N.; Sokolov, B.L. Icing Mounds as a Factor of Formation of River and Underground Runoff. The Role of Snow and Ice in Hydrology; IAHS Publication 1: Wallingford, UK, 1972; pp. 557–563. [Google Scholar]
- Lauriol, B.; Cinq Mars, J.; Clark, I.D. Localisation, genèse et fonte de quelques naleds du nord du Yukon (Canada). Permafr. Periglac. Processes 1991, 2, 225–236. [Google Scholar] [CrossRef]
- Reedyk, S.; Woo, M.-K.; Prowse, T.D. Contribution of icing ablation to streamflow in a discontinuous permafrost area. Can. J. Earth Sci. 1995, 32, 13–20. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hinzman, L.D.; Kane, D.L. Spring and aufeis (icing) hydrology in Brooks Range, Alaska. J. Geophys. Res. 2007, 112, G04S43. [Google Scholar] [CrossRef] [Green Version]
- Morse, P.D.; Wolfe, S.A. Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada. J. Geophys. Res. Earth Surf. 2015, 120, 1670–1686. [Google Scholar] [CrossRef] [Green Version]
- Pavelsky, T.M.; Zarnetske, J.P. Rapid decline in river icings detected in Arctic Alaska: Implications for the changing hydrologic cycle and river ecosystems. Geophys. Res. Lett. 2017, 44, 3228–3235. [Google Scholar] [CrossRef]
- Evans, S.; Ge, S.; Liang, S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost. Water Resour. Res. 2015, 51, 9564–9576. [Google Scholar] [CrossRef]
- Kirillina, K.; Tananaev, N.; Savvinova, A.; Lobanov, V.; Fedorova, A.; Borisov, A. Climate change impacts the state of winter roads connecting indigenous communities: Case study of Sakha (Yakutia) Republic. Clim. Serv. 2022; in press. [Google Scholar]
- WMO Recognizes New Arctic Temperature Record of 38 °C. Available online: https://public.wmo.int/en/media/press-release/wmo-recognizes-new-arctic-temperature-record-of-38%E2%81%B0c (accessed on 8 January 2022).
- Makarieva, O.; Nesterova, N.; Post, D.A.; Sherstyukov, A.; Lebedeva, L. Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost. Cryosphere 2019, 13, 1635–1659. [Google Scholar] [CrossRef] [Green Version]
- Kashmenskaya, O.V.; Khvorostova, Z.M. Geomorphological Analysis in Placer Prospecting (Examples from Elga Golden Ore Fields in the Indigirka River Headwaters); Siberian Branch, Russian Academy of Sciences: Novosibirsk, Russia, 1965; p. 172. [Google Scholar]
- Murzin, Y.A. Permafrost of Tuostakh depression. Priroda 2019, 10, 60–69. (In Russian) [Google Scholar] [CrossRef]
- GOST 31957-2012. Water. Methods for Determination of Alkalinity and Mass Concentration of Carbonates and Hydrocarbonates Moscow; Standartinform: Moscow, Russia, 2019; p. 30. [Google Scholar]
- GOST 31867-2012. Drinking Water. Determination of Anions Content by Chromatography and Capillary Electrophoresis Method; Standartinform: Moscow, Russia, 2019; p. 11. [Google Scholar]
- GOST 31869-2012. Water. Methods for the Determination of Cations (Ammonium, Barium, Potassium, Calcium, Lithium, Magnesium, Sodium, Strontium) Content Using Capillary Electrophoresis; Standartinform: Moscow, Russia, 2019; p. 23. [Google Scholar]
- Gromet, L.P.; Dymek, R.F.; Haskin, L.A.; Korotev, R.L. The “North American shale composite”: Its compilation, major and trace elements. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar] [CrossRef]
- RStudio Team. Integrated Development Environment for R. RStudio, PBC; RStudio: Boston, MA, USA, 2021; Available online: http://www.rstudio.com (accessed on 3 March 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 3 March 2021).
- Oksanen, J.; Blanchet, G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-7. 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 3 March 2021).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R Package Version 2.1.1. 2021. Available online: https://CRAN.R-project.org/package=cluster (accessed on 29 December 2021).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 29 December 2021).
