Evaluating and Predicting the Effects of Land Use Changes on Hydrology in Wami River Basin, Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use Change Analysis and Prediction
2.3. Soil and Water Assessment Tool (SWAT) Model
2.4. Pearson Correlation and Partial Least Squares Regression
3. Results and Discussion
3.1. Accuracy Assessment and CA-Markov Validation
3.2. Land Use Change Analysis
3.3. Sensitive Parameters.
3.4. Calibration and Validation
3.5. Impacts of Land Use Changes in Hydrological Components
3.6. Impacts of Individual Land Use Changes in Hydrological Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdulkareem, J.H.; Sulaiman, W.N.A.; Pradhan, B.; Jamil, N.R. Relationship between design floods and land use land cover (LULC) changes in a tropical complex catchment. Arab. J. Geosci. 2018, 11, 376. [Google Scholar] [CrossRef]
- Maharjan, A.; Bauer, S.; Knerr, B. Migration for Labour and Its Impact on Farm Production in Nepal; Centre for the Study of Labour and Mobility: Kathmandu, Nepal, 2013. [Google Scholar]
- Wear, D.N.; Turner, M.G.; Naiman, R.J. Land cover along an urban-rural gradient: Implications for water quality. Ecol. Appl. 1998, 8, 619–630. [Google Scholar]
- Hogan, M.C. Water Pollution. In Encyclopedia of Earth; Topic ed.; Cleveland, C.C., McGinley, M., Eds.; National Council on Science and the Environment: Washington, DC, USA, 2010. [Google Scholar]
- Torbick, N.; Hession, S.; Hagen, S. Mapping inland lake water quality across the lower peninsula of Michigan using Landsat TM imagery. Int. J. Remote Sens. 2013, 34, 7607–7624. [Google Scholar] [CrossRef]
- Noori, H.; Siadatmousavi, M.; Mojaradi, B. Assessment of sediment yield using RS and GIS at two sub-basins of Dez Watershed, Iran. Int. Soil Water Conserv. Res. 2016, 4, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Khare, D.; Patra, D.; Mondal, A.; Kundu, S. Impact of landuse/land cover change on run-off in the catchment of a hydro power project. Appl. Water Sci. 2017, 7, 23–35. [Google Scholar] [CrossRef]
- Notter, B.; MacMillan, L.; Viviroli, D.; Weingartner, R.; Liniger, H. Impacts of environmental change on water resources in the Mt. Kenya Region. J. Hydrol. 2007, 343, 266–278. [Google Scholar]
- Schneider, L.C.; Gil Pontius, R., Jr. Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 83–94. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Madulu, N. Environment, poverty and health linkages in the Wami river basin, A search for sustainable water resource management. Phys. Chem. Earth 2005, 30, 950–960. [Google Scholar] [CrossRef]
- Wambura, J.J. Stream Flow Response to Skilled and Non-linear Bias Corrected GCM Precipitation Change in the Wami River Sub-basin, Tanzania. Br. J. Environ. Clim. Chang. 2014, 4, 389–408. [Google Scholar] [CrossRef]
- Nobert, J.; Jeremiah, J. Hydrological Response of Watershed Systems to Land Use/Cover Change. A Case of Wami River Basin. Open Hydrol. J. 2012, 6, 78–87. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundezewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate change and water: Technical paper of the Intergovernmental Panel for Climate Change (Geneva: IPCC Secretariat). Clim. Chang. 2008, 95, 96. [Google Scholar]
