Future Changes in Water Supply and Demand for Las Vegas Valley: A System Dynamic Approach based on CMIP3 and CMIP5 Climate Projections
Abstract
:1. Introduction
- Determining the probable future water supply scenarios in the LVV (in terms of Lake Mead elevation) using climate and hydrological simulation models from multiple GCMs.
- Obtaining future water demand for the LVV under changing climate with the growing population and comparing the demand forecast with the 2009 Conservation Goals set by the SNWA for 2035.
- Evaluating the reliability of the supply system of Lake Mead for the LVV in the coming decades.
2. System Dynamics (SD) Modeling
3. Study Area
4. Materials and Methods
4.1. Modeling
4.1.1. Climate and Hydrological Projections Data Sector
4.1.2. Lake Powell Operation Sector
- Equalization of Lake Mead and Lake Powell based on active storage of both reservoirs: An additional release for the LCRB above the mandatory release was provided if the available storage was found to be enough after equalization. An additional release was limited to 11.1 BCM/year. The percentage in the volume of Lake Mead and Lake Powell was equalized at each simulation month.
4.1.3. Lake Mead Operation with SNWA Supply Sector
4.1.4. Demand Sector
4.2. Model Calibration and Validation
4.3. Future Simulation
4.4. Evaluation of Model Performance
4.5. Reliability Analysis
5. Data and Model Simulations
5.1. Climate and Hydrological Model Outputs
5.2. Reservoir Data
5.3. Basin State Water Use Data
5.4. Naturalized Stream Runoff
5.5. Population Data
5.6. Other Data
6. Results
6.1. Model Validation
6.1.1. Total Water Demand
6.1.2. Lake Mead Elevation
6.2. Future Simulation
6.2.1. Total Water Demand
6.2.2. Lake Mead Elevation
6.3. Reliability
7. Discussion
8. Conclusions
- The total water demand for the LVV for the year 2049 was estimated to be approximately 972 MCM (788,823 ac-ft) if the conservation programs used in the study make the assumed savings in the future and the forecast of population growth by CBER holds true. Water demand for the year 2035 was predicted to be approximately 869 MCM (704,562 ac-ft), which is less than the demand obtained by SNWA with conservation goals in 2009. This suggests that SNWA can achieve its conservation goal if these conservation programs continue to have the same effect in the future and the population rises as predicted by CBER.
- The main governing factor for changes in water demand was population. The rate of increase in water demand gradually decreased in the future as population growth rate was forecasted to do the same.
- The simulated future mean of Lake Mead elevation (2013-2049) can go up to 21.8% below the observed historical mean Lake Mead elevation (1989-2012). Out of the total 145 projections of climate models (from both CMIP3 and CMIP5), 44 projections predicted that the future mean elevation could go below 304.8 m (1000 ft), while 82 projections predicted that it could go below the historical mean elevation. The number of projections suggesting a drop in elevation in the future was only marginally higher than that of those suggesting otherwise. Hence, there is no definite consensus among these projections as to whether the lake level will drop in the future or not.
- Fifty-nine (27) out of the total 97 (48) climate and hydrological projections from the CMIP3 (CMIP5) model ensembles predicted the future mean Lake Mead level dropping below the historical mean level.
- Future mean lake level going below the historical mean is more likely for the emission scenario A1b (RCP 6.0) than the others in the CMIP3 (CMIP5) model ensembles.