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Kulaksiz, S.; Bau, M. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet. Sci. Lett. 2013, 362, 43–50. [Google Scholar] [CrossRef]
- Hissler, C.; Hostache, R.; Iffly, J.F.; Pfister, L.; Stille, P. Anthropogenic rare earth element fluxes into floodplains: Coupling between geochemical monitoring and hydrodynamic sediment transport modelling. CR Geosci. 2015, 347, 294–303. [Google Scholar] [CrossRef]
- Dauphas, N.; Pourmand, A. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect. Geochim. Cosmochim. Acta 2015, 163, 234–261. [Google Scholar] [CrossRef] [Green Version]
- Aubert, D.; Stille, P.; Probst, A.; Gauthier-Lafaye, F.; Pourcelot, G.; Del Nero, M. Characterization and migration of atmospheric REE in soils and surface waters. Geochim. Cosmochim. Acta 2002, 66, 3339–3350. [Google Scholar] [CrossRef] [Green Version]
- Laveuf, C.; Cornu, S. A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Koppi, A.J.; Edis, R.; Field, D.J.; Geering, H.R.; Klessa, D.A.; Cockayne, D.J.H. Rare earth element trends and cerium–uranium–manganese associations in weathered rock from Koongarra, Northern Territory, Australia. Geochim. Cosmochim. Acta 1996, 60, 1695–1707. [Google Scholar] [CrossRef]
- Galanin, A.; Pavlova, M.; Papina, T.; Eyrikh, A.; Pavlova, N. Stable isotopes of 18O and D in key components of water flows and the permafrost zone of Central Yakutia (Eastern Siberia). Ice Snow 2019, 59, 333–354. [Google Scholar] [CrossRef]
- Rogowska, J.; Olkowska, E.; Ratajczuk, W.; Wolska, L. Gadolinium as a new emerging contaminant of aquatic environments. Environ. Toxicol. Chem. 2018, 37, 1523–1534. [Google Scholar] [CrossRef]
- Kümmerer, K.; Helmers, E. Hospital effluents as a source of gadolinium in the aquatic environment. Environ. Sci. Technol. 2000, 34, 573–577. [Google Scholar] [CrossRef]
- State Geological Map (New Series). Mineral Deposits. Q52,53 Verkhoyansk. Scale: 1:1 000 000; Soviet Geological Institute (VSEGEI): St. Petersburg, Russia, 1985. [Google Scholar]
- Kubier, A.; Pichler, T. Cadmium in groundwater—A synopsis based on a large hydrogeochemical data set. Sci. Total Environ. 2019, 689, 831–842. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Smedley, P.L. The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England. Geochim. Cosmochim. Acta 1991, 55, 2767–2779. [Google Scholar] [CrossRef]
- State Geological Map of Russian Federation. Scale: 1:1000000 (third generation). In Verkhoyansk-Kolyma Series. Q-52 Verkhoyansk Range. Map Description. SPb.; VSEGEI Cartograghy Press: St. Petersburg, Russia, 2008; p. 341. [Google Scholar]
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | MAAT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
−44.7 | −42.2 | −28.7 | −11.0 | 4.3 | 13.8 | 16.4 | 12.2 | 2.6 | −13.5 | −33.9 | −43.4 | −14.0 |
Date | Lat/Long | Description | Lab # BC 1 | Lab # Iso | Lab # Trace | |
---|---|---|---|---|---|---|
1 | 22 August 2017 | 65°24′2.0″ N 131°23′41.00″ E | Dulgalakh River, Kyumkebe icing field | 373/17B | VKY17-001 | 56B/17 |
2 | 22 August 2017 | 67°16′36.0″ N 137°38′46.00″ E | Dogdo River | 374/17B | VKY17-002 | 57/17B |
3 | 22 August 2017 | 65°26′15.65″ N 137°15′58.84″ E | Elgandya River, peat bog depression | VKY17-003 | ||
4 | 22 August 2017 | 65°22′54.66″ N 137°20′32.21″ E | Narimchiki Lake, Elgandya River basin | 375/17B | VKY17-004 | 58/17B |
5 | 22 August 2017 | 65°22′52.73″ N 137°21′0.77″ E | Narimchiki Lake, lake drainage | 376/17B | VKY17-005 | 59/17B |