- Todd, M.C.; Taylor, R.G.; Osborn, T.J.; Kingston, D.G.; Arnell, N.W.; Gosling, S.N. Uncertainty in climate change impacts on basin-scale freshwater resources–preface to the special issue: The QUEST-GSI methodology and synthesis of results. Hydrol. Earth Syst. Sci. 2011, 15, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- Kepner, G.; Semmens, D.J.; Bassett, S.D.; Mouat, D.A.; Goodrich, D.C. Scenario analysis for the San Pedro River, analyzing hydrological consequences of a future environment. Environ. Monit. Assess. 2004, 94, 115–127. [Google Scholar] [CrossRef]
- Christensen, N.A.; Wood, A.W.; Voisin, N.; Lettenmaier, D.P.; Palmer, R.N. The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim. Chang. 2004, 62, 337–363. [Google Scholar] [CrossRef]
- Tang, Z.; Engel, B.A.; Pijanowski, B.C.; Lim, K.J. Forecasting land use change and its environmental impact at a watershed scale. J. Environ. Manag. 2005, 76, 35–45. [Google Scholar] [CrossRef]
- Hurkmans, R.T.W.L.; Terink, W.; Uijlenhoet, R.; Moors, E.J.; Troch, P.A.; Verburg, P.H. Effects of land use changes on streamflow generation in the Rhine basin. Water Resour. Res. 2009, 45, W06405. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Impacts of land use change and climate variability in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Park, J.Y.; Park, M.J.; Joh, H.K. Assessment of Miroc3.2 Hires Climate and Clue- S land Use change impacts on watershed hydrology using SWAT. Trans. ASABE 2011, 54, 1717–1724. [Google Scholar]
- Perazzoli, M.; Pinheiro, A.; Kaufmann, V. Assessing the impact of climate change scenarios on water resources in southern Brazil. Hydrol. Sci. J. 2013, 58, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Shaw, S.B.; Marrs, J.; Bhattarai, N.; Quackenbush, L.J. Longitudinal study of the impacts of land cover change on hydrologic response in four mesoscale watersheds in New York State, USA. J. Hydrol. 2014, 519, 12–22. [Google Scholar] [CrossRef]
- Hundecha, Y.; Bardossy, A. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J. Hydrol. 2004, 292, 281–295. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Kubota, J.; Chen, L. Effects of land-use changes on hydrological processes in the middle basin of the Heihe River, northwest China. Hydrol. Process. 2007, 21, 1370–1382. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, W.; Guo, Q.; Wu, S. Effects of landuse change on surface run-off and sediment yield at different watershed scales on the Loess Plateau. Int. J. Sediment Res. 2010, 25, 283–293. [Google Scholar] [CrossRef]
- Rientjes, T.; Haile, A.; Kebede, E.; Mannaerts, C.; Habib, E.; Steenhuis, T. Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 1979–1989. [Google Scholar] [CrossRef] [Green Version]
- Warburton, M.; Schulze, R.; Jewitt, G. Hydrological impacts of land use change in three diverse South African catchments. J. Hydrol. 2012, 414–415, 118–135. [Google Scholar] [CrossRef]
- Gumindoga, W.; Rientjes, T.H.M.; Haile, A.T.; Dube, T. Predicting streamflow for land cover changes in the Upper Gilgel Abay River Basin, Ethiopia: A TOPMODEL based approach. Phys. Chem. Earth Parts A/B/C. 2014, 76, 3–15. [Google Scholar] [CrossRef]
- Kalantari, Z.; Lyon, S.; Folkeson, L.; French, H.; Stolte, J.; Jansson, P.; Sassner, M. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Sci. Total Environ. 2014, 466–467, 741–754. [Google Scholar] [CrossRef]
- Zhang, Y.; Schilling, K. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. J. Hydrol. 2006, 324, 412–422. [Google Scholar] [CrossRef]
- Bi, H.; Liu, B.; Wu, J.; Yun, L.; Chen, Z.; Cui, Z. Effects of precipitation and land use on run-off during the past 50 years in a typical watershed in Loess Plateau, China. Int. J. Sediment Res. 2009, 24, 352–364. [Google Scholar] [CrossRef]
