Modelling Actual Evapotranspiration Seasonal Variability by Meteorological Data-Based Models
Abstract
:1. Introduction
- (i)
- the characterization of the actual evapotranspiration dynamic at the seasonal scale for both energy and water limited systems, by illustrating a methodology able to identify dry (water-limited) and wet (energy-limited) states transition only based on meteorological data;
- (ii)
- explain how embedding the switching between dry and wet dominant states into empirical actual evapotranspiration models could lead to an improvement in the wet periods’ prediction of actual evapotranspiration, especially in the case of water availability limited sites.
- (iii)
- the assessment of the model errors due to the use of empirically-estimated input variables.
2. Materials and Methods
2.1. Sites and Data Description
2.2. Models Selection for Potential and Actual Evapotranspiration Assessment
2.2.1. Penman Model
2.2.2. AA Model
2.2.3. API Model
2.3. Net Radiation and Soil Heat-Flux Derived from Empirical Formulas
2.4. Models Evaluation
3. Modelling Results and Discussion
3.1. Transitioning Between Dry and Wet States: Implication for a Threshold Approach
3.2. Monthly AET Models Evaluation
- (i)
- the AA, or advection-aridity, method as described by Equation (5);
- (ii)
- the API, or the antecedent precipitation index, method as described by Equation (6);
- (iii)
- the threshold PM/API and PM/AA models as described by Equation (18);
3.3. Models Estimates Using Rn and Gsoil from Empirical Formulas
3.4. AET Models Calibration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef] [Green Version]
- Sartor, J.; Mobilia, M.; Longobardi, A. Results and findings from 15 years of sustainable urban storm water management. Int. J. Saf. Secur. Eng. 2018, 8, 505–514. [Google Scholar] [CrossRef]
- Mobilia, M.; Longobardi, A. Model Details, Parametrization, and Accuracy in Daily Scale Green Roof Hydrological Conceptual Simulation. Atmosphere 2020, 11, 575. [Google Scholar] [CrossRef]
- Fortuniak, K.; Pawlak, W.; Bednorz, L.; Grygoruk, M.; Siedlecki, M.; Zieliński, M. Methane and carbon dioxide fluxes of a temperate mire in Central Europe. Agric. For. Meteorol. 2017, 232, 306–318. [Google Scholar] [CrossRef]
- Muhammad, M.K.I.; Nashwan, M.S.; Shahid, S.; Ismail, T.B.; Song, Y.H.; Chung, E.-S. Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia. Sustainability 2019, 11, 4267. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Vegetation and Hydrology. Soil Sci. 1963, 96, 357. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. In Symposia of the Society for Experimental Biology; Cambridge University Press (CUP): Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating of potential evapotranspiration. J. Irrig. Drain. Eng. 1982, 108, 223–230. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geograph. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Gangopadhyaya, M.; Uryvaev, V.A.; Omar, M.H.; Nordenson, T.J.; Harbeck, G.E. Measurement and Estimation of Evaporation and Evapotranspiration; W.M.O. Technical Note; World Meteorological Organization: Geneva, Switzerland, 1966. [Google Scholar]
- Dalton, J. Experimental essays on the constitution of mixed gases: On the force of steam or vapour from water or other liquids in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat. Manch. Lit. Phil. Soc. Mem. Proc. 1802, 5, 536–602. [Google Scholar]
- Ershadi, A.; McCabe, M.F.; Evans, J.; Chaney, N.; Wood, E.F. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteorol. 2014, 187, 46–61. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Menenti, M.; Choudhury, B.J. Parameterization of Land Surface Evaporation by Means of Location Dependent Potential Evaporation and Surface Temperature Range; Department for Environment; Food and Rural Affairs (Defra): London, UK, 1993; Volume 212, pp. 561–568. [Google Scholar]
