Resolution-Dependent Perspectives on Caribbean Hydro-Climate Change
Abstract
:1. Introduction
2. Data and Analysis Methods
3. Results
3.1. Climatology
3.2. Rain Modes and Associations
3.3. Geographic Forcing
3.4. Transient Weather Processes
3.5. Resolution Dependent Outcomes
4. Concluding Discussion
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Taylor, M.A.; Clarke, L.A.; Centella, A.; Bezanilla, A.; Stephenson, T.S.; Jones, J.J.; Campbell, J.D.; Vichot, A.; Charlery, J. Future Caribbean climates in a world of rising temperatures: The 1.5 vs 2.0 dilemma. J. Climate 2018, 31, 2907–2926. [Google Scholar] [CrossRef]
- Campbell, J.D.; Taylor, M.A.; Stephenson, T.S.; Watson, R.A.; Whyte, F.S. Future climate of the Caribbean from a regional climate model. Int. J. Climatol. 2011, 31, 1866–1878. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Taylor, M.A.; Campbell, J.; Stephenson, T.; New, M.; Centella, A.; Benzanilla, A.; Charlery, J. A review of observed and projected changes in climate for the islands in the Caribbean. Atmósfera 2013, 26, 283–309. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.-H.; Hayhoe, K.K. Understanding the sources of Caribbean precipitation biases in CMIP3 and CMIP5 simulations. Climate Dyn. 2014, 42, 3233–3252. [Google Scholar] [CrossRef]
- Jury, M.R. The pattern of climate change around the Windward Passage. Theor. Appl. Climatol. 2018, 134, 1–9. [Google Scholar] [CrossRef]
- Jury, M.R. Zonal gradients in the lower atmosphere and upper ocean across Puerto Rico and the windward Antilles in mid-summer 2012. J. Appl. Meteor. Clim. 2013, 53, 731–741. [Google Scholar] [CrossRef]
- Hernández-Ayala, J.J.; Keellings, D.; Waylen, P.R.; Matyas, C.J. Extreme floods and their relationship with tropical cyclones in Puerto Rico. Hydrol. Sci. J. 2017. [Google Scholar] [CrossRef] [Green Version]
- Malkus, J.S. The effects of a large island upon the trade-wind air stream. Qtr. J. Roy. Meteorol. Soc. 1955, 81, 538–550. [Google Scholar] [CrossRef]
- Pearce, R.P.; Smith, R.C.; Malkus, J.S. The calculation of a sea-breeze circulation in terms of the differential heating across the coast line. Qtr. J. Roy. Meteorol. Soc. 1956, 82, 235–241. [Google Scholar] [CrossRef]
- Jury, M.R. An inter-comparison of observational, reanalysis, satellite, and coupled model data on mean rainfall in the Caribbean. J. Hydrometeor. 2009, 10, 413–430. [Google Scholar] [CrossRef]
- Jury, M.R.; Chiao, S. Lee-side boundary layer confluence and afternoon thunderstorms over Mayaguez, Puerto Rico. J. Appl. Meteor. Climatol. 2013, 52, 439–454. [Google Scholar] [CrossRef]
- O’Connor, J.E.; Costa, J.E. Spatial distribution of the largest rainfall-runoff floods from basins between 2.6 and 26000 km2 in the United States and Puerto Rico. Water Resour. Res. 2004, 40, W01107. [Google Scholar] [CrossRef] [Green Version]
- Cooper, H.; Garstang, M.; Simpson, J. The diurnal interaction between convection and peninsular-scale forcing over south Florida. Mon. Wea. Rev. 1982, 110, 486–503. [Google Scholar] [CrossRef]
- Blanchard, D.O.; López, R.E. Spatial patterns of convection in south Florida. Mon. Wea. Rev. 1985, 113, 1282–1299. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Moncrieff, M.W. A numerical study of the effects of ambient flow and shear on den-sity currents. Mon. Wea. Rev. 1996, 124, 2282–2303. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.B.; Gleason, A.C.; Gluhosky, P.A.; Grubisic, V. The wake of St. Vincent. J. Atmos. Sci. 1997, 54, 606–623. [Google Scholar] [CrossRef]
- Carbone, R.E.; Wilson, J.W.; Keenan, T.D.; Hacker, J.M. Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev. 2000, 128, 3459–3480. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Ferrier, B.S.; Ray, P.S. Rainfall morphology in Florida convergence zones: A numerical study. Mon. Wea. Rev. 2001, 129, 177–197. [Google Scholar] [CrossRef]
- Etling, D. On atmospheric vortex streets in the wake of large islands. Meteorol. Atmos. Phys. 1989, 41, 157–164. [Google Scholar] [CrossRef]
- Rasmussen, R.M.; Smolarkiewicz, P.K.; Warner, J. On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci. 1989, 46, 1589–1608. [Google Scholar] [CrossRef] [Green Version]
- Schar, C.; Smith, R.B. Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci. 1993, 50, 1373–1400. [Google Scholar] [CrossRef] [Green Version]
- Schar, C.; Smith, R.B. Shallow-water flow past isolated topography. Part II: Transition to vortex shedding. J. Atmos. Sci. 1993, 50, 1401–1412. [Google Scholar] [CrossRef] [Green Version]