- Khoi, D.; Suetsugi, T. Impact of climate and land-use changes on hydrological processes and sediment yield: A case study of the Be River catchment, Vietnam. Hydrol. Sci. J. 2014, 59, 1095–1108. [Google Scholar] [CrossRef]
- Akpoti, K.; Antwi, E.O.; Kabo-bah, A.T. Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa. Hydrology 2016, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Nietsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool Input/Output File Documentation; Blackland Research Center: Temple, TX, USA, 2005. [Google Scholar]
- Hernandez, M.; Miller, S.; Goodrich, D.; Goff, B.; Kepner, W.; Edmonds, C.; Jones, K. Modeling run-off response to land cover and rainfall spatial variability in semi-arid watersheds. Environ. Monit. Assess. 2000, 64, 285–298. [Google Scholar] [CrossRef]
- Miller, S.; Kepner, W.; Mehaffey, M.; Hernandez, M.; Miller, R.; Goodrich, D.; Devonald, K.; Heggem, D.; Miller, W. Integrating landscape assessment and hydrologic modeling for land cover change analysis. J. Am. Water Resour. Assoc. 2002, 38, 915–929. [Google Scholar] [CrossRef]
- Ghaffari, G.; Keesstra, S.; Ghodousi, J.; Ahmadi, H. SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran. Hydrol. Process. 2010, 24, 892–903. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.; Jackson, M.; Erickson, C. Assessing impacts of Landuse and Landcover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Getachew, E.; Melesse, A. The impact of land use change on the hydrology of the Angereb Watershed, Ethiopia. Int. J. Water Sci. 2012, 1, 1–7. [Google Scholar]
- Yan, B.; Fang, N.; Zhang, P.; Shi, Z. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Niraula, R.; Meixner, T.; Norman, L. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes. J. Hydrol. 2015, 522, 439–451. [Google Scholar] [CrossRef]
- Wilson, C.; Weng, Q. Assessing Surface Water Quality and Its Relationship with Urban Land Cover Changes in the Lake Calumet Area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [Google Scholar] [CrossRef]
- Engel, B.; Storm, D.; White, M.; Arnold, J.; Arabi, M. A hydrologic/water quality model application protocol. J. Am. Water Resour. Assoc. 2007, 43, 1223–1236. [Google Scholar] [CrossRef]
- Nijssen, B.; Schnur, R.; Lettenmaier, D.P. Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J. Clim. 2001, 14, 1790–1808. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdar, P.P. Isolating the impacts of land use and climate change on streamflow. Hydrol. Earth Syst. Sci. 2015, 19, 3633–3651. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, J. Application of SCS model in estimation of runoff from the small watershed in Loess Plateau of China. Chin. Geogr. Sci. 2008, 18, 235–241. [Google Scholar] [CrossRef]
- Wami/Ruvu Basin Water Office (WRBWO). Business Plan; Wami/Ruvu Basin Water Office: Morogoro, Tanzania, 2008.
- Ndomba, P. Streamflow Data Needs for Water Resources Management and Monitoring Challenges: A Case Study of Wami River Subbasin in Tanzania. In Nile River Basin; Melesse, A., Abtew, W., Setegn, S., Eds.; Springer: Cham, The Netherlands, 2014. [Google Scholar]
- Wami/Ruvu Basin Water Office (WRBWO). A Rapid Ecological Assessment of the Wami River Estuary, Tanzania. Global Water for Sustainability Program; Anderson, E.P., McNally, C., Eds.; Florida International University: Miami, FL, USA, 2007.
