Pseudo-Spatially-Distributed Modeling of Water Balance Components in the Free State of Saxony
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Setup
2.2.1. BROOK90
2.2.2. Land Cover Parameterization
2.2.3. Soil Parameterization
2.2.4. Spatial Realization
2.2.5. Meteorological Data Input
- Selection of a catchment by using catchment ID number integrated with the package;
- Automated extraction of relevant catchment information, i.e., elevation, soil profiles and land covers;
- Automated search for in-situ measurement stations in the surrounding of the catchment (maximum ten stations with a maximum height difference of 200 m to avoid elevation effects);
- Automated extraction and daily aggregation of measurement time series for the identified in-situ stations.
- Mean global radiation;
- Maximum/minimum temperature;
- Mean vapor pressure deficit derived from the mean temperature and the mean relative humidity based on the Magnus equation;
- Mean wind speed; and
- Precipitation sum.
2.3. Model Application and Validation
2.3.1. Model Applicability Test
2.3.2. Validation
- A.
- Q: simulated Q was compared with daily and monthly time series of data from flow gauges for the whole simulation period of 2005–2019. The observed Q data for the selected catchments is available in an hourly resolution and unit m³/s provided by LfULG. To use the data in BR90-R, all values were converted to mm/d by considering the catchment area and aggregating Q to daily values.
- B.
- ET: since observed ET from direct measurements is not spatially available in general, we chose to take data from the satellite-based SMAP product, which is based on the Catchment land surface model (LSM) of the NASA Goddard Earth Observing System version 5 (GEOS-5) modeling and assimilation framework [20,52]. ET is taken from SMAP’s Level 4 surface and root-zone soil moisture product (SMAP_L4_GPH) with a spatiotemporal resolution of 9 km × 9 km and 3 hour intervals [20,21]. An illustration of SMAP_L4_GPH grid cells with the example of the Niedermülsen catchment can be seen in Figure 3e. ET data of the product was extracted from all grid cells that are partly or fully covering the considered catchment, area-weighted averages applied and aggregated to daily resolution for validation. Due to data availability, the validation period for ET was chosen from April 2015 to 2018.
- C.
- SM: SM data were retrieved from SMAP_L4_GPH similar to ET with the following additional step: SM from BR90-R was divided into the soil profile porosity (BK50) to derive SM wetness, which is comparable with SM from SMAP. The same validation period as ET was chosen. Note that both described, SM and ET are not considered true observations, rather additional sources to cross-check the model performance. Still, both assimilated values are based on observations by the satellite.
3. Results and Discussions
3.1. Variation between HRUs
3.2. Skill Score
3.2.1. Catchments Average
3.2.2. Catchment and Seasonal Variation
4. Conclusions and Outlook
- The lack of routing mode in the model structure causes the estimation of the discharge to be mere as the water remaining after ET, SM, and groundwater processes. Thus, the simulated Q has rather a meaning of an amount of accumulated water than its temporal distribution characteristics [2]. It can be seen at the daily scale of the validation of the ten catchments. Integrating an additional routing mode may solve this problem and would approach fully distributed. It can be implemented as the BR90-R version allows for coupling external modules in its structure; however, this step can cause more computational time and loosen the characteristics of HRUs.
- The evaluation regarding discharge for individual catchments revealed an uncertainty of the model performance in the border region, namely the Oberlausitz at the farthest east of the state. It may be caused by the limitation of the density of climate stations in the region, which makes it difficult to capture the climate conditions representatively. Thus, a high spatial resolution climate dataset such as precipitation from radar data can overcome this issue.
- The 20% areas, where the model cannot be implemented, can be adjusted by modifying the soil profiles. For instance, soils with shallow surface horizons can be fixed by combining several thin layers into one with which we can obtain a new soil profile with similar soil hydraulic properties. For urban areas out of the scope of the application of the model, pre-event SM derivation for an area, the curve number method (also called the Soil Conservation Service or SCS) [62,63,64] can be applied as a good alternative. The areas that caused system errors were found to be associated with lacking soil profile information from the BK50, which prevents the simulation in the sub-soil-process of the model. Thus, an updated, more precise soil map, is needed.