- Grubisic, V.; Smith, R.B.; Schar, C. The effect of bottom friction on shallow-water flow past an isolated obstacle. J. Atmos. Sci. 1995, 52, 1985–2005. [Google Scholar] [CrossRef] [Green Version]
- Burk, S.D.; Haack, T.; Rogers, L.T.; Wagner, L.J. Island wake dynamics and wake influence on the evaporation duct and radar propagation. J. Appl. Meteorol. 2002, 42, 349–367. [Google Scholar] [CrossRef]
- Jury, M.R. Representation of the Caribbean mean diurnal cycle in observation, reanalysis, and CMIP3 model datasets. Theor. Appl. Climatol. 2011, 107, 313–324. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ , R.; Church, J.A.; Clarke , L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change Synthesis Report; Contribution of Working Group-I to 5th Assessment Report; Pachauri, R.K., Meyer, L., Eds.; World Meteorological Organization: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Reyer, C.; Adams, S.; Albrecht, T.; Baarsch, F.; Boit, A.; Trujillo, N.C.; Cartsburg, M.; Coumou, D.; Eden, A.; Fernandes, E.; et al. Climate change impacts in Latin America and the Caribbean and their implications for development. Reg. Environ. Change 2017, 17, 1601–1621. [Google Scholar] [CrossRef]
- Kendon, E.; Roberts, N.; Fowler, H.; Roberts, M.; Chan, S.; Senior, C. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 2014, 4, 570–576. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Liu, C.; Ikeda, K.; Trier, S.B.; Rasmussen, R.M.; Holland, G.J.; Clark, M.P. Increased rainfall volume from future convective storms in the US. Nat. Clim. Change 2017, 7, 880–884. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn. 2020, 55, 383–408. [Google Scholar] [CrossRef]
- Gould, W.A.; Diaz, E.L.; Álvarez-Berríos, N.L.; Aponte-González, F.; Archibald, W.; Bowden, J.H.; Carrubba, L.; Crespo, W.; Fain, S.J.; González, G.; et al. US Caribbean, in Impacts, Risks and Adaptation in the United States: 4th National Climate Assessment; Reidmiller, D., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; US Global Change Research Program: Washington, DC, USA, 2018; Volume 2, pp. 809–871. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. US Geological. Surv. Data Ser. 2014, 832, 1–4. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. cMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high resolution grids of monthly climatic observations–the CRU Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Qtr. J. Roy. Meteorol. Soc. 2011, 13, 553–597. [Google Scholar] [CrossRef]
- Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.-N.; et al. ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Monthly Product Version 8 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-based and Historical Data; GPCC: Offenbach, Germany, 2018. [Google Scholar]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeor. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Ghiggi, G.; Humphrey, V.; Seneviratne, S.I.; Gudmundsson, L. GRUN: An observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data 2019, 11, 1655–1674. [Google Scholar] [CrossRef] [Green Version]
- Chassignet, E.P.; Hurlburt, H.E.; Metzger, E.J.; Smedstad, O.M.; Cummings, J.A.; Halliwell, G.R.; Bleck, R.; Baraille, R.; Wallcraft, A.J.; Lozano, C.; et al. US GODAE: Global ocean prediction with the Hybrid coordinate ocean model (HYCOM). Oceanography 2009, 22, 64–75. [Google Scholar] [CrossRef]
- Frieler, K.; Lange, S.; Piontek, F.; Reyer, C.P.; Schewe, J.; Warszawski, L.; Zhao, F.; Chini, L.; Denvil, S.; Emanuel, K. Assessing the impacts of 1.5°C global warming—Simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project ISIMIP2b. Geosci. Model Dev. 2018, 10, 4321–4345. [Google Scholar] [CrossRef] [Green Version]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981-2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebitsuzaki, W.; Woolen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-2 reanalysis. Bull. Amer. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution blended analyses for sea surface temperature. J. Climate 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Lee, H.-T.; Gruber, A.; Ellingson, R.G.; Laszlo, I. Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Ocean Tech. 2007, 24, 2029–2047. [Google Scholar] [CrossRef] [Green Version]
- Carton, J.A.; Chepurin, G.A.; Chen, L. SODA-3 a new ocean climate reanalysis. J. Climate 2018, 31, 6967–6983. [Google Scholar] [CrossRef]
- Fenton, J.D.; Keller, R.D. The calculation of streamflow from measurements of stage, Tech Rep 1-6, CRC hydrology, CRC hydrology. 2001. Available online: http://johndfenton.com/Papers/Calculation-of-streamflow-from-measurements-of-stage.pdf (accessed on 5 November 2020).
