Exploring and Modeling the Short-Term Influence of Soil Properties and Covers on Hydrology of Mediterranean Forests after Prescribed Fire and Mulching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Prescribed Fire Operations and Mulching Application
2.3. Experimental Design
2.4. Monitoring of the Hydrological Variables
2.5. Measurement of the Soil Properties and Covers
2.5.1. Hydrological Properties
2.5.2. Chemical Properties
2.5.3. Soil Covers
2.6. Statistical Analysis
2.7. Evaluation of the Accuracy of the Regression Models
- the main statistics (i.e., the maximum, minimum, mean, and standard deviation of the observed and simulated values).
- the coefficient of determination (r2).
- the coefficient of efficiency of [57] (NSE).
- the Root Mean Square Error (RMSE).
- the percent bias (PBIAS).
3. Results and Discussion
3.1. Hydrological Characterization
3.2. Identification of the Hydrological Response Drivers
3.3. Hydrological Predictions
Scond(B + M)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
O | oak |
P | pine |
C | chestnut |
U | unburned |
B | burned |
B + M | burned + mulched |
LC | litter cover (%) |
SC | shrub cover (%) |
BS | bare soil (%) |
AC | ash cover (%) |
St | stoniness (%) |
SWR | soil water repellency (WDPT, s) |
IR | infiltration rate (mm/h) |
EC | electrical conductivity (dS/cm) |
OC | organic carbon (%) |
TN | total nitrogen (%) |
PO43- | phosphates (%) |
K+ | potassium (%) |
Mg2+ | magnesium (%) |
Ca2+ | calcium (%) |
RunoffCoeff | runoff coefficient (%) |
SedConc | sediment concentration (g/L) |
WDPT | water drop penetration test (s). |
Appendix A
Soil Cover or Property | Forest Species-Soil Condition | ||||||||
---|---|---|---|---|---|---|---|---|---|
P-U | P-B | P-M | C-U | C-B | C-M | O-U | O-B | O-M | |
A (%) | 0.0 ± 0.0 a | 85.3 ± 5.5 c | 85.7 ± 4.2 c | 0.0 ± 0.0 a | 19.0 ± 3.0 cb | 18.7 ± 3.5 b | 0.0 ± 0.0 a | 97.3 ± 1.2 d | 98.0 ± 1.0 d |
BS (%) | 9.3 ± 1.5 a | 84.3 ± 2.5 d | 84.0 ± 2.6 d | 33.7 ± 4.0 b | 64.0 ± 7.0 c | 64.3 ± 6.5 c | 3.3 ± 0.6 a | 94.3 ± 1.5 d | 93.3 ± 1.5 d |
LC (%) | 82.0 ± 6.0 c | 11.0 ± 4.6 a | 12.0 ± 6.0 a | 23.0 ± 4.6 b | 7.0 ± 2.6 a | 6.3 ± 2.5 a | 92.7 ± 2.3 c | 5.0 ± 1.7 a | 5.0 ± 2.6 a |
SC (%) | 9.0 ± 1.0 a | 4.3 ± 0.6 a | 3.3 ± 1.5 a | 3.7 ± 2.1 a | 0.7 ± 1.2 a | 1.3 ± 0.6 a | 43.7 ± 5.7 c | 30.0 ± 5.3 b | 30.0 ± 4.6 b |
St (%) | 6.9 ± 0.4 c | 7.0 ± 0.5 c | 7.0 ± 0.4 c | 3.3 ± 0.3 b | 4.1 ± 0.3 b | 4.1 ± 0.2 b | 0.5 ± 0.3 a | 0.5 ± 0.1 a | 0.6 ± 0.1 a |
pH (-) | 6.5 ± 0.1 a | 6.4 ± 0.2 a | 6.6 ± 0.2 ab | 6.3 ± 0.1 a | 7.2 ± 0.2 c | 7.0 ± 0.0 bc | 6.5 ± 0.1 a | 6.6 ± 0.2 a | 6.5 ± 0.1 a |
EC (dS/m) | 253 ± 5.8 cd | 189 ± 2.2 a | 214 ± 4.6 abc | 231 ± 17.0 bcd | 249 ± 34.3 bcd | 235 ± 5.4 bcd | 269 ± 11.9 d | 238 ± 9.2 bcd | 209 ± 1.9 ab |
OC (%) | 5.2 ± 0.2 b | 6.5 ± 0.2 d | 7.0 ± 0.1 e | 4.3 ± 0.1 a | 6.0 ± 0.1 c | 6.0 ± 0.2 c | 5.0 ± 0.1 b | 6.2 ± 0.2 cd | 6.2 ± 0.2 cd |
TN (%) | 0.5 ± 0.0 ab | 0.6 ± 0.0 c | 0.5 ± 0.0 abc | 0.5 ± 0.0 abc | 0.6 ± 0.0 c | 0.5 ± 0.1 bc | 0.5 ± 0.0 a | 0.6 ± 0.0 c | 0.6 ± 0.0 c |