- The suggested approach to derive parameters from the soil and land use maps is a good practice to translate the characteristics of the catchments to the model. Nevertheless, the parameterization is still limited due to the simplification of land cover classes to one species and the transformation of soil systems. A systematic calibration for all of the catchments might improve or compensate for such discrepancies. In other words, a spatial parameter derivation is needed.
- SMAP_L4_GPH is a valuable data source to validate model outputs, particularly at a regional scale. However, a direct comparison with in situ measurements is a better choice to prove the plausibility of the ET and SM.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zink, M.; Kumar, R.; Cuntz, M.; Samaniego, L. A high-resolution dataset of water fluxes and states for Germany accounting for parametric uncertainty. Hydrol. Earth Syst. Sci. 2017, 21, 1769–1790. [Google Scholar] [CrossRef] [Green Version]
- Schwärzel, K.; Feger, K.-H.; Häntzschel, J.; Menzer, A.; Spank, U.; Clausnitzer, F.; Köstner, B.; Bernhofer, C. A novel approach in model-based mapping of soil water conditions at forest sites. For. Ecol. Manag. 2009, 258, 2163–2174. [Google Scholar] [CrossRef]
- Schmidt-Walter, P.; Ahrends, B.; Mette, T.; Puhlmann, H.; Meesenburg, H. NFIWADS: The water budget, soil moisture, and drought stress indicator database for the German National Forest Inventory (NFI). Ann. For. Sci. 2019, 76. [Google Scholar] [CrossRef] [Green Version]
- Penna, D.; Tromp-Van Meerveld, H.J.; Gobbi, A.; Borga, M.; Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 2011, 15, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil moisture for hydrological applications: Open questions and new opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Kumar, R.; Musuuza, J.L.; Van Loon, A.F.; Teuling, A.J.; Barthel, R.; Ten Broek, J.; Mai, J.; Samaniego, L.; Attinger, S. Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator. Hydrol. Earth Syst. Sci. 2016, 20, 1117–1131. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, L.; Kumar, R.; Zink, M. Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany. Am. Meteorol. Soc. 2013, 47–68. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wen, F.; Wood, E.F. A simulated soil moisture based drought analysis for the United States. J. Geophys. Res. D Atmos. 2004, 109, 1–19. [Google Scholar] [CrossRef]
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 9499. [Google Scholar] [CrossRef]
- European Environment Agency. Meteorological and Hydrological Droughts; European Environment Agency: Copenhagen, Denmark, 2019; p. 13. [Google Scholar]
- Ashley, R.M.; Blanksby, J.R.; Cashman, A. A methodology for adapting local drainage to climate change. In Flood Risk Management: Research and Practice; Taylor & Francis Group: London, UK, 2010; pp. 301–302. ISBN 978-0-415-48507-4. [Google Scholar]
- te Linde, A.H.; Aerts, J.C.J.H. Simulating flood-peak probability in the Rhine basin and the effect of climate change. In Flood Risk Management: Research and Practice; Taylor & Francis Group: London, UK, 2008; pp. 1729–1736. ISBN 978-0-415-48507-4. [Google Scholar]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 46, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Das, N.; Njoku, E.; Yueh, S.; Johnson, J.; Shi, J. Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) Data Products Table of Contents; California Institute of Technology: Pasadena, CA, USA, 2014. [Google Scholar]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 1609–1663. [Google Scholar] [CrossRef]
