Geographic Location System for Identifying Urban Road Sections Sensitive to Runoff Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catchment Discretization Module
2.1.1. Terrain Preprocessing
2.1.2. Arc Hydro Tools
2.1.3. Catchment Re-delineation
2.2. Precipitation Module
2.2.1. Fitting Rainfall Data
2.2.2. Spatial Interpolation
2.2.3. Design Storm
2.3. Hydrology Module
2.3.1. Precipitation Loss
2.3.2. Transformation
2.3.3. Routing
3. Results and Discussion
3.1. Catchment Discretization Module
3.2. Precipitation Module
3.3. Hydrology Module
4. Conclusions
- In the absence of a DSM of the workspace, the overlay of a DEM and rasterised vector layers containing data about buildings and roads is a suitable alternative to produce this information.
- The common size of urban catchments discourages the discretization of the design storm for their subcatchments, as shown through the case study where the hyetographs of the 67 subcatchments were almost identical.
- The hydrological methods chosen to model precipitation loss, transformation and routing are fully compatible with a location system fed by spatial data, since they use inputs that can be easily obtained through GIS-based editing techniques and zonal statistic tools.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro-Fresno, D.; Andrés-Valeri, V.C.; Sañudo-Fontaneda, L.A.; Rodriguez-Hernandez, J. Sustainable Drainage Practices in Spain, Specially Focused on Pervious Pavements. Water 2013, 5, 67–93. [Google Scholar] [CrossRef]
- Hameed, H.M. Estimating the Effect of Urban Growth on Annual Runoff Volume Using GIS in the Erbil Sub-Basin of the Kurdistan Region of Iraq. Hydrology 2017, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Hasan, H.H.; Razali, S.F.M.; Zaki, A.Z.I.A.; Hamzah, F.M. Integrated Hydrological-Hydraulic Model for Flood Simulation in Tropical Urban Catchment. Sustainability 2019, 11, 6700. [Google Scholar] [CrossRef] [Green Version]
- Raju, K.S.; Kumar, D.N. Hydrological Modeling. In Impact of Climate Change on Water Resources: With Modeling Techniques and Case Studies; Springer: Singapore, 2018; pp. 137–167. ISBN 978-981-10-6110-3. [Google Scholar]
- Innovyze Advanced Hydraulic and Hydrologic Modeling. InfoWorks ICM. Available online: https://www.innovyze.com/en-us/products/infoworks-icm (accessed on 19 April 2021).
- Innovyze Sanitary, Storm and Flood Modeling Software. XPSWMM. Available online: https://www.innovyze.com/en-us/products/xpswmm (accessed on 19 April 2021).
- MIKE. MIKE+ Flooding. Available online: https://www.mikepoweredbydhi.com/products/mikeplus/flooding/ (accessed on 19 April 2021).
- Doaemo, W.; Wuest, L.; Bajaj, S.; Jaafar, W.S.W.M.; Mohan, M. Analytical Protocol to Estimate the Relative Importance of Environmental and Anthropogenic Factors in Influencing Runoff Quality in the Bumbu Watershed, Papua New Guinea. Hydrology 2020, 7, 77. [Google Scholar] [CrossRef]
- Helmi, N.R.; Verbeiren, B.; Wirion, C.; Van Griensven, A.; Weerasinghe, I.; Bauwens, W. WetSpa-Urban: An Adapted Version of WetSpa-Python, A Suitable Tool for Detailed Runoff Calculation in Urban Areas. Water 2019, 11, 2460. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Guzmán, R.; Ruiz-Luna, A.; Mendoza, E. Sara4r: An R graphical user interface (GUI) to estimate watershed surface runoff applying the NRCS—Curve number method. J. Hydroinform. 2021, 23, 76–87. [Google Scholar] [CrossRef]
- Yang, G.; Best, E.P. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework. J. Environ. Manag. 2015, 161, 252–260. [Google Scholar] [CrossRef]
- Chen, C.-F.; Sheng, M.-Y.; Chang, C.-L.; Kang, S.-F.; Lin, J.-Y. Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management. Water 2014, 6, 3575–3589. [Google Scholar] [CrossRef]
- Akhter, M.S.; Hewa, G.A. The Use of PCSWMM for Assessing the Impacts of Land Use Changes on Hydrological Responses and Performance of WSUD in Managing the Impacts at Myponga Catchment, South Australia. Water 2016, 8, 511. [Google Scholar] [CrossRef]
- Esri ArcGIS Desktop. Desktop GIS Software Suite. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview (accessed on 1 April 2021).
- US Army Corps of Engineers HEC-HMS. Available online: https://www.hec.usace.army.mil/software/hec-hms/ (accessed on 1 April 2021).
- US Army Corps of Engineers HEC-GeoHMS. Available online: https://www.hec.usace.army.mil/software/hec-geohms/ (accessed on 1 April 2021).
