Significance and Causality in Continuous Wavelet and Wavelet Coherence Spectra Applied to Hydrological Time Series
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Data Pre-Treatment and Reference Stochastic Processes Calculation
2.3. Wavelet Analysis
3. Results
4. Discussion
4.1. Choice of the Reference Stochastic Process
4.2. How to Tackle the Multiple Testing Problem
4.3. Further Insight into Causality
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lau, K.-M.; Weng, H. Climate signal detection using wavelet transform: How to make a time series Sing. Bull. Am. Meteorol. Soc. 1995, 76, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Kantelhardt, J.W.; Rybski, D.; Zschiegner, S.A.; Braun, P.; Koscielny-Bunde, E.; Livina, V.; Havline, S.; Bunde, A. Multifractality of river runoff and precipitation: Comparison of fluctuation analysis and wavelet methods. Physica A 2003, 330, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Labat, D. Oscillations in land surface hydrological cycle. Earth Planet. Sci. Lett. 2006, 242, 143–154. [Google Scholar] [CrossRef]
- Labat, D. Wavelet analysis of the annual discharge records of the world’s largest rivers. Adv. Water Resour. 2008, 31, 109–117. [Google Scholar] [CrossRef]
- Labat, D. Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. J. Hydrol. 2010, 385, 269–278. [Google Scholar] [CrossRef]
- Schaefli, B.; Maraun, D.; Holschneider, M. What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology. Adv. Water Resour. 2007, 30, 2511–2525. [Google Scholar] [CrossRef] [Green Version]
- Schaefli, B.; Zehe, E. Hydrological model performance and parameter estimation in the wavelet-domain. Hydrol. Earth Syst. Sci. 2009, 13, 1921–1936. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, L.; Laignel, B.; Massei, N.; Munier, S.; Becker, M.; Turki, I.; Coynel, A.; Cazenave, A. Hydrological variability of major French rivers over recent decades, assessed from gauging station and GRACE observations. Hydrolog. Sci. J. 2014, 59, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- White, M.A.; Schmidt, J.C.; Topping, D.J. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen Canyon dam and the Colorado River at Lees Ferry, Arizona. River Res. Appl. 2005, 21, 551–565. [Google Scholar] [CrossRef]
- Keener, V.W.; Feyereisen, G.W.; Lall, U.; Jones, J.W.; Bosch, D.D.; Lowrance, R. El-Niño/Southern Oscillation (ENSO) influences on monthly NO3 load and concentration, stream flow and precipitation in the Little River Watershed, Tifton, Georgia (GA). J. Hydrol. 2010, 381, 352–363. [Google Scholar] [CrossRef]
- Kovács, J.; Hatvania, I.G.; Korponai, J.; Kovács, I.S. Morlet wavelet and autocorrelation analysis of long-term data series of the Kis-Balaton water protection system (KBWPS). Ecol. Eng. 2010, 36, 1469–1477. [Google Scholar] [CrossRef]
- Guan, K.; Thompson, S.E.; Harman, C.J.; Basu, N.B.; Rao, P.S.C.; Sivapalan, M.; Packman, A.I.; Kalita, P.K. Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile-drained Midwestern watershed. Water Resour. Res. 2011, 47, W00J02. [Google Scholar] [CrossRef]
- Koirala, S.R.; Gentry, R.W.; Mulholland, P.J.; Perfect, E.; Schwartz, J.S.; Sayler, G.S. Persistence of hydrologic variables and reactive stream solute concentrations in an east Tennessee watershed. J. Hydrol. 2011, 401, 221–230. [Google Scholar] [CrossRef]
- Franco-Villoria, M.; Hoey, T.; Fischbacher-Smith, D. Temporal investigation of flow variability in Scottish rivers using wavelet analysis. J. Environ. Stat. 2012, 3, 1–20. [Google Scholar]
- Mengistu, S.G.; Creed, I.F.; Kulperger, R.J.; Quick, C.G. Russian nesting dolls effect—Using wavelet analysis to reveal non-stationary and nested stationary signals in water yield from catchments on a northern forested landscape. Hydrol. Process. 2013, 27, 669–686. [Google Scholar] [CrossRef]
- Mengistu, S.G.; Quick, C.G.; Creed, F.I. Nutrient export from catchments on forested landscapes reveals complex nonstationary and stationary climate signals. Water Resour. Res. 2013, 49, 3863–3880. [Google Scholar] [CrossRef]
- Arora, B.; Mohanty, B.P.; McGuire, J.T.; Cozzarelli, I.M. Temporal dynamics of biogeochemical processes at the Norman Landfill site. Water Resour. Res. 2013, 49, 6909–6926. [Google Scholar] [CrossRef]
- Val, J.; Pino, R.; Navarro, E.; Chinarro, D. Addressing the local aspects of global change impacts on stream metabolism using frequency analysis tools. Sci. Total Environ. 2016, 569–570, 798–814. [Google Scholar] [CrossRef]
- Sang, Y.-F. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 2013, 122, 8–15. [Google Scholar] [CrossRef]
- Nourani, V.; Andalib, G.; Dąbrowska, D. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds. J. Hydrol. 2017, 548, 170–183. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J.; Holschneider, M. Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation and significance testing. Phys. Rev. E 2007, 75, 016707. [Google Scholar] [CrossRef] [Green Version]
