Comparative Analysis of Rain Gauge and Radar Precipitation Estimates towards Rainfall-Runoff Modelling in a Peri-Urban Basin in Attica, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Rainfall-Runoff Model
2.4. Mean Areal Precipitation Calculation Methods
3. Results and Discussion
3.1. Precipitation Analysis
3.2. Rainfall-Runoff Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berenguer, M.; Corral, C.; Sánchez-Diezma, R.; Sempere-Torres, D. Hydrological Validation of a Radar-Based Nowcasting Technique. J. Hydrometeor. 2005, 6, 532–549. [Google Scholar] [CrossRef] [Green Version]
- Price, K.; Purucker, S.T.; Kraemer, S.R.; Babendreier, J.E.; Knightes, C.D. Comparison of Radar and Gauge Precipitation Data in Watershed Models across Varying Spatial and Temporal Scales. Hydrol. Process. 2014, 28, 3505–3520. [Google Scholar] [CrossRef]
- Gilewski, P.; Nawalany, M. Inter-Comparison of Rain-Gauge, Radar, and Satellite (IMERG GPM) Precipitation Estimates Performance for Rainfall-Runoff Modeling in a Mountainous Catchment in Poland. Water 2018, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Villarini, G.; Krajewski, W.F. Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- Pathak, C.; Curtis, D.; Kitzmiller, D.; Vieux, B. Identifying and Resolving the Barriers and Issues in Using Radar-Derived Rainfall Estimating Technology. J. Hydrol. Eng. 2013, 18, 1193–1199. [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W.M.K. The Distribution of Raindrops with Size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Baltas, E.A.; Panagos, D.S.; Mimikou, M.A. An Approach for the Estimation of Hydrometeorological Variables Towards the Determination of Z-R Coefficients. Environ. Process. 2015, 2, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Baltas, E.A.; Mimikou, M.A. The Use of the Joss-Type Disdrometer for the Derivation of ZR Relationships. In Proceedings of the 2nd European Conference on Radar in Meteorology and Hydrology (ERAD), Delft, The Netherlands, 18–22 November 2002; Volume 291. [Google Scholar]
- Feloni, E.; Baltas, E.; Kotsifakis, K.; Dervos, N.; Giavis, G. Analysis of Joss-Waldvogel Disdrometer Measurements in Rainfall Events. In Proceedings of the Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017), Paphos, Cyprus, 6 September 2017; Papadavid, G., Hadjimitsis, D.G., Michaelides, S., Ambrosia, V., Themistocleous, K., Schreier, G., Eds.; SPIE: Paphos, Cyprus, 2017; p. 60. [Google Scholar]
- Sahlaoui, Z.; Mordane, S. Radar Rainfall Estimation in Morocco: Quality Control and Gauge Adjustment. Hydrology 2019, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Liu, J.; Tian, J.; Jiao, Y.; Li, C.; Wang, W.; Yu, F. Evaluation of the Radar QPE and Rain Gauge Data Merging Methods in Northern China. Remote Sens. 2020, 12, 363. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.M.; Sharma, A.; Mariethoz, G.; Johnson, F.; Seed, A. Improving Radar Rainfall Estimation by Merging Point Rainfall Measurements within a Model Combination Framework. Adv. Water Resour. 2016, 97, 205–218. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Ding, Y. Improvement of Radar Quantitative Precipitation Estimation Based on Real-Time Adjustments to Z-R Relationships and Inverse Distance Weighting Correction Schemes. Adv. Atmos. Sci. 2012, 29, 575–584. [Google Scholar] [CrossRef]
- Libertino, A.; Allamano, P.; Claps, P.; Cremonini, R.; Laio, F. Radar Estimation of Intense Rainfall Rates through Adaptive Calibration of the Z-R Relation. Atmosphere 2015, 6, 1559–1577. [Google Scholar] [CrossRef] [Green Version]
- Grek, E.; Zhuravlev, S. Simulation of Rainfall-Induced Floods in Small Catchments (the Polomet’River, North-West Russia) Using Rain Gauge and Radar Data. Hydrology 2020, 7, 92. [Google Scholar] [CrossRef]
- Ajami, N.K.; Gupta, H.; Wagener, T.; Sorooshian, S. Calibration of a Semi-Distributed Hydrologic Model for Streamflow Estimation along a River System. J. Hydrol. 2004, 298, 112–135. [Google Scholar] [CrossRef] [Green Version]
- Borga, M. Accuracy of Radar Rainfall Estimates for Streamflow Simulation. J. Hydrol. 2002, 267, 26–39. [Google Scholar] [CrossRef]