PO43- (%) | 51.5 ± 1.2 a | 75.8 ± 1.7 cd | 61.6 ± 0.7 b | 53.3 ± 1.9 a | 65.9 ± 0.6 b | 64.8 ± 1.8 b | 71.3 ± 0.6 c | 79.6 ± 1.6 d | 105 ± 2.7 e |
K+ (%) | 38.3 ± 1.2 a | 38.2 ± 1.9 a | 49.9 ± 1.1 b | 32.4 ± 1.3 a | 99. 0 ± 2.0 f | 91.7 ± 3.8 e | 57.9 ± 2.7 c | 78.2 ± 2.1 d | 88.2 ± 2.9 e |
Mg2+ (%) | 7.4 ± 2.2 a | 20.4 ± 1.0 b | 27.2 ± 1.9 bc | 21.9 ± 2.7 b | 38.1 ± 6.3 d | 35.2 1.3 cd | 23.5 ± 1.6 b | 41.0 ± 4.6 d | 36.6 ± 4.2 cd |
Ca2+ (%) | 23.2 ± 2.6 a | 53.7 ± 2.9 bc | 61.2 ± 3.5 cd | 47.8 ± 3.6 b | 57.1 ± 6.2 bc | 70.3 ± 1.8 d | 86.6 ± 3.2 e | 130 ± 2.7 g | 111 ± 3.6 f |
References
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef][Green Version]
- Francos, M.; Úbeda, X. Prescribed fire management. Curr. Opin. Environ. Sci. Health 2021, 21, 100250. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-fire soil management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Rodríguez y Silva, F. Análisis económico aplicado al control de la carga de combustibles en ecosistemas forestales mediterráneos. Quemas prescritas, una alternativa frente a los modelos mecánicos. In Proceedings of the Actas del II Simposio Internacional sobre Políticas, Planificación y Economía en la Defensa contra los Incendios Forestales, Junta de Andalucía, Universidad de Córdoba, Córdoba, Spain, 19–22 April 2004. [Google Scholar]
- Klimas, K.; Hiesl, P.; Hagan, D.; Park, D. Prescribed fire effects on sediment and nutrient exports in forested environments: A review. J. Environ. Qual. 2020, 49, 793–811. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Prosser, I.P.; Williams, L. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol. Processes 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef]
- Morris, R.H.; Bradstock, R.A.; Dragovich, D.; Henderson, M.K.; Penman, T.D.; Ostendorf, B.; Morris, R.H.; Bradstock, R.A.; Dragovich, D.; Henderson, M.K.; et al. Environmental assessment of erosion following prescribed burning in the Mount Lofty Ranges, Australia. Int. J. Wildland Fire 2013, 23, 104–116. [Google Scholar] [CrossRef][Green Version]
- Shakesby, R.A.; Bento, C.P.; Ferreira, C.S.; Ferreira, A.J.; Stoof, C.R.; Urbanek, E.; Walsh, R.P. Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 2015, 128, 278–293. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Parhizkar, M.; Zema, D.A. Short-Term Changes in Erosion Dynamics and Quality of Soils Affected by a Wildfire and Mulched with Straw in a Mediterranean Forest. Soil Syst. 2021, 5, 40. [Google Scholar] [CrossRef]
- Zema, D.A. Postfire management impacts on soil hydrology. Curr. Opin. Environ. Sci. Health 2021, 21, 100252. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E. Efficiency of post-fire hillslope management strategies: Gaps of knowledge. Curr. Opin. Environ. Sci. Health 2021, 100247. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; González-Romero, J.; Plaza-Álvarez, P.A.; Sagra, J.; Gómez, M.E.; Moya, D.; Cerdà, A.; de Las Heras, J. The impact of straw mulching and salvage logging on post-fire runoff and soil erosion generation under Mediterranean climate conditions. Sci. Total Environ. 