- Mean reliabilities of water supply from Lake Mead to LVV for the future period were obtained to be the highest with the B1 emission scenario (lower carbon emission path) and to be the lowest with the A1b emission scenario (intermediate carbon emission path), among the CMIP3 model ensembles. With the CMIP5 model ensembles, mean reliabilities were found to be the highest with RCP 8.5 (highest GHG emission scenario) and to be the lowest with RCP 6.0 (intermediate GHG emission scenario).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Residential Indoor Demand
Appendix A.2. Residential Outdoor Demand
Appendix A.3. Tourist Demand
Appendix A.4. Golf Course Demand
Appendix A.5. Swimming Pool Demand
Appendix A.6. Other Demands
References
- Middelkoop, H.; Daamen, K.; Gellens, D.; Grabs, W.; Kwadijk, J.C.; Lang, H.; Parmet, B.W.; Schädler, B.; Schulla, J.; Wilke, K. Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim. Chang. 2001, 49, 105–128. [Google Scholar] [CrossRef]
- Tortajada, C.; Biswas, A.K. The rapidly changing global water management landscape. Int. J. Water Resour. Dev. 2017, 33, 849–852. [Google Scholar] [CrossRef]
- Brekke, L.D.; Miller, N.L.; Bashford, K.E.; Quinn, N.W.; Dracup, J.A. Climate change impacts uncertainty for water resources in the San Joaquin River Basin, California1. J. Am. Water Resour. Assoc. 2004, 40, 149–164. [Google Scholar] [CrossRef]
- Nyaupane, N.; Thakur, B.; Kalra, A.; Ahmad, S. Evaluating Future Flood Scenarios Using CMIP5 Climate Projections. Water 2018, 10, 1866. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.; Kalra, A.; Miller, W.P.; Lamb, K.W.; Lakshmi, V.; Tootle, G. Linkage between ENSO Phases and western US Snow Water Equivalent. Atmos. Res. 2020, 236, 104827. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Bernardez, M.; Ahmad, S. Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy. Water 2019, 11, 189. [Google Scholar] [CrossRef] [Green Version]
- US Environmental Protection Agency (USEPA). Climate Change Indicators: U.S. and Global Temperature. 2015. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-us-and-global-temperature (accessed on 17 March 2017).
- Ragab, R.; Prudhomme, C. Sw—soil and Water: Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosyst. Eng. 2002, 81, 3–34. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Chiew, F.H. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Vandewiele, G. Parsimonious monthly rainfall-runoff models for humid basins with different input requirements. Adv. Water Resour. 1995, 18, 39–48. [Google Scholar] [CrossRef]
- Brekke, L.D. Climate Change and Water Resources Management: A Federal Perspective; DIANE Publishing: Darby, PA, USA, 2009. [Google Scholar]
- Thakur, B.; Kalra, A.; Ahmad, S.; Lamb, K.W.; Lakshmi, V. Bringing statistical learning machines together for hydro-climatological predictions-Case study for Sacramento San joaquin River Basin, California. J. Hydrol. Reg. Stud. 2020, 27, 100651. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Ahmad, S. Spatiotemporal variation in the continental US streamflow in association with large-scale climate signals across multiple spectral bands. Water Res. Manag. 2019, 33, 1947–1968. [Google Scholar] [CrossRef]
- Joshi, N.; Bista, A.; Pokhrel, I.; Kalra, A.; Ahmad, S. Rainfall-Runoff Simulation in Cache River Basin, Illinois, Using HEC-HMS. In Proceedings of the World Environmental and Water Resources Congress: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management, Pittsburgh, PA, USA, 19–23 May 2019. [Google Scholar]
- SNWA. Water Resource Plan 2015; Southern Nevada Water Authority: Las Vegas, NV, USA, 2015.
- Christensen, N.; Lettenmaier, D.P. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol. Earth Syst. Sci. 2006, 3, 3727–3770. [Google Scholar] [CrossRef] [Green Version]
- Dawadi, S.; Ahmad, S. Changing climatic conditions in the Colorado River Basin: Implications for water resources management. J. Hydrol. 2012, 430, 127–141. [Google Scholar] [CrossRef]
- Mehran, A.; AghaKouchak, A.; Nakhjiri, N.; Stewardson, M.J.; Peel, M.C.; Phillips, T.J.; Ravalico, J.K. Compounding impacts of human-induced water stress and climate change on water availability. Sci. Rep. Nat. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, N.; Dongol, R. Severity of climate induced drought and its impact on migration: A study of Ramechhap District, Nepal. Trop. Agri. Res. 2018, 29, 194–211. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophy. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geogr. Compass 2010, 4, 834–860. [Google Scholar] [CrossRef] [Green Version]
- Varis, O.; Kajander, T.; Lemmelä, R. Climate and water: From climate models to water resources management and vice versa. Clim. Chan. 2004, 66, 321–344. [Google Scholar] [CrossRef]