- Maidment, D.R.; Maidment, D.R.; Morehouse, S. Arc Hydro: GIS for Water Resources; Esri Press: Redlands, CA, USA, 2002; ISBN 9781589480346. [Google Scholar]
- Filianoti, P.; Gurnari, L.; Zema, D.; Bombino, G.; Sinagra, M.; Tucciarelli, T. An Evaluation Matrix to Compare Computer Hydrological Models for Flood Predictions. Hydrology 2020, 7, 42. [Google Scholar] [CrossRef]
- Michailidi, E.M.; Antoniadi, S.; Koukouvinos, A.; Bacchi, B.; Efstratiadis, A. Timing the time of concentration: Shedding light on a paradox. Hydrol. Sci. J. 2018, 63, 721–740. [Google Scholar] [CrossRef] [Green Version]
- Gómez Valentín, M. Análisis del comportamiento hidráulico de rejas y sumideros. In Hidrología Urbana; Flumen Institute: Barcelona, Spain, 2007; pp. 135–146. [Google Scholar]
- Wu, T.; Li, J.; Li, T.; Sivakumar, B.; Zhang, G.; Wang, G. High-efficient extraction of drainage networks from digital elevation models constrained by enhanced flow enforcement from known river maps. Geomorphology 2019, 340, 184–201. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Sánchez San Román, J. Cálculos Estadísticos en Hidrología; Universidad de Salamanca: Salamanca, Spain, 2013. [Google Scholar]
- Butler, D.; Digman, C.J.; Makropoulos, C.; Davies, J.W. Urban Drainage; Taylor & Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781498750608. [Google Scholar]
- Jato-Espino, D.; Charlesworth, S.M.; Bayon, J.R.; Warwick, F. Rainfall–Runoff Simulations to Assess the Potential of SuDS for Mitigating Flooding in Highly Urbanized Catchments. Int. J. Environ. Res. Public Health 2016, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Nyamadzawo, G. Hydrological Impacts of Urbanization and Urban Roof Water Harvesting in Water-limited Catchments: A Review. Environ. Process. 2014, 1, 573–593. [Google Scholar] [CrossRef] [Green Version]
- Eldrandaly, K.A.; Abu-Zaid, M.S. Comparison of six GIS-based spatial interpolation methods for estimating air temperature in western saudi arabia. J. Environ. Inform. 2011, 18, 38–45. [Google Scholar] [CrossRef]
- Manson, S.M.; Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems: Spatial Information Systems and Geostatistics. Econ. Geogr. 1999, 75, 422–423. [Google Scholar] [CrossRef]
- Greenberg, J.D.; Logsdon, M.G.; Franklin, J.F. Introduction to Geographic Information Systems (GIS). In Learning Landscape Ecology: A Practical Guide to Concepts and Techniques; Gergel, S.E., Turner, M.G., Eds.; Springer: New York, NY, USA, 2002; pp. 17–31. ISBN 978-0-387-21613-3. [Google Scholar]
- Témez, J.R. Cálculo Hidrometeorológico de Caudales Máximos en Peaueñas Cuencas Naturales; Centro de Estudios Hidrográficos: Madrid, Spain, 1987. [Google Scholar]
- BOE. Norma 5.2-IC. Drenaje Superficial; Official State Gazette: Madrid, Spain, 2016; p. 142. [Google Scholar]
- Andrzej, W.; Artur, R.-P.; Agnieszka, C.; Jon, H.; Michał, P. Influence of Changes of Catchment Permeability and Frequency of Rainfall on Critical Storm Duration in an Urbanized Catchment-A Case Study, Cracow, Poland. Water 2019, 11, 2557. [Google Scholar]
- Chow, V.; Maidment, D.; Mays, L. Applied Hydrology; McGraw-Hill: New York, NY, USA, 2013; ISBN 9780071743914. [Google Scholar]
- Mishra, S.K.; Singh, V.P. SCS-CN Method. In Climate Change Impacts on Water Resources; Springer: Berlin/Heidelberg, Germany, 2003; Volume 42, pp. 84–146. [Google Scholar]
- Subramanya, K. Flow in Open Channels; McGraw-Hill: New York, NY, USA, 2009; ISBN 9780070086951. [Google Scholar]
- Dan-Jumbo, N.G.; Metzger, M. Relative Effect of Location Alternatives on Urban Hydrology. The Case of Greater Port-Harcourt Watershed, Niger Delta. Hydrology 2019, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- USDA Time of Concentration. In National Engineering Handbook. Section 4, Hydrology; U.S. Department of Agriculture, Soil Conservation Service, Engineering Division: Washington, DC, USA, 1972; p. 29.
