Modeling Climate Change Impacts on Water Balance of a Mediterranean Watershed Using SWAT+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Setup
2.2.1. SWAT+ Model
2.2.2. Dataset
Data | Resolution | Date/Period | Description | Source |
---|---|---|---|---|
Land use | 1:25,000 | 2008 | Land use classes | [28] |
DEM | 10 m | 2008 | Elevation | [28] |
Soil data | 1:50,000 | 2003 | Soil properties (hydrological group, clay, silt, sand) | [28] |
Meteorological data | daily | 1979–2005 | Temperature, precipitation, humidity, solar radiation, wind speed | [29] |
Hydrological data | monthly | 1979–1992 | River discharge | [28] |
2.2.3. Calibration and Validation
2.2.4. Climate Projections
Model Name | Institution | RCP Scenario 1 | Resolution | Source |
---|---|---|---|---|
RACMO22E | Royal Netherlands Meteorological Institute-Netherlands | RCP4.5-RCP8.5 | 12.5 km | [38] |
COSMO-CLM | Centro Euro-Mediterraneo sui Cambiamenti Climatici-Italy | RCP4.5-RCP8.5 | 8 km | [33,34] |
3. Results and Discussion
3.1. SWAT+ Calibration and Validation
3.2. Future Climate and Water Balance Projections
3.2.1. Projected Changes in Precipitation and Temperature
3.2.2. Projected Changes in Water Balance
3.3. Consequences of Water Balance Alterations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ficklin, D.L.; Abatzoglou, J.T.; Robeson, S.M.; Null, S.E.; Knouft, J.H. Natural and managed watersheds show similar responses to recent climate change. Proc. Natl. Acad. Sci. USA 2018, 115, 8553–8557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, H.V.; Sperotto, A.; Torresan, S.; Acuña, V.; Jorda-Capdevila, D.; Rianna, G.; Marcomini, A.; Critto, A. Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale. Ecosyst. Serv. 2019, 40, 101045. [Google Scholar] [CrossRef]
- Brouziyne, Y.; Abouabdillah, A.; Hirich, A.; Bouabid, R.; Zaaboul, R.; Benaabidate, L. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agric. Syst. 2018, 162, 154–163. [Google Scholar] [CrossRef]
- Kahil, M.T.; Dinar, A.; Albiac, J. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J. Hydrol. 2015, 522, 95–109. [Google Scholar] [CrossRef] [Green Version]
- McConnell, L.L.; Kelly, I.D.; Jones, R.L. Integrating Technologies to Minimize Environmental Impacts. In Agricultural Chemicals and the Environment: Issues and Potential Solutions, 2nd ed.; Royal Society of Chemistry: London, UK, 2016; pp. 1–19. [Google Scholar]
- Aliyari, F.; Bailey, R.T.; Arabi, M. Appraising climate change impacts on future water resources and agricultural productivity in agro-urban river basins. Sci. Total Environ. 2021, 788, 147717. [Google Scholar] [CrossRef] [PubMed]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean climate: An overview of the main characteristics and issues. In Developments in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–26. [Google Scholar]
- Erol, A.; Randhir, T.O. Climatic change impacts on the ecohydrology of Mediterranean watersheds. Clim. Chang. 2012, 114, 319–341. [Google Scholar] [CrossRef]
- Alessandri, A.; De Felice, M.; Zeng, N.; Mariotti, A.; Pan, Y.; Cherchi, A.; Lee, J.-Y.; Wang, B.; Ha, K.-J.; Ruti, P.; et al. Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci. Rep. 2015, 4, 7211. [Google Scholar] [CrossRef]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Mastrantonas, N.; Herrera-Lormendez, P.; Magnusson, L.; Pappenberger, F.; Matschullat, J. Extreme precipitation events in the Mediterranean: Spatiotemporal characteristics and connection to large-scale atmospheric flow patterns. Int. J. Climatol. 2021, 41, 2710–2728. [Google Scholar] [CrossRef]
- Leta, O.T.; Bauwens, W. Assessment of the impact of climate change on daily extreme peak and low flows of Zenne basin in Belgium. Hydrology 2018, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Brouziyne, Y.; De Girolamo, A.M.; Aboubdillah, A.; Benaabidate, L.; Bouchaou, L.; Chehbouni, A. Modeling alterations in flow regimes under changing climate in a Mediterranean watershed: An analysis of ecologically-relevant hydrological indicators. Ecol. Inform. 2021, 61, 101219. [Google Scholar] [CrossRef]
- Vezzoli, R.; Mercogliano, P.; Pecora, S.; Zollo, A.L.; Cacciamani, C. Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci. Total Environ. 2015, 521–522, 346–358. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.R.; Santos, J.A. Predicting hydrologic flows under climate change: The Tâmega Basin as an analog for the Mediterranean region. Sci. Total Environ. 2019, 668, 1013–1024. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, Y.; Yen, H.; Grieneisen, M.; Arnold, J.; Wang, D.; Wang, C.; Zhang, M. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Sci. Total Environ. 2019, 669, 512–526. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- van Tol, J.; Bieger, K.; Arnold, J.G. A hydropedological approach to simulate streamflow and soil water contents with SWAT+. Hydrol. Process. 2021, 35. [Google Scholar] [CrossRef]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 115–130. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Pulighe, G.; Bonati, G.; Colangeli, M.; Traverso, L.; Lupia, F.; Altobelli, F.; Marta, A.D.; Napoli, M. Predicting streamflow and nutrient loadings in a semi-arid Mediterranean watershed with ephemeral streams using the SWAT model. Agronomy 2020, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Ricci, G.F.; De Girolamo, A.M.; Abdelwahab, O.M.M.; Gentile, F. Identifying sediment source areas in a Mediterranean watershed using the SWAT model. L. Degrad. Dev. 2018, 29, 1233–1248. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Baltas, E.; Mimikou, M. SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecol. Modell. 2011, 222, 3500–3512. [Google Scholar] [CrossRef]
- Chen, Y.; Marek, G.W.; Marek, T.H.; Moorhead, J.E.; Heflin, K.R.; Brauer, D.K.; Gowda, P.H.; Srinivasan, R. Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model. Agric. Water Manag. 2019, 221, 13–24. [Google Scholar] [CrossRef]
- QGIS Geographic Information System. QGIS Development Team. Available online: https://www.qgis.org/it/site/ (accessed on 30 September 2021).