- Rinderer, M.; Seibert, J. Soil Information in Hydrologic Models: Hard Data, Soft Data, and the Dialog between Experimentalists and Modelers. Hydropedology 2012, 515–536. [Google Scholar] [CrossRef]
- Falge, E.; Aubinet, M.; Bakwin, P.S.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Black, T.A.; Ceulemans, R.; Davis, K.J.; Dolman, A.J.; et al. FLUXNET Research Network Site Characteristics, Investigators, and Bibliography, 2016; ORNL Distributed Active Archive Center, ORNL DAAC: Oak Ridge, TN, USA, 2017. [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Naeimi, V.; Bartalis, Z.; Hasenauer, S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth Syst. Sci. 2010, 14, 1881–1893. [Google Scholar] [CrossRef] [Green Version]
- Naz, B.S.; Kurtz, W.; Montzka, C.; Sharples, W.; Goergen, K.; Keune, J.; Gao, H.; Springer, A.; Kollet, S. Improving soil moisture and runoff simulations at 3&km over Europe using land surface data assimilation. Hydrol. Earth Syst. Sci. 2019, 23, 277–301. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Koster, R.D.; Kimball, J.S.; Crow, W.T.; Ardizzone, J.V.; Chakraborty, P.; Collins, D.W.; Conaty, A.L.; et al. Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics. J. Hydrometeorol. 2017, 18, 3217–3237. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Crow, W.T.; De Lannoy, G.J.M.; Kimball, J.S.; Ardizzone, J.V.; Bosch, D.; Colliander, A.; Cosh, M.; et al. Version 4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product. J. Adv. Model. Earth Syst. 2019, 11, 3106–3130. [Google Scholar] [CrossRef] [Green Version]
- Lievens, H.; Tomer, S.K.; Al Bitar, A.; De Lannoy, G.J.M.; Drusch, M.; Dumedah, G.; Hendricks Franssen, H.J.; Kerr, Y.H.; Martens, B.; Pan, M.; et al. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sens. Environ. 2015, 168, 146–162. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized soil moisture index for drought monitoring based on soil moisture active passive observations and 36 years of North American Land Data Assimilation System data: A case study in the Southeast United States. Remote Sens. 2018, 10, 301. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Cui, Q.; Chen, D.; Yu, H.; Mao, X.; Meng, L.; Cai, Y. Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an Agricultural Drought Index in China. Remote Sens. 2018, 10, 1302. [Google Scholar] [CrossRef] [Green Version]
- Matgen, P.; Fenicia, F.; Heitz, S.; Plaza, D.; de Keyser, R.; Pauwels, V.R.N.; Wagner, W.; Savenije, H. Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application. Adv. Water Resour. 2012, 44, 49–65. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Quintana-seguí, P. Remote Sensing of Environment Comparison of remote sensing and simulated soil moisture datasets in Mediterranean landscapes. Remote Sens. Environ. 2016, 180, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Wang, Y.; Du, A.; Guan, W.; Feger, K.H.; Schwärzel, K.; Bonell, M.; Xiong, W.; Pan, S. The effect of site conditions on flow after forestation in a dryland region of China. Agric. For. Meteorol. 2013, 178–179, 66–74. [Google Scholar] [CrossRef]
- Peters, R.; Clausnitzer, F.; Köstner, B.; Bernhofer, C.; Feger, K.H.; Schwärzel, K. Einfluss von Boden und Bestockung auf den Standortswasserhaushalt. Wald. Online 2011, 12, 101–109. [Google Scholar]