- Bastiaanssen, W.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.; Van Der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL). J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Yates, D.; Strzepek, K.M. Potential Evapotranspiration Methods and Their Impact on the Assessment of River Basin Runoff under Climate Change; WP-94-046; IIASA: Laxenburg, Austria, 1994. [Google Scholar]
- Wang, K.; Dickinson, R.E.; Wild, M.; Liang, S. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. J. Geophys. Res. Space Phys. 2010, 115, 20. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.; Tu, K.P.; Baldocchi, D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Ding, R.; Kang, S.; Li, F.; Zhang, Y.; Tong, L. Evapotranspiration measurement and estimation using modified Priestley–Taylor model in an irrigated maize field with mulching. Agric. For. Meteorol. 2013, 168, 140–148. [Google Scholar] [CrossRef]
- Mawdsley, J.A.; Ali, M.F. Estimating Nonpotential Evapotranspiration by Means of the Equilibrium Evaporation Concept. Water Resour. Res. 1985, 21, 383–391. [Google Scholar] [CrossRef]
- Bouchet, R.J. Evapotranspiration réelle et potentielle, signification climatique. IAHS Publ. 1963, 62, 134–142. [Google Scholar]
- Jian, D.; Li, X.; Sun, H.; Tao, H.; Jiang, T.; Su, B.; Hartmann, H. Estimation of Actual Evapotranspiration by the Complementary Theory-Based Advection–Aridity Model in the Tarim River Basin, China. J. Hydrometeorol. 2018, 19, 289–303. [Google Scholar] [CrossRef]
- Chu, R.; Li, M.; Islam, A.R.M.T.; Fei, D.; Shen, S. Attribution analysis of actual and potential evapotranspiration changes based on the complementary relationship theory in the Huai River basin of eastern China. Int. J. Clim. 2019, 39, 4072–4090. [Google Scholar] [CrossRef]
- Zhang, T.; Gebremichael, M.; Meng, X.; Wen, J.; Iqbal, M.; Jia, D.; Li, Z. Climate-related trends of actual evapotranspiration over the Tibetan Plateau (1961–2010). Int. J. Climatol. 2018, 38, e48–e56. [Google Scholar] [CrossRef]
- Granger, R.; Gray, D. Evaporation from natural nonsaturated surfaces. J. Hydrol. 1989, 111, 21–29. [Google Scholar] [CrossRef]
- Armstrong, R.N.; Pomeroy, J.W.; Martz, L.W. Estimating Evaporation in a Prairie Landscape under Drought Conditions. Can. Water Resour. J. 2010, 35, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Morton, F. Estimating evapotranspiration from potential evaporation: Practicality of an iconoclastic approach. J. Hydrol. 1978, 38, 1–32. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.Y. Estimating Basin Evapotranspiration Using Distributed Hydrologic Model. J. Hydrol. Eng. 2003, 8, 74–80. [Google Scholar] [CrossRef]
- Otsuki, K.; Mitsuno, T.; Maruyama, T. Comparison between water budget and complementary relationship estimates of catchment evapotranspiration. Trans. Jpn. Soc. Irrig. Drain. Reclam Eng. 1984, 112, 17–23. [Google Scholar]
- Szilagyi, J.; Hobbins, M.; Józsa, J. Modified Advection-Aridity Model of Evapotranspiration. J. Hydrol. Eng. 2009, 14, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.; Baldocchi, D.; Ma, S.; Hehn, T. Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J. Geophys. Res. Space Phys. 2008, 113, 2156–2202. [Google Scholar] [CrossRef] [Green Version]