- Casanueva, A.; Herrera, S.; Fernández, J.; Gutiérrez, J.M. Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative. Clim. Chan. 2016, 137, 411–426. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Pierce, D.W.; Cayan, D.R.; Maurer, E.P.; Abatzoglou, J.T.; Hegewisch, K.C. Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeo. 2015, 16, 2421–2442. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Maraun, D.; Widmann, M.; Huth, R.; Hertig, E.; Benestad, R.; San Martín, D. An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment. Int. J. Climatol. 2018, 39, 3750–3785. [Google Scholar] [CrossRef]
- Cioffi, F.; Conticello, F.; Lall, U.; Marotta, L.; Telesca, V. Large scale climate and rainfall seasonality in a Mediterranean Area: Insights from a non-homogeneous Markov model applied to the Agro-Pontino plain. Hydrol. Proces. 2017, 31, 668–686. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophy. Res. 2016, 121, 2110–2129. [Google Scholar] [CrossRef] [Green Version]
- Ayar, P.V.; Vrac, M.; Bastin, S.; Carreau, J.; Déqué, M.; Gallardo, C. Intercomparison of statistical and dynamical downscaling models under the EURO-and MED-CORDEX initiative framework: Present climate evaluations. Clim. Dyn. 2016, 46, 1301–1329. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Simonovic, S.P. System dynamics modeling of reservoir operations for flood management. J. Comput. Civil Eng. 2000, 14, 190–198. [Google Scholar] [CrossRef]
- Shrestha, E.; Ahmad, S.; Johnson, W.; Batista, J.R. The carbon footprint of water management policy options. Energy Policy 2012, 42, 201–212. [Google Scholar] [CrossRef]
- Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for A Complex World; Irwin/McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Mirchi, A.; Madani, K.; Watkins, D.; Ahmad, S. Synthesis of system dynamics tools for holistic conceptualization of water resources problems. Water Resour. Manag. 2012, 26, 2421–2442. [Google Scholar] [CrossRef]
- Winz, I.; Brierley, G.; Trowsdale, S. The use of system dynamics simulation in water resources management. Water Resour. Manag. 2009, 23, 1301–1323. [Google Scholar] [CrossRef]
- Stave, K.A. A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. J. Environ. Manag. 2003, 67, 303–313. [Google Scholar] [CrossRef]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J. Evaluating the impact of water conservation on fate of outdoor water use: A study in an arid region. J. Environ. Manag. 2011, 92, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Prashar, D. Evaluating municipal water conservation policies using a dynamic simulation model. Water Resour. Manag. 2010, 24, 3371–3395. [Google Scholar] [CrossRef]
- Dawadi, S.; Ahmad, S. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. J. Environ. Manag. 2013, 114, 261–275. [Google Scholar] [CrossRef]
- Brekke, L.; Thrasher, B.; Maurer, E.; Pruitt, T. Downscaled CMIP3 and CMIP5 Hydrology Projections: Release of Hydrology Projections, Comparison With Preceding Information, and Summary of User Needs; US Department of the Interior-Bureau of Reclamation: Denver, CO, USA, 2014.
- Ficklin, D.L.; Stewart, I.T.; Maurer, E.P. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin. PLoS ONE 2013, 8, e71297. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Miao, C.; Duan, Q. Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 4806–4824. [Google Scholar] [CrossRef]
- US Census Bureau (USCB). QuickFacts Clark County, Nevada. 2015. Available online: https://www.census.gov/quickfacts/clarkcountynevada (accessed on 18 January 2016).
- Gorelow, A.S.; Skrbc, P. Climate of Las Vegas, Nevada; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2005.
- SNWA. Water Resources Plan 2009; Southern Nevada Water Authority: Las Vegas, NV, USA, 2009.
- SNWA. Water Conservation Plan 2014–2018; Southern Nevada Water Authority: Las Vegas, NV, USA, 2014.
- Ford, F.A. Modeling the Environment: An Introduction to System Dynamics Models of Environmental Systems; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Forrester, J.W. System dynamics, systems thinking, and soft OR. Syst. Dyn. Rev. 1994, 10, 245–256. [Google Scholar] [CrossRef]
- Christensen, N.S.; Wood, A.W.; Voisin, N.; Lettenmaier, D.P.; Palmer, R.N. The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim. Chang. 2004, 62, 337–363. [Google Scholar] [CrossRef]
- Nash, L.L.; Gleick, P.H. The Colorado River Basin and Climatic Change: The Sensitivity of Streamflow and Water Supply to Variations in Temperature and Precipitation; US Environmental Protection Agency, Office of Policy, Planning, and Evaluation: Oakland, CA, USA, 1993.