- International Union for Conservation of Nature (IUCN). The Wami Basin: A Situation Analysis. In Eastern and Southern Africa Programme; IUCN-ESARO Publications Service Unit: Nairobi, Kenya, 2010. [Google Scholar]
- Mas, J. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Twisa, S.; Buchroithner, M.F. Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania. Land 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 2007, 85, 245–257. [Google Scholar] [CrossRef]
- Garcia, M.; Alvarez, R. TM digital processing of a tropical forest region in southern Mexico. Int. J. Remote Sens. 1994, 15, 1611–1632. [Google Scholar] [CrossRef]
- Harris, P.M.; Ventura, S.J. The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogramm. Eng. Remote Sens. 1995, 61, 993–998. [Google Scholar]
- Rosenfield, G.H.; Fitzpatirck-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Al-Bakri, J.T.; Duqqah, M.; Brewer, T. Application of remote sensing and GIS for modeling and assessment of land use/cover change in Amman/Jordan. J. Geogr. Inform. Syst. 2013, 5, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Araya, Y.H.; Cabral, P. Analysis and modeling of urban land cover change in Setubal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Z.; Wang, X. Land use change and prediction in the Baimahe Basin using GIS and CA-Markov model. In IOP Conference Series: Earth and Environmental Science; IOP: Bristol, UK, 2014; Volume 17. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Hyandye, C.; Martz, L. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int. J. Remote Sens. 2017, 38, 64–81. [Google Scholar] [CrossRef]
- Hua, A.K. Application of CA-Markov model and land use/land cover changes in Malacca River watershed, Malaysia. Appl. Ecol. Environ. Res. 2017, 15, 605–622. [Google Scholar] [CrossRef]
- Ahmed, B.; Ahmed, R.; Zhu, X. Evaluation of Model Validation Techniques in Land Cover Dynamics. ISPRS Int. J. Geo-Inf. 2013, 2, 577–597. [Google Scholar] [CrossRef]
- Arnold, J.; Srinivasan, R.; Muttiah, R.; Williams, J. Large area hydrologic modeling and assessment. Part I Model. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar]
- Setegn, S.; Srinivasan, R.; Dargahi, B. Hydrological modelling in the Lake Tana basin, Ethiopia using SWAT model. Open Hydrol. J. 2008, 2, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Tibebe, D.; Bewket, W. Surface runoff and soil erosion estimation using the SWAT model in the Keleta watershed, Ethiopia. Land Degrad. Dev. 2011, 22, 551–564. [Google Scholar] [CrossRef]
- Ghoraba, S. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alex. Eng. J. 2015, 54, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Xu, H.; Xu, Z. Model calibration and uncertainty analysis for runoff in the Chao River Basin using sequential uncertainty fitting. Procedia Environ. Sci. 2012, 13, 1760–1770. [Google Scholar] [CrossRef] [Green Version]
- Gebremicael, T.; Mohamed, Y.; Betrie, G.; van der Zaag, P.; Teferi, E. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and land use maps. J. Hydrol. 2013, 482, 57–68. [Google Scholar] [CrossRef]
- Dila, Y.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
- Gyamfi, C.; Ndambuki, J.; Salim, R. Hydrological responses to land use/cover changes in the Olifants basin, South Africa. Water 2016, 8, 588. [Google Scholar] [CrossRef]
- Khalid, K.; Ali, M.; Rahman, N.; Mispan, M.; Haron, S.; Othman, Z.; Bachok, M. Sensitivity analysis in the watershed model using SUFI-2 algorithm. Proc. Eng. 2016, 162, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Tekalegn, A.; Elagib, N.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar]
- Abbaspour, K. SWAT-CUP, 2012: SWAT Calibration and Uncertainty Programs. A User Manual. 2013. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 27 May 2019).