2019, 654, 441–451. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; Gonzalez-Romero, J.; Sagra, J.; Alfaro-Sánchez, R.; Zema, D.A.; Moya, D.; de Las Heras, J. Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Sci. Total Environ. 2019, 674, 615–622. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Wagenbrenner, J.W.; Ashmun, L.E.; Brown, R.E. Post-fire mulching for runoff and erosion mitigation: Part I: Effectiveness at reducing hillslope erosion rates. Catena 2013, 105, 75–92. [Google Scholar] [CrossRef]
- Vega, J.A.; Fernández, C.; Fonturbel, T.; Gonzalez-Prieto, S.; Jiménez, E. Testing the effects of straw mulching and herb seeding on soil erosion after fire in a gorse shrubland. Geoderma 2014, 223, 79–87. [Google Scholar] [CrossRef]
- Zituni, R.; Wittenberg, L.; Malkinson, D. The effects of post-fire forest management on soil erosion rates 3 and 4 years after a wildfire, demonstrated on the 2010 Mount Carmel fire. Int. J. Wildland Fire 2019, 28, 377–385. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; Gonzalez-Romero, J.; Moya, D.; de las Heras, J. Short-term changes in infiltration between straw mulched and non-mulched soils after wildfire in Mediterranean forest ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef][Green Version]
- Zema, D.A.; Lucas-Borja, M.E.; Fotia, L.; Rosaci, D.; Sarnè, G.M.L.; Zimbone, S.M. Predicting the hydrological response of a forest after wildfire and soil treatments using an Artificial Neural Network. Comput. Electron. Agric. 2020, 170, 105280. [Google Scholar] [CrossRef]
- Zema, D.A.; Nunes, J.P.; Lucas-Borja, M.E. Improvement of seasonal runoff and soil loss predictions by the MMF (Morgan-Morgan-Finney) model after wildfire and soil treatment in Mediterranean forest ecosystems. CATENA 2020, 188, 104415. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; De Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 2011, 75, 1254–1261. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: A review. Int. J. Wildland Fire 2012, 21, 857–872. [Google Scholar] [CrossRef]
- González-Pelayo, O.; Andreu, V.; Gimeno-García, E.; Campo, J.; Rubio, J.L. Rainfall influence on plot-scale runoff and soil loss from repeated burning in a Mediterranean-shrub ecosystem, Valencia, Spain. Geomorphology 2010, 118, 444–452. [Google Scholar] [CrossRef][Green Version]
- Vega, J.A.; Fernández, C.; Fonturbel, T. Throughfall, runoff and soil erosion after prescribed burning in gorse shrubland in Galicia (NW Spain). Land Degrad. Dev. 2005, 16, 37–51. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Effects of fire severity and burn patchiness on hillslope-scale surface runoff, erosion and hydrologic connectivity in a prescribed burn. For. Ecol. Manag. 2013, 310, 219–233. [Google Scholar] [CrossRef]
- Coelho, C.D.O.A.; Ferreira, A.J.D.; Boulet, A.-K.; Keizer, J.J. Overland flow generation processes, erosion yields and solute loss following different intensity fires. Q. J. Eng. Geol. Hydrogeol. 2004, 37, 233–240. [Google Scholar] [CrossRef]