- Zhang, X.; Srinivasan, R. GIS-Based Spatial Precipitation Estimation Using next Generation Radar and Raingauge Data. Environ. Model. Softw. 2010, 25, 1781–1788. [Google Scholar] [CrossRef]
- Paschalis, A.; Molnar, P.; Fatichi, S.; Burlando, P. A Stochastic Model for High-Resolution Space-Time Precipitation Simulation. Water Resour. Res. 2013, 49, 8400–8417. [Google Scholar] [CrossRef]
- Schleiss, M.; Olsson, J.; Berg, P.; Niemi, T.; Kokkonen, T.; Thorndahl, S.; Nielsen, R.; Nielsen, J.E.; Bozhinova, D.; Pulkkinen, S. The Accuracy of Weather Radar in Heavy Rain: A Comparative Study for Denmark, the Netherlands, Finland and Sweden. Hydrol. Earth Syst. Sci. 2020, 24, 3157–3188. [Google Scholar] [CrossRef]
- Seo, B.-C.; Dolan, B.; Krajewski, W.F.; Rutledge, S.A.; Petersen, W. Comparison of Single-and Dual-Polarization–Based Rainfall Estimates Using NEXRAD Data for the NASA Iowa Flood Studies Project. J. Hydrometeorol. 2015, 16, 1658–1675. [Google Scholar] [CrossRef]
- Cunha, L.K.; Smith, J.A.; Krajewski, W.F.; Baeck, M.L.; Seo, B.-C. NEXRAD NWS Polarimetric Precipitation Product Evaluation for IFloodS. J. Hydrometeorol. 2015, 16, 1676–1699. [Google Scholar] [CrossRef]
- Bournas, A.; Baltas, E. Application of a Rainscanner System for Quantitative Precipitation Estimates in the Region of Attica. In Proceedings of the Sixth International Symposium on Green Chemistry, Sustainable Development and Circular Economy Conference on Environmental Science and Technology, Thessaloniki, Greece, 20–23 September 2020; p. 8. [Google Scholar]
- Diakakis, M.; Andreadakis, E.; Nikolopoulos, E.I.; Spyrou, N.I.; Gogou, M.E.; Deligiannakis, G.; Katsetsiadou, N.K.; Antoniadis, Z.; Melaki, M.; Georgakopoulos, A.; et al. An Integrated Approach of Ground and Aerial Observations in Flash Flood Disaster Investigations. The Case of the 2017 Mandra Flash Flood in Greece. Int. J. Disaster Risk Reduct. 2019, 33, 290–309. [Google Scholar] [CrossRef]
- Feloni, E.G.; Baltas, E.A.; Nastos, P.T.; Matsangouras, I.T. Implementation and Evaluation of a Convective/Stratiform Precipitation Scheme in Attica Region, Greece. Atmos. Res. 2019, 220, 109–119. [Google Scholar] [CrossRef]
- Pereira, S.; Diakakis, M.; Deligiannakis, G.; Zêzere, J.L. Comparing Flood Mortality in Portugal and Greece (Western and Eastern Mediterranean). Int. J. Disaster Risk Reduct. 2017, 22, 147–157. [Google Scholar] [CrossRef]
- Special Secretariat for Water. Ministry of Environment and Energy Flood Risk Management Plan; Stage I, Phase 1st, Deliverable 2. Intensity-Duration-Frequency Curves; Ministry of Environment and Energy: Athens, Greece, 2017. [Google Scholar]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The Automatic Weather Stations NOANN Network of the National Observatory of Athens: Operation and Database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Myronidis, D.; Ioannou, K. Forecasting the Urban Expansion Effects on the Design Storm Hydrograph and Sediment Yield Using Artificial Neural Networks. Water 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Efstratiadis, A.; Koussis, A.D.; Koutsoyiannis, D.; Mamassis, N. Flood Design Recipes vs. Reality: Can Predictions for Ungauged Basins Be Trusted? Nat. Hazards Earth Syst. Sci. 2014, 14, 1417–1428. [Google Scholar] [CrossRef] [Green Version]
- Michailidi, E.M.; Antoniadi, S.; Koukouvinos, A.; Bacchi, B.; Efstratiadis, A. Timing the Time of Concentration: Shedding Light on a Paradox. Hydrol. Sci. J. 2018, 63, 721–740. [Google Scholar] [CrossRef] [Green Version]
- US Department of Agriculture. Urban Hydrology for Small Watersheds. U.S. Dep. Agric. Tech. Release 1986, 55, 164. [Google Scholar]
- NRCS, U. National Engineering Handbook: Part 630—Hydrology; USDA Soil Conservation Service: Washington, DC, USA, 2004. [Google Scholar]
- Heggen, R.J. Normalized Antecedent Precipitation Index. J. Hydrol. Eng. 2001, 6, 377–381. [Google Scholar] [CrossRef]
- US Army Corps of Engineers (USACE). Hydrologic Modeling System HEC-HMS: User’s Manual; No 4.3; Hydrologic Engineering Center: Davis, CA, USA, 2018; Available online: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.3.pdf (accessed on 9 February 2021).