- Sánchez San Román, J. Tránsito de Hidrogramas; Universidad de Salamanca: Salamanca, Spain, 2013. [Google Scholar]
- Montes, N.; Aranda, J. Ángel; García-Bartual, R. Real Time Flow Forecasting in a Mountain River Catchment Using Conceptual Models with Simple Error Correction Scheme. Water 2020, 12, 1484. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Herrera, S.; San Martín, D.; Sordo, C.; Rodríguez, J.J.; Frochoso, M.; Ancell, R.; Fernández, J.; Cofiño, A.S.; Pons, M.R. Escenarios Regionales Probabilísticos de Cambio Climático en Cantabria: Termopluviometría; Gobierno de Cantabria; Consejería de Medio Ambiente y Universidad de Cantabria: Santander, Spain, 2010. [Google Scholar]
- Charlesworth, S.M. A review of the adaptation and mitigation of global climate change using sustainable drainage in cities. J. Water Clim. Chang. 2010, 1, 165–180. [Google Scholar] [CrossRef]
- Santander City Council El Ayuntamiento Invertirá más de 215.000 Euros en la Renovación de la Red de Alcantarillado Entre el Barrio de Monte, en Corbanera, y San Pedro del Mar. Available online: https://noticias-de-santander.com/el-ayuntamiento-invertira-mas-de-215-000-euros-en-la-renovacion-de-la-red-de-alcantarillado-entre-el-barrio-de-monte-en-corbanera-y-san-pedro-del-mar/ (accessed on 1 April 2021).
- Europapress El Ayuntamiento Acometerá un Nuevo Plan de Mejora de Vials. Available online: https://www.europapress.es/cantabria/noticia-ayuntamiento-pide-propuestas-aavv-nuevo-plan-mejora-viales-barrios-20150825130914.html (accessed on 1 April 2021).
Family | Method | Principle | Advantages | Disadvantages |
---|---|---|---|---|
Deterministic | Inverse Distance Weighting (IDW) | Weights the data points inversely by distance to the prediction location | Simplicity. Works well with different kinds of data | Weights are not affected by points arrangement |
Radial Basis Functions (RBF) | Fits a curve to a series of data points to minimise the surface curvature | Capable of working with small amounts of data points | Unsuitable if large variations in short distances occur | |
Global Polynomial Interpolation (GPI) | Fits a polynomial by capturing coarse-scale patterns in the data | Computationally lightweight | Accuracy decreases proportionally to data complexity | |
Geostatistical | Ordinary Kriging (OK) | Similar to IDW, but considering the spatial trend of data points | Unbiased space interpolator. Avoid edge-effects | Inappropriate for non-stationary data. High complexity |
Simple Kriging (SK) | Similar to OK, but making some assumptions about the trend of data | Easier to compute than OK | Its assumptions are often unrealistic | |
Empirical Bayesian Kriging (EBK) | Automates the calculation of parameters of a kriging model (e.g., OK or SK) | Minimal interactive modelling. Accurate for small datasets | Long processing times. Limited customization |
Model | Length (cm) | Width (cm) | Total Area (cm2) | Opening Area (cm2) | |
---|---|---|---|---|---|
1 | 78.0 | 36.4 | 2839 | 1214 | 0.200 |
2 | 78.0 | 34.1 | 2659 | 873 | 0.245 |
3 | 64.0 | 30.0 | 1920 | 693 | 0.330 |
4 | 77.6 | 34.5 | 2677 | 1050 | 0.270 |
7 | 97.5 | 47.5 | 4825 | 1400 | 0.240 |
8 | 97.5 | 95.0 | 9650 | 2800 | 0.220 |
9 | 195.0 | 47.5 | 9650 | 2800 | 0.160 |
1 | 78.0 | 36.4 | 2839 | 1214 | 0.200 |
2 | 78.0 | 34.1 | 2659 | 873 | 0.245 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jato-Espino, D.; Pathak, S. Geographic Location System for Identifying Urban Road Sections Sensitive to Runoff Accumulation. Hydrology 2021, 8, 72. https://doi.org/10.3390/hydrology8020072
Jato-Espino D, Pathak S. Geographic Location System for Identifying Urban Road Sections Sensitive to Runoff Accumulation. Hydrology. 2021; 8(2):72. https://doi.org/10.3390/hydrology8020072
Chicago/Turabian StyleJato-Espino, Daniel, and Shray Pathak. 2021. "Geographic Location System for Identifying Urban Road Sections Sensitive to Runoff Accumulation" Hydrology 8, no. 2: 72. https://doi.org/10.3390/hydrology8020072
APA StyleJato-Espino, D., & Pathak, S. (2021). Geographic Location System for Identifying Urban Road Sections Sensitive to Runoff Accumulation. Hydrology, 8(2), 72. https://doi.org/10.3390/hydrology8020072