- Begou, J.; Jomaa, S.; Benabdallah, S.; Bazie, P.; Afouda, A.; Rode, M. Multi-site validation of the SWAT model on the Bani catchment: Model performance and predictive uncertainty. Water 2016, 8, 178. [Google Scholar] [CrossRef]
- Narsimlu, B.; Gosain, A.; Chahar, B.; Singh, S.; Srivastava, P. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environ. Process. 2015, 2, 79–95. [Google Scholar] [CrossRef]
- Arnold, J.; Moriasi, D.; Gassman, P.; Abbaspour, K.; White, M.; Srinivasan, R.; Santhi, C.; Harmel, R.; van Griensven, A.; Van Liew, M.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Lijalem, Z.; Roehrig, J.; Dilnesaw, A. Calibration and validation of SWAT hydrologic model for Meki watershed, Ethiopia. In Proceedings of the Conference on International Agricultural Research for Development, University of Kassel-Witzenhausen and University of Göttingen, Witzenhausen, Germany, 9–11 October 2007. [Google Scholar]
- Vilaysane, B.; Takara, K.; Luo, P.; Akkharath, I.; Duan, W. Hydrological streamflow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. Procedia Environ. Sci. 2015, 28, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liu, Y.; Guo, H.; He, D. Combining the SWAT model with sequential uncertainty fitting algorithm for streamflow prediction and uncertainty analysis for the Lake Dianchi Basin, China. Hydrol. Process. 2014, 28, 521–533. [Google Scholar] [CrossRef]
- Khalid, K.; Ali, M.F.; Rahman, N.F.A.; Mispan, M.R.; Haron, S.H.; Othman, Z.; Bachok, M.F. Sensitivity analysis in watershed model using SUFI-2 algorithm. Procedia Eng. 2016, 162, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Abdi, H. Partial least square regression (PLS regression). In Encyclopedia of Measurement and Statistics; Salkind, N.J., Ed.; Sage Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). WIREs Comput. Stat. 2010, 2, 97–106. [Google Scholar] [CrossRef]
- Abdi, H.; Bastien, P.; Vinzi, V.; Tenenhaus, M.; Carrascal, L.; Galván, I.; Eriksson, L. Partial least squares regression and projection on latent structure regression. Chemom. Intell. Lab. Syst. 2014, 2, 3925–3942. [Google Scholar] [CrossRef]
- Carrascal, L.; Galván, I.; Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 2009, 118, 681–690. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, WA, USA, 1976.
- Carletta, J. Assessing agreement on classification tasks: The kappa statistic. Comput. Linguist. 1996, 22, 249–254. [Google Scholar]
- Singh, S.K.; Mustak, S.K.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting spatial and decadal LULC changes through Cellular Automata Markov Chain models using earth observation datasets and geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Mosammam, H.; Nia, J.; Khani, H.; Teymouri, A.; Kazem, M. Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. Egypt J. Remote Sens. Space Sci. 2016, 20, 103–116. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool theoretical documentation, version 2009. In Texas Water Resources Institute Technical Report No. 406; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Dickens, C. Critical Analysis of Environmental Flow Assessments of Selected Rivers of Tanzania and Kenya; Vii+104, Pages; IUCN ESARO office and Scottsville: Nairobi, Kenya; INR: Scottsville, South Africa, 2011. [Google Scholar]