- Longobardi, A.; Khaertdinova, E. Relating soil moisture and air temperature to evapotranspiration fluxes during inter-storm periods at a Mediterranean experimental site. J. Arid. Land 2014, 7, 27–36. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Zhang, Q.; Liang, K.; Liu, C. Investigation of factors affecting intra-annual variability of evapotranspiration and streamflow under different climate conditions. J. Hydrol. 2016, 543, 759–769. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, G.-R.; Wang, Q.; Zhu, X.; Yan, J.; Wang, H.; Shi, P.; Zhao, F.; Li, Y.; Zhao, L.; et al. Assessing the ability of potential evapotranspiration models in capturing dynamics of evaporative demand across various biomes and climatic regimes with ChinaFLUX measurements. J. Hydrol. 2017, 551, 70–80. [Google Scholar] [CrossRef]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Van Niel, T.G. Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology 2012, 5, 381–388. [Google Scholar] [CrossRef]
- Wang, D. Evaluating interannual water storage changes at watersheds in Illinois based on long-term soil moisture and groundwater level data. Water Resour. Res. 2012, 48, 03502. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Hafeez, M.; Xu, D.; Vote, C. Comparison of two methods to derive time series of actual evapotranspiration using eddy covariance measurements in the southeastern Australia. J. Hydrol. 2012, 454, 1–6. [Google Scholar] [CrossRef]
- Temesgen, B.; Eching, S.O.; Davidoff, B.; Frame, K. Comparison of Some Reference Evapotranspiration Equations for California. J. Irrig. Drain. Eng. 2005, 131, 73–84. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Soil Water Storage Capacity and Available Soil Moisture; Water conservation factsheet; Ministry of Agriculture: Victoria, BC, Canada, 2015. [Google Scholar]
- Kwon, H.; Law, B.; Thomas, C.K.; Johnson, B. The influence of hydrological variability on inherent water use efficiency in forests of contrasting composition, age, and precipitation regimes in the Pacific Northwest. Agric. For. Meteorol. 2018, 249, 488–500. [Google Scholar] [CrossRef]
- Brown, R.N.; Percivalle, C.; Narkiewicz, S.; DeCuollo, S. Relative Rooting Depths of Native Grasses and Amenity Grasses with Potential for Use on Roadsides in New England. HortScience 2010, 45, 393–400. [Google Scholar] [CrossRef]
- Post, H.; Franssen, H.-J.H.; Graf, A.; Schmidt, M.; Vereecken, H. Uncertainty analysis of eddy covariance CO2 flux measurements for different EC tower distances using an extended two-tower approach. Biogeosciences 2015, 12, 1205–1221. [Google Scholar] [CrossRef] [Green Version]
- Gebler, S.; Franssen, H.-J.H.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H. Actual evapotranspiration and precipitation measured by lysimeters: A comparison with eddy covariance and tipping bucket. Hydrol. Earth Syst. Sci. 2015, 19, 2145–2161. [Google Scholar] [CrossRef] [Green Version]
- Marcolla, B.; Cescatti, A.; Manca, G.; Zorer, R.; Cavagna, M.; Fiora, A.; Gianelle, D.; Rodeghiero, M.; Sottocornola, M.; Zampedri, R. Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. Agric. For. Meteorol. 2011, 151, 1233–1243. [Google Scholar] [CrossRef]
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Carlowicz, M. Seeing Forests for the Trees and the Carbon: Mapping the World’s Forests in Three Dimensions; Earth Observatory: Washington, DC, USA, 2012. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Chebbi, R.Z.; Prévot, L.; Chakhar, A.; Abdallah, M.M.-B.; Jacob, F. Observing Actual Evapotranspiration from Flux Tower Eddy Covariance Measurements within a Hilly Watershed: Case Study of the Kamech Site, Cap Bon Peninsula, Tunisia. Atmosphere 2018, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Bogawski, P.; Bednorz, E. Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe). Water Resour. Manag. 2014, 28, 5021–5038. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Westra, S.; Maier, H.R. Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones. Hydrol. Earth Syst. Sci. 2017, 21, 2107–2126. [Google Scholar] [CrossRef] [Green Version]