- de Dios Benavides-Solorio, J.; MacDonald, L.H. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int. J. Wildland Fire 2005, 14, 457–474. [Google Scholar] [CrossRef][Green Version]
- Keesstra, S.D.; Maroulis, J.; Argaman, E.; Voogt, A.; Wittenberg, L. Effects of controlled fire on hydrology and erosion under simulated rainfall. Cuad. De Investig. Geográfica 2014, 40, 269–294. [Google Scholar] [CrossRef][Green Version]
- Francos, M.; Pereira, P.; Alcañiz, M.; Úbeda, X. Post-wildfire management effects on short-term evolution of soil properties (Catalonia, Spain, SW-Europe). Sci. Total Environ. 2018, 633, 285–292. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. The effect of prescribed fire severity and burn patchiness on runoff and erosion. In Proceedings of the AFAC 2011 Conference Science Day Sydney Convention Centre, Sydney, Australia, 1 September 2011; pp. 1–7. [Google Scholar]
- Inbar, A.; Lado, M.; Sternberg, M.; Tenau, H.; Ben-Hur, M. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 2014, 221–222, 131–138. [Google Scholar] [CrossRef]
- Fuentes, L.; Duguy, B.; Nadal-Sala, D. Short-term effects of spring prescribed burning on the understory vegetation of a Pinus halepensis forest in Northeastern Spain. Sci. Total Environ. 2018, 610–611, 720–731. [Google Scholar] [CrossRef]
- Nunes, J.P.; Naranjo Quintanilla, P.; Santos, J.M.; Serpa, D.; Carvalho-Santos, C.; Rocha, J.; Keizer, J.J.; Keesstra, S.D. Afforestation, Subsequent Forest Fires and Provision of Hydrological Services: A Model-Based Analysis for a Mediterranean Mountainous Catchment: Mediterranean Afforestation, Forest Fires and Hydrological Services. Land Degrad. Develop. 2018, 29, 776–788. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Malvar, M.C.; Martins, M.A.S.; Serpa, D.; Keizer, J.J. Key factors controlling the post-fire hydrological and erosive response at micro-plot scale in a recently burned Mediterranean forest. Geomorphology 2018, 319, 161–173. [Google Scholar] [CrossRef]
- Prats, S.A.; Malvar, M.C.; Vieira, D.C.S.; MacDonald, L.; Keizer, J.J. Effectiveness of hydromulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. Land Degrad. Dev. 2016, 27, 1319–1333. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D’Agostino, D.; Denisi, P.; Labate, A.; Plaza-Alvarez, P.A.; Zema, D.A. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate 2020, 8, 150. [Google Scholar] [CrossRef]
- Lopes, A.R.; Girona-García, A.; Corticeiro, S.; Martins, R.; Keizer, J.J.; Vieira, D.C.S. What is wrong with post-fire soil erosion modelling? A meta-analysis on current approaches, research gaps, and future directions. Earth Surf. Process. Landf. 2021, 46, 205–219. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Mulching as best management practice to reduce surface runoff and erosion in steep clayey olive groves. Int. Soil Water Conserv. Res. 2021, 9, 26–36. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration, U.S. Government Printing Office: Washington, DC, USA, 1978.