- Legates, D.R.; McCabe, G.J. Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Nigam, S.; Sengupta, A.; Ruiz-Barradas, A. Atlantic–Pacific links in observed multidecadal SST variability: Is the Atlantic Multidecadal Oscillation’s phase reversal orchestrated by the Pacific Decadal Oscillation? J. Climate 2020, 33, 5479–5505. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 491, 228–232. [Google Scholar] [CrossRef] [PubMed]
- DeJong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of mono-tonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Gamble, D.W.; Parnel, D.B.; Curtis, S. Spatial variability of the Caribbean mid-summer drought and relation to the north Atlantic high. Intl. J. Climatol. 2008, 28, 343350. [Google Scholar] [CrossRef]
- Hall, T.; Sealy, A.; Stephenson, T.; Kusunoki, S.; Taylor, M.; Chen, A.; Kitoh, A. Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model. Theor. Appl. Climatol. 2012, 113. [Google Scholar] [CrossRef]
- Jury, M.R.; Winter, A. Warming of an elevated layer over the Caribbean. Clim. Change 2009. [Google Scholar] [CrossRef]
ACRONYM | NAME | RESOLUTION | SOURCE | REFERENCE |
---|---|---|---|---|
CHIRP | Climate Hazards InfraRed Precipitation (IR-based) | 5 km | FEWS via Intl. Res. Inst. Clim.Library | Funk et al., (2014) |
CMIP6 | Coupled Model Intercomparison Project v6 | 100+ km | IPCC via Climate Explorer | Eyring et al., (2016) |
cMORPH | CPC Morphed precipitation (multi-satellite) | 25 km | NOAA via IRI Clim.Library | Joyce et al., (2004) |
CRU | Climate Research Unit of UEA v4 (temperature) | 50 km | Climate Explorer | Harris et al., (2014) |
ECMWF5 EC20C | European Centre Medium-Range Weather Forecasts v5 v20C | 25 km 100 km | Climate Explorer | Dee et al., (2011) Poli et al., (2016) |
FLDAS GLDAS | FEWS & Global Land Data Assimilation System v2 (hydrology) | 10 km 100 km | NASA-giovanni & Climate Explorer | Rodell et al., (2004), McNally et al., (2017) |
GPCC | Global Precipitation Climatology Centre v8 gauge interpolation | 25 km | Climate Explorer | Schneider et al., (2018) |
GPCP | Global Precipitation Climatology Precipitation v3 (multi-satellite) | 200+ km | NASA via IRI Clim.Library | Huffman et al., (2001) |
GPM | Global Precipitation Monitoring (IR+MW multi-satellite) | 10 km | NASA-giovanni & Univ.Hawaii APDRC | Huffman et al., (2007) Hou et al., (2014) |
GRUN | Global Runoff gauge interpolation | 50 km | Climate Explorer | Ghiggi et al., (2019) |
HYCOM | Hybrid Coordinate Model v3 Ocean reanalysis | 10 km | Univ Hawaii APDRC | Chassignet et al., (2009) |
ISIMIP2 | Inter-Sectoral Impact Model Intercomparision Project v2 (hydrology) | 50 km | Climate Explorer | Frieler et al., (2018) |
NASA | National Aeronautics and Space Administration v3 (vegetation) | 10 km | IRI Clim.Library | Pinzon and Tucker (2014) |
NCEP-2 | National Centers for Environmental Prediction v2 reanalysis | 180 km | NOAA via IRI Clim.Library | Kanamitsu et al., (2002) |
NOAA | National Oceanic & Atmospheric Administration (SST, netOLR) | 25–50 km | NOAA via IRI Clim.Library | Reynolds et al., (2007) Lee et al., (2007) |
SODA3 | Simple Ocean Data Assimilation v3 reanalysis | 50 km | UMD via IRI Clim. Library | Carton et al., (2018) |
USGS/NWS | River gauge and weather station in Puerto Rico | station | USGS and NWS | waterdata.usgs.gov/pr/nwis/sw Fenton and Keller (2001) |
Jun–Aug | Mode 1 |
---|---|
wet | mm |
2005 | 21.59 |
2011 | 17.93 |
2010 | 14.11 |
2006 | 9.67 |
1981 | 7.68 |
dry | mm |
1982 | −6.25 |
2018 | −7.85 |
1991 | −7.90 |
2015 | −8.11 |
1994 | −10.97 |
Year | Month | Day |
---|---|---|
2010 | 08 | 31 |
2011 | 08 | 04 |
2011 | 08 | 23 |
2012 | 07 | 05 |
2012 | 08 | 05 |
2012 | 08 | 24 |
2014 | 08 | 22 |
2015 | 08 | 28 |
2016 | 06 | 20 |
2016 | 08 | 01 |
2018 | 06 | 23 |
2018 | 07 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jury, M.R. Resolution-Dependent Perspectives on Caribbean Hydro-Climate Change. Hydrology 2020, 7, 93. https://doi.org/10.3390/hydrology7040093
Jury MR. Resolution-Dependent Perspectives on Caribbean Hydro-Climate Change. Hydrology. 2020; 7(4):93. https://doi.org/10.3390/hydrology7040093
Chicago/Turabian StyleJury, Mark R. 2020. "Resolution-Dependent Perspectives on Caribbean Hydro-Climate Change" Hydrology 7, no. 4: 93. https://doi.org/10.3390/hydrology7040093
APA StyleJury, M. R. (2020). Resolution-Dependent Perspectives on Caribbean Hydro-Climate Change. Hydrology, 7(4), 93. https://doi.org/10.3390/hydrology7040093