- RAS Regione Autonoma della Sardegna—Sardegna Geoportale. Available online: http://www.sardegnageoportale.it/index.php?xsl=1594&s=40&v=9&c=8753&n=10 (accessed on 30 May 2021).
- CFSR, The National Centers for Environmental Prediction (NCEP)–Climate Forecast System Reanalysis (CFSR), 2019. Available online: https://www.ncei.noaa.gov/products/weather-climate-models/climate-forecast-system (accessed on 30 May 2021).
- SWAT+. Introducing SWAT+, A Completely Revised Version of the SWAT Model. Available online: https://swat.tamu.edu/software/plus/ (accessed on 30 September 2021).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- RAS Regione Autonoma della Sardegna—Annali Idrologici Della Sardegna. Available online: https://www.regione.sardegna.it/j/v/25?s=205270&v=2&c=5650&t=1 (accessed on 10 May 2021).
- Zollo, A.L.; Rillo, V.; Bucchignani, E.; Montesarchio, M.; Mercogliano, P. Extreme temperature and precipitation events over Italy: Assessment of high-resolution simulations with COSMO-CLM and future scenarios. Int. J. Climatol. 2016, 36, 987–1004. [Google Scholar] [CrossRef] [Green Version]
- Bucchignani, E.; Montesarchio, M.; Zollo, A.L.; Mercogliano, P. High-resolution climate simulations with COSMO-CLM over Italy: Performance evaluation and climate projections for the 21st century. Int. J. Climatol. 2016, 36, 735–756. [Google Scholar] [CrossRef]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef]
- Adinolfi, M.; Raffa, M.; Reder, A.; Mercogliano, P. Evaluation and expected changes of summer precipitation at convection permitting scale with COSMO-CLM over alpine space. Atmosphere 2021, 12, 54. [Google Scholar] [CrossRef]
- Senatore, A.; Mendicino, G.; Smiatek, G.; Kunstmann, H. Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. J. Hydrol. 2011, 399, 70–92. [Google Scholar] [CrossRef]
- van Meijgaard, E.; van Ulft, L.H.; van de Berg, W.J.; Bosveld, F.C.; van den Hurk, B.J.J.M.; Lenderink, G.; Siebesma, A.P. The KNMI Regional Atmospheric Climate Model RACMO Version 2.1; KNMI: De Bilt, The Netherlands, 2008. [Google Scholar]
- EURO-CORDEX Coordinated Downscaling Experiment—European Domain. Available online: https://www.euro-cordex.net/ (accessed on 30 September 2021).
- Climadjust. Climadjust Was Funded by the Copernicus Climate Change Service and Developed under Contract C3S_428i. Available online: https://climadjust.com/home (accessed on 10 March 2021).