- Hlavčová, K.; Danáčová, M.; Kohnová, S.; Szolgay, J.; Valent, P.; Výleta, R. Estimating the effectiveness of crop management on reducing flood risk and sediment transport on hilly agricultural land—A Myjava case study, Slovakia. CATENA 2019, 172, 678–690. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.B.; Arnáez, J.; Boix-Fayos, C.; Butzen, V.; Cerdà, A.; Echeverría, M.T.; Fernández-Gálvez, J.; Fister, W.; Geißler, C. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 2013, 110, 100–112. [Google Scholar] [CrossRef][Green Version]
- Bombino, G.; Denisi, P.; Gómez, J.; Zema, D. Water Infiltration and Surface Runoff in Steep Clayey Soils of Olive Groves under Different Management Practices. Water 2019, 11, 240. [Google Scholar] [CrossRef][Green Version]
- Carrà, B.G.; Bombino, G.; Denisi, P.; Plaza-Àlvarez, P.A.; Lucas-Borja, M.E.; Zema, D.A. Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests. Hydrology 2021, 8, 95. [Google Scholar] [CrossRef]
- Letey, J. Measurement of contact angle, water drop penetration time, and critical surface tension. Proceedings of a Symposium on Water Repellant Soils, Riverside, CA, USA, 6–10 May 1968; DeBano, L.F., Letey, J., Eds.; 1969; pp. 43–47. [Google Scholar]
- Woudt, B.D. van’t Particle coatings affecting the wettability of soils. J. Geophys. Res. 1959, 64, 263–267. [Google Scholar] [CrossRef]
- Bisdom, E.B.A.; Dekker, L.W.; Schoute, J.F.T. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 1993, 56, 105–118. [Google Scholar] [CrossRef]
- Zema, D.A.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment. Sci. Total Environ. 2021, 753, 142006. [Google Scholar] [CrossRef]
- Zema, D.A.; Van Stan, J.T.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Effects of stand composition and soil properties on water repellency and hydraulic conductivity in Mediterranean forests. Ecohydrology 2021, 14, e2276. [Google Scholar] [CrossRef]
- Carra, B.G.; Bombino, G.; Lucas-Borja, M.E.; Muscolo, A.; Romeo, F.; Zema, D.A. Short-term changes in soil properties after prescribed fire and mulching with fern in Mediterranean forests. J. For. Res. 2021, 1–19. [Google Scholar] [CrossRef]
- Vogel, K.P.; Masters, R.A. Frequency grid--a simple tool for measuring grassland establishment. Rangel. Ecol. Manag. J. Range Manag. Arch. 2001, 54, 653–655. [Google Scholar]
- Adams, J. Gravel size analysis from photographs. J. Hydraul. Div. 1979, 105, 1247–1255. [Google Scholar] [CrossRef]
- Lee Rodgers, J.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Zema, D.A.; Nicotra, A.; Tamburino, V.; Zimbone, S.M. Performance assessment of collective irrigation in water users’ Associations of Calabria (Southern Italy). Irrig. Drain. 2015, 64, 314–325. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef][Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large rwer basin with point and nonpoint sources 1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Serpa, D.; Nunes, J.P.C.; Prats, S.A.; Neves, R.; Keizer, J.J. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models. Environ. Res. 2018, 165, 365–378. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois river watershed using HSPF and SWAT 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Coelho, C.O.A.; Ferreira, A.J.D.; Boulet, A.K.; Keizer, J.J. Overland flow generation processes, erosion yields and nutrient loss under fires with different intensities-lessons learned from analysis at different scales. In Proceedings of the Forest fire research and wildland fire safety: Proceedings of IV International Conference on Forest Fire Research 2002 Wildland Fire Safety Summit, Luso, Coimbra, Portugal, 18–23 November 2002; Millpress Science Publishers: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Granged, A.J.; Jordán, A.; Zavala, L.M.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167, 125–134. [Google Scholar] [CrossRef]
- Onda, Y.; Dietrich, W.E.; Booker, F. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena 2008, 72, 13–20. [Google Scholar] [CrossRef]
- Vadilonga, T.; Ubeda, X.; Germann, P.F.; Lorca, M. Effects of prescribed burnings on soil hydrological parameters. Hydrol. Processes 2008, 22, 4249–4256. [Google Scholar] [CrossRef]
- Assunta, E.; Ascoli, D.; Croce, A.; Giordano, D.; Catalanotti, A.E.; Mazzoleni, S.; Bovio, G.; Salgueiro, A.; Palheiro, P.; Loureiro, C. Experimental prescribed burning in Turkey oak forest of Cilento and Vallo di Diano National Park (Southern Italy): Effects on vegetation and soil. In Advances in Forest Fire Research; Viagas, D.X., Ed.; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014. [Google Scholar]
- Cesarano, G.; Incerti, G.; Bonanomi, G. The influence of plant litter on soil water repellency: Insight from 13C NMR spectroscopy. PLoS ONE 2016, 11, e0152565. [Google Scholar]
- Balfour, V.; Woods, S.W. Does wildfire ash block soil pores? In A micromorphological analysis of burned soils. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 10-14 December 2007; Volume 2007, p. H43F-1695. [Google Scholar]
- Parhizkar, M.; Shabanpour, M.; Lucas-Borja, M.E.; Zema, D.A.; Li, S.; Tanaka, N.; Cerdà, A. Effects of length and application rate of rice straw mulch on surface runoff and soil loss under laboratory simulated rainfall. Int. J. Sediment Res. 2021, 36, 468–478. [Google Scholar] [CrossRef]
Characteristics | Site | |||
---|---|---|---|---|
Calamacia | Rungia | Orgaro | ||
Geographic coordinates * | 38°04′53″ N; 16°01′46″ E | 38°05′20″ N; 16°00′37″ E | 38°04′59″ N; 16°01′50″ E | |
Aspect | South-West | North-East | West | |
Altitude (m a.s.l.) | 650–700 | 900–950 | 700–750 | |
Slope (%) | 20.0 ± 0.82 | 19.1 ± 1.65 | 20.3 ± 0.96 | |
Tree | species | pine (Pinus pinaster Aiton) | oak (Quercus frainetto Ten.) | chestnut (Castanea sativa Mill.) |
density (n/ha) | 950 ± 86.4 | 225 ± 44.7 | 725 ± 89.1 | |
diameter at breast height (cm) | 28.3 ± 9.4 | 40.7 ± 8.9 | 20.2 ± 5.6 | |
height (m) | 20.5 ± 1.4 | 18.2 ± 1.9 | 9.6 ± 1.2 | |
basal area (m2/ha) | 67.9 ± 6.5 | 31.1 ± 3.6 | 24.3 ± 4.4 | |
Understory vegetation | Quercus ilex L., Rubus ulmifolius S. | Cyclamen hederifolium | Rubus ulmifolius S., Pteridium aquilinum L. | |
Litterfall layer depth (cm) | ± 4.6 | 12.2 ± 3.9 | 6.1 ± 4.0 |
Site | Main Forest Species | Soil Condition | Texture | Type | ||
---|---|---|---|---|---|---|
Silt (%) | Clay (%) | Sand (%) | ||||
Calamacia | pine | unburned | 10.0 ± 1.01 | 9.0 ± 0.00 | 81.0 ± 0.99 | sandy loam |