- Anderson, E.P.; GLOWS-FIU. Wami River Sub-Basin: Environmental Flow Assessment Phase II. In Global Water for Sustainability Program; GLOWS-FIU: North Miami, FL, USA, 2014. [Google Scholar]
- Seeteram, N.A.; Hyera, P.T.; Kaaya, L.T.; Lalika, M.C.S.; Anderson, E.P. Conserving Rivers and Their Biodiversity in Tanzania. Water 2019, 11, 2612. [Google Scholar] [CrossRef] [Green Version]
- Maksimovic, C.; Kurian, M.; Ardakanian, R. Rethinking Infrastructure for Multi-use Water Services; Springer Briefs-UNU: Dordrecht, The Netherlands, 2015; pp. 27–68. [Google Scholar]
- Morán-Tejeda, E.; Zabalza, J.; Rahman, K.; Gago-Silva, A.; López-Moreno, J.I.; Vicente-Serrano, S.; Beniston, M. Hydrological impacts of climate and land-use changes in a mountain watershed: Uncertainty estimation based on model comparison. Ecohydrology 2014, 8, 1396–1416. [Google Scholar] [CrossRef]
- Mondal, M.S.H. The implications of population growth and climate change on sustainable development in Bangladesh. Jàmbá J. Disaster Risk Stud. 2019, 11, a535. [Google Scholar]
- FAO. Sustainable Land Management (SLM) in practice in the Kagera Basin. In Lessons Learned for Scaling up at Landscape Level-Results of the Kagera Transboundary Agro-Ecosystem Management Project (Kagera TAMP); Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
Year | Satellite | Sensor | Path/Row | Resolution (m) | Acquisition Date | Cloud Cover |
---|---|---|---|---|---|---|
2000 | Landsat 5 | TM | 168/64 | 30 | 10 October 2000 | 1% |
Landsat 5 | TM | 168/65 | 30 | 10 October 2000 | 4% | |
Landsat 5 | TM | 166/64 | 30 | 21 January 1997 | 12% | |
Landsat 7 | ETM | 167/64 | 30 | 07 July 2000 | 5% | |
Landsat 7 | ETM | 167/65 | 30 | 07 July 2000 | 2% | |
2016 | Landsat 8 | OLI | 168/64 | 30 | 22 October 2016 | 0.06% |
Landsat 8 | OLI | 168/65 | 30 | 22 October 2016 | 0.07% | |
Landsat 8 | OLI | 167/64 | 30 | 16 September 2017 | 1.92% | |
Landsat 8 | OLI | 167/65 | 30 | 16 September 2016 | 2.42% | |
Landsat 8 | OLI | 166/64 | 30 | 26 January 2016 | 17.44% (not in the study area) |
Class | Descriptions |
---|---|
Bushland | Mainly comprised of plants that are multi-stemmed from a single root base. |
Woodland | An assemblage of trees with canopy ranging from 20–80% but which may, on rare occasions, be closed entirely. |
Wetland | Low-lying, uncultivated ground where water collects; a bog or marsh. |
Cultivated land | Crop fields and fallow lands. |
Built-up area | Residential, commercial, industrial, transportation, roads, and mixed urban. |
Grassland | Mainly composed of grass. |
Natural forest | A continuous stand of trees, many of which may attain a height of 50 m; includes natural forest, mangroves, and plantation forests. |
Water | River, open water, lakes, ponds, and reservoirs. |
2000 | 2016 | |||
---|---|---|---|---|
Land Use | PA | UA | UA | PA |