- Vautard, R.; Kadygrov, N.; Iles, C.; Boberg, F.; Buonomo, E.; Bülow, K.; Coppola, E.; Corre, L.; Meijgaard, E.; Nogherotto, R.; et al. Evaluation of the large EURO-CORDEX regional climate model ensemble. J. Geophys. Res. Atmos. 2020, 26, 1–28. [Google Scholar]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Hausfather, Z.; Peters, G.P. Emissions—The ‘business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Chen, H.; Luo, Y.; Potter, C.; Moran, P.J.; Grieneisen, M.L.; Zhang, M. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Res. 2017, 121, 374–385. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the Least-Squares Wavelet software in hydrology: Athabasca River Basin. J. Hydrol. Reg. Stud. 2021, 36, 100847. [Google Scholar] [CrossRef]
- Canchala, T.; Loaiza Cerón, W.; Francés, F.; Carvajal-Escobar, Y.; Andreoli, R.; Kayano, M.; Alfonso-Morales, W.; Caicedo-Bravo, E.; Ferreira de Souza, R. Streamflow Variability in Colombian Pacific Basins and Their Teleconnections with Climate Indices. Water 2020, 12, 526. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.J.; McVicar, T.R.; Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 2010, 386, 186–197. [Google Scholar] [CrossRef]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.J. Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper N.56. Crop. Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Giannakopoulos, C.; Le Sager, P.; Bindi, M.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Chang. 2009, 68, 209–224. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E.; Fritsch, J.-M.; Ardoin-Bardin, S.; Thivet, G. Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrol. Sci. J. 2013, 58, 498–518. [Google Scholar] [CrossRef]
- Saade, J.; Atieh, M.; Ghanimeh, S.; Golmohammadi, G. Modeling Impact of Climate Change on Surface Water Availability Using SWAT Model in a Semi-Arid Basin: Case of El Kalb River, Lebanon. Hydrology 2021, 8, 134. [Google Scholar] [CrossRef]
- Yang, C.; Fraga, H.; van Ieperen, W.; Trindade, H.; Santos, J.A. Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Clim. Chang. 2019, 154, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Garrote, L.; Granados, A.; Iglesias, A. Strategies to reduce water stress in Euro-Mediterranean river basins. Sci. Total Environ. 2016, 543, 997–1009. [Google Scholar] [CrossRef]
Objective Functions | Calibration | Validation |
---|---|---|
NSE | 0.349 | 0.757 |
MSE | 0.050 | 0.019 |
RMSE | 0.224 | 0.139 |
PBIAS | 33.95 | 30.99 |
Baseline | 2006–2050 (RCP4.5) | 2051–2098 (RCP4.5) | 2006–2050 (RCP8.5) | 2051–2098 (RCP8.5) | |
---|---|---|---|---|---|
Precipitation (mm/year) | 639 | 474 | 456 | 649 | 647 |
Temp max (°C) | 20.2 | 22.6 | 23.3 | 22.7 | 24.4 |
Temp min (°C) | 14.4 | 14.2 | 15 | 14.3 | 16.1 |
Temp mean (°C) | 17.3 | 18.4 | 19.1 | 18.5 | 20.2 |
Baseline | 2006–2050 (RCP4.5) | 2051–2098 (RCP4.5) | 2006–2050 (RCP8.5) | 2051–2098 (RCP8.5) | |
---|---|---|---|---|---|
Precipitation (mm/year) | 639 | 664 | 663 | 662 | 662 |
Temp max (°C) | 20.2 | 20.2 | 21.5 | 19.8 | 22.7 |
Temp min (°C) | 14.4 | 12.9 | 14.2 | 12.9 | 15.7 |
Temp mean (°C) | 17.3 | 16.6 | 17.8 | 16.3 | 19.2 |
(mm/year) | Baseline | 2006–2050 (RCP4.5) | 2051–2098 (RCP4.5) | 2006–2050 (RCP8.5) | 2051–2098 (RCP8.5) |
---|---|---|---|---|---|
PET | 1581 | 2201 | 2312 | 2539 | 2763 |
ET | 544 | 439 | 425 | 605 | 604 |
SURQ | 54.3 | 26.7 | 23.9 | 33.7 | 32.5 |
LATQ | 6.13 | 2.12 | 1.89 | 2.71 | 2.59 |
PERC | 31.1 | 6.67 | 5.75 | 8.8 | 8.19 |
WYLD | 60.4 | 28.8 | 25.8 | 36.4 | 35.1 |
(mm/Year) | Baseline | 2006–2050 (RCP4.5) | 2051–2098 (RCP4.5) | 2006–2050 (RCP8.5) | 2051–2098 (RCP8.5) |
---|---|---|---|---|---|
PET | 1581 | 2382 | 2563 | 2358 | 2675 |
ET | 544 | 614 | 618 | 613 | 615 |
SURQ | 54.3 | 36.2 | 34.7 | 34.8 | 34.2 |
LATQ | 6.13 | 3.02 | 2.52 | 2.78 | 2.61 |
PERC | 31.1 | 10.5 | 7.85 | 8.91 | 8.56 |
WYLD | 60.4 | 39.2 | 37.2 | 37.6 | 36.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulighe, G.; Lupia, F.; Chen, H.; Yin, H. Modeling Climate Change Impacts on Water Balance of a Mediterranean Watershed Using SWAT+. Hydrology 2021, 8, 157. https://doi.org/10.3390/hydrology8040157
Pulighe G, Lupia F, Chen H, Yin H. Modeling Climate Change Impacts on Water Balance of a Mediterranean Watershed Using SWAT+. Hydrology. 2021; 8(4):157. https://doi.org/10.3390/hydrology8040157
Chicago/Turabian StylePulighe, Giuseppe, Flavio Lupia, Huajin Chen, and Hailong Yin. 2021. "Modeling Climate Change Impacts on Water Balance of a Mediterranean Watershed Using SWAT+" Hydrology 8, no. 4: 157. https://doi.org/10.3390/hydrology8040157
APA StylePulighe, G., Lupia, F., Chen, H., & Yin, H. (2021). Modeling Climate Change Impacts on Water Balance of a Mediterranean Watershed Using SWAT+. Hydrology, 8(4), 157. https://doi.org/10.3390/hydrology8040157