- Bournas, A.; Feloni, E.; Bertsioy, M.; Baltas, E. Hydrological and Hydraulic Modelling for a Severe Flood Event in Sperchios River Basin. In Proceedings of the 16th International Conference on Environmental Science and Technology, Rhodes, Greece, 4–7 September 2019. [Google Scholar]
- Kotsifakis, K.; Psomas, A.; Feloni, E.; Baltas, E. Rainfall-Runoff Modeling in an Experimental Watershed in Greece. In Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3–5 September 2015. [Google Scholar]
- Kastridis, A.; Stathis, D. Evaluation of Hydrological and Hydraulic Models Applied in Typical Mediterranean Ungauged Watersheds Using Post-Flash-Flood Measurements. Hydrology 2020, 7, 12. [Google Scholar] [CrossRef] [Green Version]
Station | Entire Event | Excluding 04:00–06:00 | ||||
---|---|---|---|---|---|---|
10 min | 30 min | 1 h | 10 min | 30 min | 1 h | |
Vilia | 0.04 | 0.11 | 0.07 | 0.67 | 0.72 | 0.72 |
Stefani | 0.03 | 0.11 | 0.49 | 0.36 | 0.67 | 0.83 |
Eleusina | 0.02 | 0.25 | 0.45 | 0.57 | 0.66 | 0.68 |
Aspropirgos | 0.07 | 0.19 | 0.41 | 0.54 | 0.46 | 0.32 |
Interpolated Timeseries 1 | ||||||
Thiessen 1 | 0.22 | 0.21 | 0.30 | 0.57 | 0.65 | 0.71 |
IDW 1 | 0.19 | 0.20 | 0.28 | 0.45 | 0.56 | 0.72 |
Characteristic | Thiessen | IDW | Z = 261R1.52 | Z = 200R1.6 |
---|---|---|---|---|
Peak Discharge (m3/s) | 63 | 55 | 39 | 57 |
Total Precipitation (mm) | 44 | 41 | 35 | 42 |
Losses (mm) | 29 | 28 | 26 | 28 |
Excess (mm) | 15 | 13 | 9 | 14 |
Runoff Volume (103 m3) | 3468 | 3044 | 2211 | 3222 |
Time to Peak (hours) | 18.0 | 17.6 | 17.5 | 17.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bournas, A.; Baltas, E. Comparative Analysis of Rain Gauge and Radar Precipitation Estimates towards Rainfall-Runoff Modelling in a Peri-Urban Basin in Attica, Greece. Hydrology 2021, 8, 29. https://doi.org/10.3390/hydrology8010029
Bournas A, Baltas E. Comparative Analysis of Rain Gauge and Radar Precipitation Estimates towards Rainfall-Runoff Modelling in a Peri-Urban Basin in Attica, Greece. Hydrology. 2021; 8(1):29. https://doi.org/10.3390/hydrology8010029
Chicago/Turabian StyleBournas, Apollon, and Evangelos Baltas. 2021. "Comparative Analysis of Rain Gauge and Radar Precipitation Estimates towards Rainfall-Runoff Modelling in a Peri-Urban Basin in Attica, Greece" Hydrology 8, no. 1: 29. https://doi.org/10.3390/hydrology8010029
APA StyleBournas, A., & Baltas, E. (2021). Comparative Analysis of Rain Gauge and Radar Precipitation Estimates towards Rainfall-Runoff Modelling in a Peri-Urban Basin in Attica, Greece. Hydrology, 8(1), 29. https://doi.org/10.3390/hydrology8010029