- Aguiar-Conraria, L.; Soares, M.J. The continuous wavelet transform: Moving beyond uni- and bivariate analysis. J. Econ. Surv. 2014, 28, 344–375. [Google Scholar] [CrossRef]
- Sen, A.K. Spectral-temporal characterization of riverflow variability in England and Wales for the period 1865–2002. Hydrol. Process. 2009, 23, 1147–1157. [Google Scholar] [CrossRef]
- Barros, G.P.; Marques, W.C. Long-term temporal variability of the freshwater discharge and water levels at Patos Lagoon, Rio Grande do Sul, Brazil. Int. J. Geoph. 2012, 459497. [Google Scholar] [CrossRef]
- Rajwa-Kuligiewicz, A.; Bialik, R.J.; Rowiński, P.M. Wavelet characteristics of hydrological and dissolved oxygen time series in a Lowland River. Acta Geophys. 2016, 64, 649–669. [Google Scholar] [CrossRef] [Green Version]
- Broersen, P.M.T. Facts and fiction in spectral analysis. IEEE Trans. Instrum. Meas. 2000, 49, 766–772. [Google Scholar] [CrossRef]
- De Waele, S. Automatic Inference from Finite Time Observations of Stationary Stochastic Signals. Ph.D. Thesis, Delft Technical University, Delft, The Netherlands, 2003. [Google Scholar]
- Maraun, D.; Kurths, J. Cross wavelet analysis. Significance testing and pitfalls. Nonlinear Process. Geoph. 2004, 11, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z. Significance tests for the wavelet power and the wavelet power spectrum. Ann. Geophys. 2007, 25, 2259–2269. [Google Scholar] [CrossRef]
- Ge, Z. Significance tests for the wavelet cross spectrum and wavelet linear coherence. Ann. Geophys. 2008, 26, 3819–3829. [Google Scholar] [CrossRef]
- Cohen, E.A.K.; Walden, A.T. A Statistical Study of Temporally Smoothed Wavelet Coherence. IEEE Trans. Signal Proces. 2010, 58, 2964–2973. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D. What Can We Learn from Climate Data? Methods for Fluctuation, Time/Scale and Phase Analysis. Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2006. [Google Scholar]
- Zobrist, J.; Schoenenberger, U.; Figura, S.; Hug, S.J. Long-term trends in Swiss rivers sampled continuously over 39 years reflect changes in geochemical processes and pollution. Environ. Sci. Pollut. Res. 2018, 25, 16788–16809. [Google Scholar] [CrossRef]
- Botter, M.; Burlando, P.; Fatichi, S. Anthropogenic and catchment characteristic signatures in the water quality of Swiss rivers: A quantitative assessment. Hydrol. Earth Syst. Sci. 2019, 23, 1885–1904. [Google Scholar] [CrossRef] [Green Version]
- Koscielny-Bunde, E.; Kantelhardt, J.W.; Braund, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J. Hydrol. 2006, 322, 120–137. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Murillo, J.C.; Zobrist, J.; Filella, M. Temporal trends in organic carbon content in the main Swiss rivers, 1974–2010. Sci. Total Environ. 2015, 502, 206–217. [Google Scholar] [CrossRef]
- Broersen, P.M.T. Automatic spectral analysis with time series models. IEEE Trans. Instrum. Meas. 2002, 51, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Broersen, P.M.T. Automatic Autocorrelation and Spectral Analysis; Springer: London, UK, 2006. [Google Scholar]
- Wilcox, R. Statistical Modeling and Decision Science: Introduction to Robust Estimation and Hypothesis Testing, 3rd ed.; Academic Press: San Diego, CA, USA, 2012; pp. 471–532. [Google Scholar]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Granger, C.W.J. Testing for causality. A personal viewpoint. J. Econ. Dyn. Control 1980, 2, 329–352. [Google Scholar] [CrossRef]
- Eichler, M. Causal inference in time series analysis. In Causality: Statistical Perspectives and Applications; Berzuini, C., Dawid, P., Bernardinelli, L., Eds.; Wiley & Sons: Chichester, UK, 2013; pp. 327–354. [Google Scholar]
- Beran, J.; Feng, Y.; Ghosh, S.; Kulik, R. Long Memory Processes. Probabilistic Properties and Statistical Methods; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Loizeau, J.-L.; Dominik, J. Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva. Aquatic Sci. 2000, 62, 54–67. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Murillo, J.C.; Filella, M. Significance and Causality in Continuous Wavelet and Wavelet Coherence Spectra Applied to Hydrological Time Series. Hydrology 2020, 7, 82. https://doi.org/10.3390/hydrology7040082
Rodríguez-Murillo JC, Filella M. Significance and Causality in Continuous Wavelet and Wavelet Coherence Spectra Applied to Hydrological Time Series. Hydrology. 2020; 7(4):82. https://doi.org/10.3390/hydrology7040082
Chicago/Turabian StyleRodríguez-Murillo, Juan Carlos, and Montserrat Filella. 2020. "Significance and Causality in Continuous Wavelet and Wavelet Coherence Spectra Applied to Hydrological Time Series" Hydrology 7, no. 4: 82. https://doi.org/10.3390/hydrology7040082
APA StyleRodríguez-Murillo, J. C., & Filella, M. (2020). Significance and Causality in Continuous Wavelet and Wavelet Coherence Spectra Applied to Hydrological Time Series. Hydrology, 7(4), 82. https://doi.org/10.3390/hydrology7040082