- Spank, U.; Schwärzel, K.; Renner, M.; Moderow, U.; Bernhofer, C. Effects of measurement uncertainties of meteorological data on estimates of site water balance components. J. Hydrol. 2013, 492, 176–189. [Google Scholar] [CrossRef]
- Vorobevskii, I.; Kronenberg, R.; Bernhofer, C. Global BROOK90 (R-package): An automatic framework to simulate the water balance at any location. Water 2020, 12, 2037. [Google Scholar] [CrossRef]
- Wiemann, S.; Eltner, A.; Sardemann, H.; Spieler, D.; Singer, T.; Thanh, T. On the monitoring and prediction of flash floods in small and medium-sized catchments—The EXTRUSO project. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017; p. 4862. [Google Scholar]
- Blöschl, G. Rainfall-Runoff Modeling of Ungauged Catchments. Encycl. Hydrol. Sci. 2005. [Google Scholar] [CrossRef]
- LfULG. Sachsen im Klimawandel; Staatsministerium fuer Umwelt und Landwirtschaft: Saxony, Germany, 2019. [Google Scholar]
- Schwarze, R.; Gurova, A.; Röhm, P.; Hauffe, C. Wasserhaushalt im Wandel von Klima und Landnutzung. Schriftenreihe LfULG; Landesamt fuer Umwelt, Landwirtschaft und Geologie: Saxony, Germany, 2016; p. 139. [Google Scholar]
- Petzold, R.; Burse, K.; Benning, R.; Gemballa, R. Die Lokalbodenform im System der forstlichen Standortserkundung im Mittelgebirge/Hügelland und deren bodenphysikalischer Informationsgehalt. Wald. Landsch. Nat. For. Ecol. Landsc. Res. Nat. Conserv. 2016, 16, 29–33. [Google Scholar]
- Benning, R.; Petzold, R.; Danigel, J.; Gemballa, R.; Andreae, H. Generating characteristic soil profiles for the plots of the National Forest Inventory in Saxony and Thuringia. Wald. Landsch. Nat. For. Ecol. Landsc. Res. Nat. Conserv. 2016, 16, 35–42. [Google Scholar]
- Gebrechorkos, S.H.; Bernhofer, C.; Hülsmann, S. Impacts of projected change in climate on water balance in basins of East Africa. Sci. Total Environ. 2019, 682, 160–170. [Google Scholar] [CrossRef]
- Federer, C.A.; Vörösmarty, C.; Fekete, B. Sensitivity of Annual Evaporation to Soil and Root Properties in Two Models of Contrasting Complexity. J. Hydrometeorol. 2003, 4, 1276–1290. [Google Scholar] [CrossRef]
- Campbell, G.S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 1974, 117, 311–314. [Google Scholar] [CrossRef]
- Clapp, R.B.; Hornberger, G.M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 1978, 14, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B.; Levis, S.; Kergoat, L.; Oleson, K.W. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Glob. Biogeochem. Cycles 2002, 16, 5-1–5-23. [Google Scholar] [CrossRef] [Green Version]
- Petzold, R.; Danigel, J.; Benning, R.; Mayer, S.; Burse, K.; Karas, F.; Andreae, H.; Gemballa, R. Aus Alt mach Neu—Altdaten der Standortskartierung für die räumlich differenzierte Ableitung der Bodenwasserspeicherung of water storage pro. Wald. Landsch. Nat. For. Ecol. Landsc. Res. Nat. Conserv. 2016, 16, 19–27. [Google Scholar]
- Bernhofer, C.; Grünwald, T.; Spank, U.; Clausnitzer, F.; Eichelmann, U.; Köstner, B.; Prasse, H.; Feger, K.H.; Menzer, A.; Schwärzel, K. Mikrometeorologische, pflanzenökologische und bodenhydrologische messungen in fichten- und buchenbeständen des tharandter waldes. Wald. Online 2011, 12, 17–28. [Google Scholar]
- Schwärzel, K.; Menzer, A.; Clausnitzer, F.; Spank, U.; Häntzschel, J.; Grünwald, T.; Köstner, B.; Bernhofer, C.; Feger, K.H. Soil water content measurements deliver reliable estimates of water fluxes: A comparative study in a beech and a spruce stand in the Tharandt forest (Saxony, Germany). Agric. For. Meteorol. 2009, 149, 1994–2006. [Google Scholar] [CrossRef]