burned | 6.3 ± 3.06 | 8.7 ± 0.58 | 85.0 ± 3.61 | loamy sand | ||
Rungia | oak | unburned | 12.7 ± 1.53 | 9.7 ± 0.58 | 77.7 ± 1.15 | |
burned | 10.3 ± 2.25 | 8.7 ± 0.58 | 81.0 ± 2.02 | |||
Orgaro | chestnut | unburned | 12.3 ± 2.31 | 8.0 ± 1.73 | 79.7 ± 0.58 | |
burned | 11.3 ± 1.53 | 8.7 ± 0.58 | 80.2 ± 1.04 |
Index | Equation | Range of Variability | Acceptance Limits or Optimal Values |
---|---|---|---|
r2 | 0 to 1 | r2 > 0.50 [60,61,62] | |
NSE | −∞ to 1 | Model accuracy [60]:
| |
RMSE | 0 to ∞ | RMSE < 0.5 of observed SD [63] | |
PBIAS | −∞ to ∞ | <0.25 [59]
|
Original Variables | Principal Components | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
RunoffCoeff | 0.732 | −0.066 | 0.197 | 0.426 |
SedConc | 0.335 | −0.468 | 0.447 | 0.619 |
IR | −0.838 | −0.342 | −0.051 | 0.085 |
SWR | 0.703 | 0.010 | −0.484 | −0.015 |
A | 0.827 | −0.098 | −0.517 | −0.096 |
BS | 0.919 | −0.299 | −0.175 | −0.070 |
LC | −0.797 | 0.465 | −0.109 | −0.104 |
SC | 0.135 | 0.936 | −0.240 | 0.054 |
St | −0.337 | −0.853 | −0.189 | −0.247 |
pH | 0.280 | −0.193 | 0.819 | −0.389 |
EC | −0.460 | 0.523 | 0.535 | −0.092 |
OC | 0.717 | −0.360 | −0.188 | −0.475 |
TN | 0.803 | −0.378 | 0.155 | 0.132 |
PO43- | 0.757 | 0.401 | −0.222 | 0.077 |
K+ | 0.634 | 0.241 | 0.628 | −0.268 |
Mg2+ | 0.829 | 0.190 | 0.393 | −0.068 |
Ca2+ | 0.730 | 0.639 | −0.074 | 0.004 |
Hydrological Variable | Mean | Standard Deviation | Minimum | Maximum | r2 | E | RMSE | PBIAS |
---|---|---|---|---|---|---|---|---|
Runoff coefficient | ||||||||
Unburned | ||||||||
Observed | 0.08 | 0.04 | 0.02 | 0.13 | 0.95 | 0.99 | 0.01 | 0.00 |
Predicted | 0.08 | 0.04 | 0.02 | 0.13 | ||||
Burned | ||||||||
Observed | 0.01 | 0.02 | 0.00 | 0.06 | 0.75 | 0.86 | 0.01 | 0.00 |
Predicted | 0.01 | 0.01 | 0.00 | 0.04 | ||||
Burned and mulched | ||||||||
Observed | 0.13 | 0.06 | 0.06 | 0.24 | 0.91 | 0.96 | 0.03 | 0.00 |
Predicted | 0.13 | 0.04 | 0.10 | 0.18 | ||||
Sediment concentration | ||||||||
Unburned | ||||||||
Observed | 1.05 | 0.61 | 0.41 | 2.32 | 0.86 | 0.97 | 0.22 | 0.00 |
Predicted | 1.05 | 0.51 | 0.55 | 1.89 | ||||
Burned | ||||||||
Observed | 1.76 | 0.53 | 1.05 | 2.77 | 0.50 | 0.96 | 0.36 | 0.00 |
Predicted | 1.76 | 0.31 | 1.37 | 2.26 | ||||
Burned and mulched | ||||||||
Observed | 1.18 | 0.31 | 0.75 | 1.68 | 0.24 | 0.94 | 0.29 | 0.00 |
Predicted | 1.18 | 0.31 | 0.79 | 1.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zema, D.A.; Carrà, B.G.; Lucas-Borja, M.E. Exploring and Modeling the Short-Term Influence of Soil Properties and Covers on Hydrology of Mediterranean Forests after Prescribed Fire and Mulching. Hydrology 2022, 9, 21. https://doi.org/10.3390/hydrology9020021
Zema DA, Carrà BG, Lucas-Borja ME. Exploring and Modeling the Short-Term Influence of Soil Properties and Covers on Hydrology of Mediterranean Forests after Prescribed Fire and Mulching. Hydrology. 2022; 9(2):21. https://doi.org/10.3390/hydrology9020021
Chicago/Turabian StyleZema, Demetrio Antonio, Bruno Gianmarco Carrà, and Manuel Esteban Lucas-Borja. 2022. "Exploring and Modeling the Short-Term Influence of Soil Properties and Covers on Hydrology of Mediterranean Forests after Prescribed Fire and Mulching" Hydrology 9, no. 2: 21. https://doi.org/10.3390/hydrology9020021