Natural Forest | 98.68 | 94.46 | 98.59 | 99.18 |
Woodland | 86.05 | 95.07 | 98.68 | 99.53 |
Bushland | 89.16 | 84.95 | 99.19 | 98.53 |
Grassland | 98.47 | 89.66 | 99.40 | 97.62 |
Water | 100 | 99.68 | 100 | 100 |
Wetland | 95.26 | 90.29 | 99.33 | 95.68 |
Cultivated land | 87.13 | 92.10 | 99.10 | 99.72 |
Built-up area | 98.35 | 99.01 | 97.03 | 98.56 |
Overall Accuracy (%) | 91.87 | 99.01 | ||
Kappa coefficient | 0.90 | 0.99 |
Year | 2000 | 2016 | 2032 | Rate of Change | |||
---|---|---|---|---|---|---|---|
Land Use | Area (km2) | % | Area (km2) | % | Area (km2) | % | (km2/year) |
Natural forest | 2892.40 | 6.99 | 863.63 | 2.09 | 424.05 | 1.02 | −126.80 |
Woodland | 8252.20 | 19.93 | 3903.58 | 9.43 | 2676.77 | 6.46 | −310.62 |
Bushland | 18,416.20 | 44.48 | 19,529.85 | 47.17 | 18,393.29 | 44.42 | 79.55 |
Grassland | 2376.24 | 5.74 | 5901.68 | 14.25 | 7990.64 | 19.30 | 251.82 |
Water | 76.88 | 0.19 | 8.46 | 0.02 | 7.23 | 0.019 | −4.89 |
Wetland | 1491.62 | 3.50 | 223.35 | 0.54 | 193.19 | 0.47 | −90.59 |
Cultivated land | 7891.65 | 19.05 | 10,907.99 | 26.34 | 11,603.20 | 28.02 | 215.45 |
Built-up area | 8.81 | 0.02 | 67.46 | 0.16 | 117.63 | 0.28 | 4.19 |
Total | 41406 | 100 | 41406 | 100 | 41406 | 100 |
Land Use | 2000–2016 | 2016–2032 | ||
---|---|---|---|---|
Area Change(km2) | % | Area Change (km2) | % | |
Natural forest | −2028.77 | −4.90% | −439.58 | −1.07% |
Woodland | −4348.62 | −10.50% | −1226.81 | −2.97% |
Bushland | 1113.65 | +2.69% | −1136.56 | −2.75% |
Grassland | 3525.44 | +8.51% | 2088.96 | +5.05% |
Water | −68.42 | 0.17% | 1.23 | −0.001% |
Wetland | −1268.27 | −2.96% | −30.16 | −0.07% |
Cultivated land | 3016.34 | +7.29% | 695.21 | +1.68% |
Built-up area | 58.65 | +0.14% | 50.17 | +0.12% |
Rank | Parameter | Parameter Definition | Min | Max | Fitted Value |
---|---|---|---|---|---|
1 | R_CN2.mgt | SCS runoff curve number | −0.3 | 0.3 | −0.023000 |
2 | SOL_AWC.sol | Available water capacity of the soil layer | −0.8 | 0.8 | 0.210667 |
3 | V_GW_DELAY.gw | Groundwater delay | 0 | 600 | 109.000000 |
4 | V_ALPHA_BF.gw | Baseflow alpha factor | 0 | 1.011 | 0.652095 |
5 | GWQWN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur | 0 | 2000 | 1730.000000 |
6 | ESCO.hru | Soil evaporation compensation factor | 0 | 1 | 0.711667 |
Period | Average Monthly Flow(m3/s) | Evaluated Statistics | |||||
---|---|---|---|---|---|---|---|
Observed | Simulated | NSE | RSR | PBIAS | R2 | ||
Jan 2000–Dec 2006 | Calibration | 158.14 | 150.30 | 0.71 | 0.59 | 5.0 | 0.93 |
Jan 2007–April 2012 | Validation | 176.84 | 168.10 | 0.65 | 0.54 | 4.9 | 0.83 |
Hydrological Component | 2000 | 2016 | 2032 | 2000–2016 | 2016–2032 |
---|---|---|---|---|---|
Surface runoff (mm) | 64.61 | 68.84 | 71.26 | +4.23 | +2.42 |
Groundwater flow (mm) | 87.45 | 86.76 | 85.24 | –0.69 | –1.52 |
Evapotranspiration (mm) | 511.8 | 508.7 | 507.6 | –3.1 | –1.1 |
Water yield (mm) | 168.38 | 171.63 | 172.77 | +3.25 | +1.14 |
Variable | NF | WL | BL | GL | WT | WTL | CL | BLT | SUR_Q | GW_Q | ET | WYLD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NF | 1.000 | |||||||||||