- Moratiel, R.; Snyder, R.L.; Durán, J.M.; Tarquis, A.M. Trends in climatic variables and future reference evapotranspiration in Duero Valley (Spain). Nat. Hazards Earth Syst. Sci. 2011, 11, 1795–1805. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-G.; Zou, S.; Luo, Z.-H.; Zhang, W.; Chen, D.; Kong, J. Prediction of the Reference Evapotranspiration Using a Chaotic Approach. Sci. World J. 2014, 2014, 347625. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Singh, V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005, 308, 105–121. [Google Scholar] [CrossRef]
- Shifa, Y.B. Estimation of Evapotranspiration Using Advection Aridity Approach. Master Thesis, University of Twente Faculty of Geo-Information and Earth Observation (ITC), Enschede, The Netherlands, 2011. [Google Scholar]
- Narayanan, P. Evaluation of Performance of Evapotranspiration Models in Selected Climatic Regions in the United States. Ph.D. Thesis, University of Massachusetts, Amherst, USA, 1989. [Google Scholar]
- Brutsaert, W.; Stricker, H. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resour. Res. 1979, 15, 443–450. [Google Scholar] [CrossRef]
- Koehler, M.A.; Linsley, R.K. Predicting the Runoff from Storm Rainfall, Research Paper n.34; Weather Bureau, US Dept of Commerce: Washington, DC, USA, 1951. [Google Scholar]
- Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Evaluation of common evapotranspiration models based on measurements from two extensive green roofs in New York City. Ecol. Eng. 2015, 84, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Mobilia, M.; Longobardi, A.; Sartor, J.F. Including A-Priori Assessment of Actual Evapotranspiration for Green Roof Daily Scale Hydrological Modelling. Water 2017, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Irmak, S.; Irmak, A.; Allen, R.G.; Jones, J.W. Solar and Net Radiation-Based Equations to Estimate Reference Evapotranspiration in Humid Climates. J. Irrig. Drain. Eng. 2003, 129, 336–347. [Google Scholar] [CrossRef]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2011, 31, 107–117. [Google Scholar] [CrossRef]
- McNaughton, K.G.; Black, T.A. A study of evapotranspiration from a Douglas fir forest using the energy balance approach. Water Resour. Res. 1973, 9, 1579–1590. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.A.; Allen, C.D. Equilibrium, Potential and Actual Evaporation from Cropped Surfaces in Southern Ontario. J. Appl. Meteorol. 1973, 12, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Morton, F. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol. 1983, 66, 1–76. [Google Scholar] [CrossRef]
- Hobbins, M.; Ramirez, J.A.; Brown, T.C. The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model. Water Resour. Res. 2001, 37, 1389–1403. [Google Scholar] [CrossRef] [Green Version]
- De Bruin, H.A.R.; Keijman, J.Q. The Priestley-Taylor Evaporation Model Applied to a Large, Shallow Lake in the Netherlands. J. Appl. Meteorol. 1979, 18, 898–903. [Google Scholar] [CrossRef] [Green Version]
- Cristea, N.; Kampf, S.K.; Burges, S.J. Revised Coefficients for Priestley-Taylor and Makkink-Hansen Equations for Estimating Daily Reference Evapotranspiration. J. Hydrol. Eng. 2013, 18, 1289–1300. [Google Scholar] [CrossRef] [Green Version]
- Pruitt, W.O.; Doorenbos, J. Empirical calibration, a requisite for evaporation formulae based on daily or longer mean climatic data? In Proceedings of the ICID Conference on Evapotranspiration, Budapest, Hungary, 26–28 May 1977.