6 | 23 August 2017 | 65°22′1.73″ N 137°10′31.35″ E | Lugovoye Lake, Moltyrkan River basin | 377/17B | VKY17-006 | 60/17B |
7 | 23 August 2017 | 65°22′1.74″ N 137°10′31.35″ E | Lugovoye Lake, soil pit | VKY17-007 | ||
8 | 23 August 2017 | 65°22′3.19″ N 137°10′39.32″ E | Lugovoye Lake, tributary stream | 378/17B | VKY17-008 | 61/17B |
9 | 23 August 2017 | 65°22′1.73″ N 137°10′31.36″ E | Lugovoye Lake, peat bog depression | VKY17-009 | ||
10 | 23 August 2017 | 65°16′59.26″ N 136°46′23.70″ E | Omchikandya River | 379/17B | VKY17-010 | 62/17B |
11 | 23 August 2017 | 64°46′14.46″ N 133°55′23.70″ E | Nelgese River | VKY17-011 | ||
12 | 24 August 2017 | 64°46′14.46″ N 133°55′23.70″ E | Nelgese River | VKY17-012 |
Lab # | pH | Eh, mV | Ca2+ | Mg2+ | Na+ | K+ | NH4+ | HCO3− | SO42− | Cl− | NO2− | NO3− | Hard 1 | TDS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
373/17B | 6.71 | 410 | 12.1 | 4.09 | 0.6 | 0.04 | 0.1 | 42.5 | 11.5 | 0.42 | 0.01 | 0.2 | 0.942 | 50.8 |
61.6 | 34.2 | 2.6 | 1.04 | 0.56 | 73.2 | 25.2 | 1.24 | 0.02 | 0.34 | |||||
374/17B | 7.71 | 342 | 27.0 | 7.37 | 0.4 | 0.8 | 0.2 | 88.4 | 24.7 | 0.42 | 0.01 | 0.112 | 1.952 | 105.2 |
67.3 | 30.3 | 0.84 | 1.02 | 0.54 | 73.3 | 26.0 | 0.60 | 0.01 | 0.09 | |||||
375/17B | 6.12 | 493 | 2.7 | 1.88 | 0.05 | 0.3 | 0.1 | 18.9 | 0.02 | 0.04 | 0.01 | 0.112 | 0.289 | 14.7 |
44.2 | 50.8 | 0.70 | 2.50 | 1.80 | 98.9 | 0.10 | 0.37 | 0.06 | 0.57 | |||||
376/17B | 6.07 | 459 | 3.51 | 1.97 | 0.05 | 0.2 | 0.2 | 21.3 | 0.016 | 0.104 | 0.01 | 0.2 | 0.337 | 16.9 |
49.3 | 45.5 | 0.62 | 1.44 | 3.14 | 98.1 | 0.10 | 0.83 | 0.06 | 0.91 | |||||
377/17B | 6.16 | 515 | 5.94 | 1.31 | 0.05 | 0.3 | 0.2 | 23.6 | 0.56 | 0.63 | 0.2 | 0.344 | 0.404 | 21.4 |
69.7 | 25.4 | 0.50 | 1.80 | 2.60 | 90.8 | 2.73 | 4.14 | 1.02 | 1.31 | |||||
378/17B | 6.14 | 500 | 5.26 | 1.72 | 0.07 | 0.3 | 0.2 | 25.5 | 0.115 | 0.104 | 0.02 | 0.2 | 0.404 | 20.8 |
61.7 | 33.2 | 0.70 | 1.80 | 2.60 | 97.9 | 0.55 | 0.69 | 0.10 | 0.76 | |||||
379/17B | 6.18 | 510 | 3.24 | 1.64 | 0.05 | 0.1 | 0.2 | 19.4 | 0.08 | 0.104 | 0.01 | 0.112 | 0.296 | 15.2 |
51.8 | 43.1 | 0.72 | 0.82 | 3.56 | 97.9 | 0.54 | 0.92 | 0.08 | 0.56 |
Lab # | δ18O, ‰ | δ2H, ‰ | dex, ‰ | Lab # | δ18O, ‰ | δ2H, ‰ | dex, ‰ |
---|---|---|---|---|---|---|---|
VKY17-001 | −21.61 | −154.9 | 18.0 | VKY17-007 | −20.01 | −142.7 | 17.3 |
VKY17-002 | −20.43 | −147.5 | 15.9 | VKY17-008 | −20.91 | −154.5 | 12.8 |
VKY17-003 | −19.98 | −146.4 | 13.4 | VKY17-009 | −18.94 | −142.7 | 8.8 |
VKY17-004 | −20.32 | −149.6 | 13.0 | VKY17-010 | −19.86 | −146.0 | 12.8 |
VKY17-005 | −20.65 | −151.1 | 14.2 | VKY17-011 | −21.94 | −155.6 | 20.0 |
VKY17-006 | −20.99 | −148.5 | 19.4 | VKY17-012 | −21.87 | −157.0 | 18.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tananaev, N. Late Summer Water Sources in Rivers and Lakes of the Upper Yana River Basin, Northern Eurasia, Inferred from Hydrological Tracer Data. Hydrology 2022, 9, 24. https://doi.org/10.3390/hydrology9020024
Tananaev N. Late Summer Water Sources in Rivers and Lakes of the Upper Yana River Basin, Northern Eurasia, Inferred from Hydrological Tracer Data. Hydrology. 2022; 9(2):24. https://doi.org/10.3390/hydrology9020024
Chicago/Turabian StyleTananaev, Nikita. 2022. "Late Summer Water Sources in Rivers and Lakes of the Upper Yana River Basin, Northern Eurasia, Inferred from Hydrological Tracer Data" Hydrology 9, no. 2: 24. https://doi.org/10.3390/hydrology9020024
APA StyleTananaev, N. (2022). Late Summer Water Sources in Rivers and Lakes of the Upper Yana River Basin, Northern Eurasia, Inferred from Hydrological Tracer Data. Hydrology, 9(2), 24. https://doi.org/10.3390/hydrology9020024