WL | 0.999 | 1.000 | ||||||||||
BL | −0.329 | −0.289 | 1.000 | |||||||||
GL | −0.978 | −0.986 | 0.127 | 1.000 | ||||||||
WT | 0.986 | 0.978 | −0.483 | −0.930 | 1.000 | |||||||
WTL | 0.989 | 0.982 | −0.466 | −0.937 | 1.000 | 1.000 | ||||||
CL | −1.000 | −0.999 | 0.322 | 0.980 | −0.984 | −0.988 | 1.000 | |||||
BLT | −0.952 | −0.964 | 0.025 | 0.995 | −0.887 | −0.897 | 0.955 | 1.000 | ||||
SUR_Q | −0.980 | −0.988 | 0.136 | 1.000 | −0.933 | −0.940 | 0.982 | 0.994 | 1.000 | |||
GW_Q | 0.843 | 0.865 | 0.231 | −0.936 | 0.740 | 0.754 | −0.847 | −0.967 | −0.933 | 1.000 | ||
ET | 0.996 | 0.999 | −0.247 | −0.993 | 0.968 | 0.973 | −0.997 | −0.975 | −0.994 | 0.886 | 1.000 | |
WYLD | −0.996 | −0.999 | 0.249 | 0.992 | −0.968 | −0.973 | 0.997 | 0.975 | 0.993 | −0.885 | −0.986 | 1.000 |
Response Variable Y | Variation in Response | Q2 | Component | Explained Variability in Y (%) | Cumulative Explained Variability in Y (%) | Root Mean PRESS | Q2 cum |
---|---|---|---|---|---|---|---|
Hydrological components(SURQ, GWQ, ET, WYLD) | 0.975 | 0.916 | 1 | 95.1 | 95.1 | 0.216 | 0.955 |
2 | 3.1 | 98.2 | 0.342 | 0.988 | |||
3 | 1.6 | 99.8 | 0.446 | 0.992 | |||
4 | 0.2 | 100 | 0.672 | 0.995 |
Hydrological Components (SURQ, GWQ, ET & WYLD) | ||||
---|---|---|---|---|
VIP | W*1 | W*2 | W*3 | |
Natural forest | 1.074 | −0.380 | 0.307 | 0.909 |
Woodland | 1.083 | −0.383 | 0.349 | 0.360 |
Bushland | 0.126 | −0.045 | 0.909 | 0.389 |
Grassland | 1.100 | 0.219 | −0.015 | −0.462 |
Water | 1.018 | −0.360 | 0.455 | 0.427 |
Wetland | 1.026 | −0.363 | 0.436 | 0.431 |
Cultivated land | 1.076 | 0.380 | −0.407 | −0.452 |
Built-up area | 1.096 | 0.387 | −0.302 | −0.460 |
Model | Variable | NR | WL | BL | GL | WT | WL | CL | BT |
---|---|---|---|---|---|---|---|---|---|
PLSR 1 | SURQ | −0.980 | −0.988 | −0.136 | −1.000 | −0.933 | −0.940 | 0.982 | 0.994 |
GWQ | 0.843 | 0.865 | 0.231 | 0.936 | 0.740 | 0.754 | −0.847 | −0.967 | |
ET | 0.996 | 0.999 | 0.247 | 0.993 | 0.968 | 0.973 | −0.997 | −0.975 | |
WYLD | −0.996 | −0.999 | −0.249 | −0.992 | −0.968 | −0.973 | 0.997 | 0.975 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Twisa, S.; Kazumba, S.; Kurian, M.; Buchroithner, M.F. Evaluating and Predicting the Effects of Land Use Changes on Hydrology in Wami River Basin, Tanzania. Hydrology 2020, 7, 17. https://doi.org/10.3390/hydrology7010017
Twisa S, Kazumba S, Kurian M, Buchroithner MF. Evaluating and Predicting the Effects of Land Use Changes on Hydrology in Wami River Basin, Tanzania. Hydrology. 2020; 7(1):17. https://doi.org/10.3390/hydrology7010017
Chicago/Turabian StyleTwisa, Sekela, Shija Kazumba, Mathew Kurian, and Manfred F. Buchroithner. 2020. "Evaluating and Predicting the Effects of Land Use Changes on Hydrology in Wami River Basin, Tanzania" Hydrology 7, no. 1: 17. https://doi.org/10.3390/hydrology7010017
APA StyleTwisa, S., Kazumba, S., Kurian, M., & Buchroithner, M. F. (2020). Evaluating and Predicting the Effects of Land Use Changes on Hydrology in Wami River Basin, Tanzania. Hydrology, 7(1), 17. https://doi.org/10.3390/hydrology7010017