- Eckelmann, W.; Sponagel, H.; Grottenthaler, W.; Hartmann, K.-J.; Hartwich, R.; Janetzko, P.; Joisten, H.; Kühn, D.; Sabel, K.-J.; Traidl, R. AD-HOC-Arbeitsgruppe Boden der Staatlichen Geologischen Dienste der Bundesanstalt für Geowissenschaften und Rohstoffe; Schweizerbart Science Publishers: Stuttgart, Germany, 2005; ISBN 9783510959204. [Google Scholar]
- Wösten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Canfield, H.E.; Lopes, V.L. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model. In Proceedings RMRS; USDA Forest Service: Washington, DC, USA, 2000; pp. 316–319. [Google Scholar]
- Wiemann, S. Beitrag J: Stefan Wiemann Web-Basierte Analyse und Prozessierung hydro-Meteorologischer Daten im Kontext von Extremereignissen (Web-Based Analysis and Processing of Hydro-Meteorological Data in the Context of Extreme Events); Umweltinformationssystem UIS 2018: Nuernberg, Germany, 2018; pp. 139–148. [Google Scholar]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Nusret, D.; Dug, S. Applying the Inverse Distance Weighting and Kriging methods of the spatial interpolation on the mapping the annual precipitation in Bosnia and Herzegovina. In Proceedings of the 6th Biennial Meeting of the International Environmental Modelling and Software Society, Leipzig, Germany, 1 July 2012; pp. 2754–2760. [Google Scholar]
- Ozelkan, E.; Bagis, S.; Ustundag, B.B.; Yucel, M.; Ozelkan, E.C.; Ormeci, C. Land surface temperature—Based spatial interpolation using a modified inverse distance weighting method. In Proceedings of the 2013 2nd International Conference on Agro-Geoinformatics: Information for Sustainable Agriculture, Agro-Geoinformatics, Washington, DC, USA, 12–16 August 2013; pp. 110–115. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J.; Ducharne, A.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res. Atmos. 2000, 105, 24809–24822. [Google Scholar] [CrossRef]
- Cai, X.; Pan, M.; Chaney, N.W.; Colliander, A.; Misra, S.; Cosh, M.H.; Crow, W.T.; Jackson, T.J.; Wood, E.F. Validation of SMAP soil moisture for the SMAPVEX15 field campaign using a hyper-resolution model. Water Resour. Res. 2017, 53, 3013–3028. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Staudinger, M.; Stahl, K.; Stoelzle, M.; Seeger, S.; Seibert, J.; Weiler, M. Catchment water storage variation with elevation. Hydrol. Process. 2017, 31, 2000–2015. [Google Scholar] [CrossRef]
- De Lannoy, G.J.M.; Koster, R.D.; Reichle, R.H.; Mahanama, S.P.P.; Liu, Q. An updated treatment of soil texture and associated hydraulic properties in a global land modeling system. J. Adv. Model. Earth Syst. 2014, 6, 957–979. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56, Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO: Rome, Italy, 1998; 328p. [Google Scholar]
- Fleischbein, K.; Lindenschmidt, K.; Merz, B. Modelling the runoff response in the Mulde catchment (Germany). In Advances in Geosciences; European Geosciences Union: Munich, Germany, 2006; pp. 79–84. [Google Scholar]
- Newman, A.J.; Clark, M.P.; Sampson, K.; Wood, A.; Hay, L.E.; Bock, A.; Viger, R.J.; Blodgett, D.; Brekke, L.; Arnold, J.R.; et al. Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance. Hydrol. Earth Syst. Sci. 2015, 19, 209–223. [Google Scholar] [CrossRef] [Green Version]
- McMillan, H.K.; Booker, D.J.; Cattoën, C. Validation of a national hydrological model. J. Hydrol. 2016, 541, 800–815. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds-the two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [Google Scholar] [CrossRef] [Green Version]