- US Bureau of Reclamation (USBR). Colorado River Simulation System: System Overview. 1985. Available online: http://www.usbr.gov/lc/region/programs/strategies/FEIS/index.html (accessed on 3 August 2017).
- US Bureau of Reclamation (USBR). Record of Decision, Colorado River Interim Guidelines for Lower Basin Shortages and the Coordinated Operation for Lake Powell and Lake Mead; US Department of Interior-Bureau of Reclamation: Sacramento, CA, USA, 2007.
- Center for Business and Economic Research (CBER). Population Forecasts: Long-Term Projections for Clark County; University of Nevada: Las Vegas, NV, USA, 2015. [Google Scholar]
- Colby, B.G.; Jacobs, K.L. Arizona Water Policy: Management Innovations in an Urbanizing, Arid Region; Routledge: Washington, DC, USA, 2007. [Google Scholar]
- CSU. Integrated Water Resources Plan: Final Report. Colorado Springs Utilities. USA. 2017. Available online: https://www.csu.org/CSUDocuments/iwrpreportfinal.pdf (accessed on 8 February 2020).
- Zongxue, X.; Jinno, K.; Kawamura, A.; Takesaki, S.; Ito, K. Performance risk analysis for Fukuoka water supply system. Water Res. Manag. 1998, 12, 13–30. [Google Scholar] [CrossRef]
- US Bureau of Reclamation (USBR). Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections. 2013. Available online: http://gdo-dcp.ucllnl.org (accessed on 15 December 2016).
- US Bureau of Reclamation (USBR). Lake Mead at Hoover Dam, Elevation. 2016. Available online: http://www.usbr.gov/lc/region/g4000/hourly/mead-elv.html (accessed on 17 August 2017).
- US Bureau of Reclamation (USBR). Monthly Summary Report. 2016. Available online: http://www.usbr.gov/uc/water/rsvrs/ops/monthly_summaries/index.html (accessed on 17 August 2017).
- US Bureau of Reclamation (USBR). Upper Colorado River Basin Consumptive Uses and Losses Report; US Department of the Interior-Bureau of Reclamation: Denver, CO, USA, 2015.
- US Bureau of Reclamation (USBR). Natural Flow and Salt Computation Methods. 2012. Available online: http://www.usbr.gov/lc/region/g4000/NaturalFlow/documentation.html (accessed on 20 July 2017).
- Las Vegas Convention and Visitors Authority (LVCVA). Historical Las Vegas Visitor Statistics (1970–2016). 2016. Available online: http://www.lvcva.com/press/statistics-facts/index.jsp (accessed on 10 October 2017).
- Sovocool, K.; Morgan, M. Xeriscape Conversion Study Final Report; Southern Nevada Water Authority: Las Vegas, NV, USA, 2005.
- Clark County, Nevada (CCN). Area Wide Reuse Study Las Vegas Valley Study Area. 2000. Available online: http://www.accessclarkcounty.com/depts/daqem/epd/waterquality/Documents/AreaWideReuseStudy.pdf (accessed on 18 September 2017).
- US Bureau of Reclamation (USBR). Streamflow Data for the Virgin River and Little Colorado River. 2016. Available online: https://waterdata.usgs.gov/usa/nwis/ (accessed on 13 December 2017).
- Brekke, L.; Thrasher, B.; Maurer, E.; Pruitt, T. Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs; US Department of the Interior-Bureau of Reclamation: Denver, CO, USA, 2013.
- US Bureau of Reclamation (USBR). Lower Colorado River Water Accounting Report; US Department of the Interior-Bureau of Reclamation: Denver, CO, USA, 2015.