- Jensen, D.T.; Hargreaves, G.H.; Temesgen, B.; Allen, R.G. Computation of ETo under Nonideal Conditions. J. Irrig. Drain. Eng. 1997, 123, 394–400. [Google Scholar] [CrossRef]
- Martínez-Cob, A.; Tejero-Juste, M. A wind-based qualitative calibration of the Hargreaves ET0 estimation equation in semiarid regions. Agric. Water Manag. 2004, 64, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Mobilia, M.; Longobardi, A. Evaluation of meteorological data-based models for potential and actual evapotranspiration losses using flux measurements. In Prooceedings of the 20th International Conference on Computational Science and Its Applications 2020, Cagliari, Italy, 1–4 July 2020; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blecic, I., Taniar, D., Apduhan, B., Rocha, A., Tarantino, E., Torre, C., et al., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
Name | Record Period | Number of Days (-) | Number of 30 min Intervals (-) | Missing LE (%) |
---|---|---|---|---|
de-rur | 2012 to 2016 | 1614 | 77472.0 | 5.9 |
us-me2 | 2006 to 2010 | 1188 | 57024.0 | 5.1 |
it-mbo | 2003 to 2008 | 1829 | 87744.0 | 0.01 |
a) us-me2 | ||||||
---|---|---|---|---|---|---|
AETec (mm) | AA (mm) | API(1.26) (mm) | PM/AA (mm) | PM/API(1.26) (mm) | PM/APICAL (mm) | |
Total | 562.19 | 606.75 | 891.52 | 681.25 | 952.69 | 574.87 |
b) de-rur | ||||||
Total | 536.15 | 416.34 | 551.44 | 472.76 | 595.33 | 574.39 |
c) it-mbo | ||||||
Total | 471.22 | 543.04 | 574.75 | 578.04 | 605.70 | 488.49 |
Whole Period of Observation | |||||
---|---|---|---|---|---|
RMSE (mm) | RMSEd (-) | d(-) | r(-) | EQ. | |
a) us-me2 | |||||
AA | 27.04 | 0.60 | 0.66 | 0.90 | (5) |
API (1.26) | 49.02 | 1.08 | 0.51 | 0.85 | (6) |
PM/AA | 23.69 | 0.52 | 0.71 | 0.90 | (18) |
PM/API(1.26) | 44.98 | 0.99 | 0.54 | 0.89 | |
PM/APICAL(0.71) | 13.40 | 0.30 | 0.78 | 0.89 | (18) + αCAL |
b) de-rur | |||||
RMSE (mm) | RMSEd (-) | d(-) | r(-) | EQ. | |
AA | 12.91 | 0.27 | 0.81 | 0.97 | (5) |
API (1.26) | 8.89 | 0.19 | 0.88 | 0.99 | (6) |
PM/AA | 11.83 | 0.25 | 0.83 | 0.94 | (18) |
PM/API(1.26) | 8.32 | 0.17 | 0.89 | 0.99 | |
PM/APICAL(1.22) | 6.64 | 0.14 | 0.90 | 0.99 | (18) + αCAL |
c) it-mbo | |||||
RMSE (mm) | RMSEd (-) | d(-) | r(-) | EQ. | |
AA | 16.04 | 0.41 | 0.84 | 0.97 | (5) |
API (1.26) | 16.87 | 0.44 | 0.83 | 0.98 | (6) |
PM/AA | 15.12 | 0.38 | 0.84 | 0.97 | (18) |
PM/API(1.26) | 16.80 | 0.43 | 0.83 | 0.98 | |
PM/APICAL(0.99) | 7.53 | 0.19 | 0.91 | 0.98 | (18) + αCAL |
Wet State Period | |||||
---|---|---|---|---|---|
RMSE (mm) | RMSEd (-) | d(-) | r(-) | EQ. | |
a) us-me2 | |||||
AA | 24.45 | 0.94 | 0.84 | 0.16 | (5) |
API (1.26) | 19.71 | 0.76 | 0.87 | 0.71 | (6) |
PM/AA = PM/API(1.26) = PM/APICAL(0.71) | 6.78 | 0.26 | 0.96 | 0.55 | (18); (18) + αCAL |