- Satheeshkumar, S.; Venkateswaran, S.; Kannan, R. Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Model. Earth Syst. Environ. 2017, 3, 24. [Google Scholar] [CrossRef]
- Rozalis, S.; Morin, E.; Yair, Y.; Price, C. Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J. Hydrol. 2010, 394, 245–255. [Google Scholar] [CrossRef]
Catchment/ID | Area (km2) | Average Elevation (m.a.s.l.) | HRU/Km2 | Land Use [%] | |||||
---|---|---|---|---|---|---|---|---|---|
Agriculture | Grass Land | Deciduous Forest | Evergreen Forest | Other | |||||
Großschweidnitz | 1 | 41.44 | 239.66 | 7.2 | 47 | 21 | 2 | 18 | 12 |
Holtendorf | 2 | 54.17 | 269.29 | 3.4 | 65 | 13 | 2 | 13 | 7 |
Kreischa | 3 | 43.88 | 384.91 | 11.2 | 44 | 25 | 4 | 22 | 5 |
Krummenhenners-dorf | 4 | 130.92 | 476.96 | 4.0 | 57 | 29 | 0 | 5 | 9 |
Neustadt | 5 | 40.18 | 386.16 | 7.7 | 30 | 24 | 4 | 28 | 14 |
Niedermuelsen | 6 | 49.58 | 355.61 | 9.7 | 47 | 21 | 1 | 18 | 13 |
Niederoderwitz | 7 | 28.87 | 123.80 | 3.1 | 53 | 18 | 2 | 4 | 23 |
Niederzwoenitz | 8 | 31.36 | 600.58 | 2.8 | 29 | 16 | 0 | 44 | 11 |
Reichenbach-Oberlausitz | 9 | 42.51 | 266.05 | 6.2 | 64 | 18 | 3 | 6 | 9 |
Tannenberg | 10 | 91.48 | 662.02 | 4.3 | 24 | 23 | 1 | 42 | 10 |
Simplified Land Used | Percentage (%) | Categories in CORINE Map |
---|---|---|
Evergreen Forest | 14.0 | Coniferous and mixed forest |
Deciduous Forest | 23.0 | Broad-leaved forest |
Agriculture/Cultivated Land | 47.0 | Land principally occupied by agriculture, significant areas of natural vegetation, complex cultivation patterns, fruit tree and berry plantations, non-irrigated arable land, agricultural farms. |
Grassland/Meadows | 3.2 | Natural grassland, pasture, meadows and other permanent grasslands under agricultural use |
Urban Infrastructure/Others | 12.8 | Continuous urban fabric, road and rail networks, and associated land, mineral extraction sites, airports, watercourses. |
Variable | Validation Period | Daily Resolution | Monthly Resolution | ||||||
---|---|---|---|---|---|---|---|---|---|
KGE | R | KGE | R | ||||||
Mean Q | 2005–2019 | 0.63 | 0.72 | 1.04 | 1.04 | 0.75 | 0.88 | 1.16 | 1.04 |
Mean SM | 2015–2018 | 0.76 | 0.86 | 0.79 | 0.94 | 0.76 | 0.87 | 0.76 | 0.94 |
Mean ET | 2015–2018 | 0.62 | 0.83 | 0.86 | 0.70 | 0.65 | 0.92 | 0.87 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luong, T.T.; Pöschmann, J.; Vorobevskii, I.; Wiemann, S.; Kronenberg, R.; Bernhofer, C. Pseudo-Spatially-Distributed Modeling of Water Balance Components in the Free State of Saxony. Hydrology 2020, 7, 84. https://doi.org/10.3390/hydrology7040084
Luong TT, Pöschmann J, Vorobevskii I, Wiemann S, Kronenberg R, Bernhofer C. Pseudo-Spatially-Distributed Modeling of Water Balance Components in the Free State of Saxony. Hydrology. 2020; 7(4):84. https://doi.org/10.3390/hydrology7040084
Chicago/Turabian StyleLuong, Thanh Thi, Judith Pöschmann, Ivan Vorobevskii, Stefan Wiemann, Rico Kronenberg, and Christian Bernhofer. 2020. "Pseudo-Spatially-Distributed Modeling of Water Balance Components in the Free State of Saxony" Hydrology 7, no. 4: 84. https://doi.org/10.3390/hydrology7040084
APA StyleLuong, T. T., Pöschmann, J., Vorobevskii, I., Wiemann, S., Kronenberg, R., & Bernhofer, C. (2020). Pseudo-Spatially-Distributed Modeling of Water Balance Components in the Free State of Saxony. Hydrology, 7(4), 84. https://doi.org/10.3390/hydrology7040084