b) de-rur | |||||
AA | 12.82 | 0.73 | 0.38 | 0.79 | (5) |
API (1.26) | 6.98 | 0.40 | 0.66 | 0.88 | (6) |
PM/AA = PM/API(1.26) = PM/APICAL(1.22) | 5.21 | 0.30 | 0.67 | 0.82 | (18); (18) + αCAL |
c) it-mbo | |||||
AA | 6.87 | 1.02 | 0.81 | 0.06 | (5) |
API (1.26) | 6.09 | 0.91 | 0.82 | 0.26 | (6) |
PM/AA = PM/API(1.26) = PM/APICAL(0.99) | 5.58 | 0.83 | 0.87 | 0.56 | (18); (18) + αCAL |
Dry State Period | |||||
---|---|---|---|---|---|
RMSE (mm) | RMSEd (-) | d(-) | r(-) | EQ. | |
a) us-me2 | |||||
AA | 28.11 | 0.52 | 0.81 | 0.88 | (5) |
API (1.26) | 53.87 | 1.00 | 0.66 | 0.87 | (6) |
PM/AA | 28.11 | 0.52 | 0.81 | 0.88 | (18) |
PM/API(1.26) | 53.87 | 1.00 | 0.66 | 0.87 | |
PM/APICAL(0.71) | 15.46 | 0.29 | 0.88 | 0.86 | (18) + αCAL |
b) de-rur | |||||
AA | 12.99 | 0.18 | 0.68 | 0.91 | (5) |
API (1.26) | 10.20 | 0.14 | 0.76 | 0.96 | (6) |
PM/AA | 12.99 | 0.18 | 0.68 | 0.91 | (14) |
PM/API(1.26) | 10.20 | 0.14 | 0.76 | 0.96 | |
PM/APICAL(1.22) | 7.55 | 0.10 | 0.81 | 0.96 | (18) + αCAL |
c) it-mbo | |||||
AA | 19.60 | 0.34 | 0.89 | 0.95 | (5) |
API (1.26) | 20.84 | 0.36 | 0.87 | 0.96 | (6) |
PM/AA | 19.60 | 0.34 | 0.89 | 0.95 | (14) |
PM/API(1.26) | 20.84 | 0.36 | 0.87 | 0.96 | |
PM/APICAL(1.22) | 8.49 | 0.15 | 0.94 | 0.96 | (18) + αCAL |
Whole Period of Observation | Wet State Period | Dry State Period | |
---|---|---|---|
a) us-me2 | |||
AA | 27.72 | 19.68 | 30.63 |
API (1.26) | 49.21 | 9.92 | 58.78 |
PM/AA | 25.76 | 6.78 | 30.63 |
PM/API(1.26) | 49.05 | 6.78 | 58.78 |
b) de-rur | |||
AA | 21.23 | 9.14 | 27.47 |
API (1.26) | 26.70 | 8.10 | 35.33 |
PM/AA | 20.78 | 5.21 | 27.47 |
PM/API(1.26) | 26.71 | 5.21 | 35.33 |
c) it-mbo | |||
AA | 38.36 | 12.36 | 47.64 |
API (1.26) | 37.31 | 16.91 | 45.40 |
PM/AA | 36.41 | 5.58 | 47.64 |
PM/API(1.26) | 36.56 | 5.58 | 45.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobilia, M.; Schmidt, M.; Longobardi, A. Modelling Actual Evapotranspiration Seasonal Variability by Meteorological Data-Based Models. Hydrology 2020, 7, 50. https://doi.org/10.3390/hydrology7030050
Mobilia M, Schmidt M, Longobardi A. Modelling Actual Evapotranspiration Seasonal Variability by Meteorological Data-Based Models. Hydrology. 2020; 7(3):50. https://doi.org/10.3390/hydrology7030050
Chicago/Turabian StyleMobilia, Mirka, Marius Schmidt, and Antonia Longobardi. 2020. "Modelling Actual Evapotranspiration Seasonal Variability by Meteorological Data-Based Models" Hydrology 7, no. 3: 50. https://doi.org/10.3390/hydrology7030050
APA StyleMobilia, M., Schmidt, M., & Longobardi, A. (2020). Modelling Actual Evapotranspiration Seasonal Variability by Meteorological Data-Based Models. Hydrology, 7(3), 50. https://doi.org/10.3390/hydrology7030050