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Qaiser, K.; Ahmad, S.; Johnson, W.; Batista, J.R. Evaluating water conservation and reuse policies using a dynamic water balance model. Environ. Manag. 2013, 51, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.M.; Thakur, B.; Kalra, A.; Ahmad, S. Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin. Hydrology 2019, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, M.M.; Thakur, B.; Kalra, A.; Li, R.; Maheshwari, P. Estimating High-Resolution Groundwater Storage from GRACE: A Random Forest Approach. Environments 2019, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Brissette, F.P.; Leconte, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar] [CrossRef]
- Kendon, E.J.; Rowell, D.P.; Jones, R.G.; Buonomo, E. Robustness of future changes in local precipitation extremes. J. Clim. 2008, 21, 4280–4297. [Google Scholar] [CrossRef]
- Lin, M.; Huybers, P. Revisiting whether recent surface temperature trends agree with the CMIP5 ensemble. J. Clim. 2016, 29, 8673–8687. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Mathema. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting global climate models for regional climate change studies. Natio. Acad. Sci. 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [Green Version]
- Weigel, A.P.; Liniger, M.A.; Appenzeller, C. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? J. Atmos. Sci. 2008, 134, 241–260. [Google Scholar] [CrossRef]
- Hagedorn, R.; Doblas-Reyes, F.J.; Palmer, T.N. The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A. 2005, 57, 219–233. [Google Scholar] [CrossRef]
- Gharbia, S.S.; Gill, L.; Johnston, P.; Pilla, F. Multi-GCM ensembles performance for climate projection on a GIS platform. Modeling Earth Syst. Environ. 2016, 2, 102. [Google Scholar] [CrossRef] [Green Version]
- Yokohata, T.; Annan, J.D.; Collins, M.; Jackson, C.S.; Tobis, M.; Webb, M.J.; Hargreaves, J.C. Reliability of multi-model and structurally different single-model ensembles. Clim. Dyn. 2012, 39, 599–616. [Google Scholar] [CrossRef] [Green Version]
- Najafi, M.R.; Moradkhani, H. Ensemble combination of seasonal streamflow forecasts. J. Hydrolo. Eng. 2016, 21, 04015043. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Liu, R.; Chen, J.; Li, J.; Zhang, A.; Wang, G. A service-oriented architecture for ensemble flood forecast from numerical weather prediction. J. Hydrol. 2015, 527, 933–942. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef] [Green Version]
- Ahammed, S.J.; Homsi, R.; Khan, N.; Shahid, S.; Shiru, M.S.; Mohsenipour, M.; Yuzir, A. Assessment of changing pattern of crop water stress in Bangladesh. Environ. Dev. Sustain. 2019, 1–19. [Google Scholar] [CrossRef]
- Dai, A. Precipitation characteristics in eighteen coupled climate models. J. Clim. 2006, 19, 4605–4630. [Google Scholar] [CrossRef] [Green Version]
- Hohenegger, C.; Brockhaus, P.; Schär, C. Towards climate simulations at cloud-resolving scales. Meteorol. Z. 2008, 17, 383–394. [Google Scholar] [CrossRef]
- Stephens, G.L.; L’Ecuyer, T.; Forbes, R.; Gettelmen, A.; Golaz, J.C.; Bodas-Salcedo, A.; Haynes, J. Dreary state of precipitation in global models. J. Geophys. Res. 2010, 115, D24211. [Google Scholar] [CrossRef]
- Rasmussen, R.; Ikeda, K.; Liu, C.; Gochis, D.; Clark, M.; Dai, A.; Yates, D. Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor. 2014, 15, 1091–1116. [Google Scholar] [CrossRef]
- Pan, L.L.; Chen, S.H.; Cayan, D.; Lin, M.Y.; Hart, Q.; Zhang, M.H.; Wang, J. Influences of climate change on California and Nevada regions revealed by a high-resolution dynamical downscaling study. Clim. Dyn. 2011, 37, 2005–2020. [Google Scholar] [CrossRef] [Green Version]
- Kendon, E.J.; Ban, N.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Wilkinson, J.M. Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Am. Meteorol. Soc. 2017, 98, 79–93. [Google Scholar] [CrossRef]
- Warner, T.T. Numerical Weather and Climate Prediction; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Chaturvedi, R.K.; Joshi, J.; Jayaraman, M.; Bala, G.; Ravindranath, N.H. Multi-model climate change projections for India under representative concentration pathways. Curr. Sci. 2012, 103, 791–802. [Google Scholar]
- Hoerling, M.; Lettenmaier, D.; Cayan, D.; Udall, B. Reconciling projections of Colorado River streamflow. Southwest Hydrol. 2009, 8, 20–21. [Google Scholar]
SN | Data | Source |
---|---|---|
1 | Climate and Hydrological Projections Data | Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections [58] |
2 | Reservoir Data for Lake Powell and Lake Mead | US Department of Interior (USDOI) Bureau of Reclamation [59,60] |
3 | Basin States Water Use Data for Colorado River | USDOI Bureau of Reclamation [61] |
4 | Naturalized Streamflow Data | USBR [62] |
5 | Resident Population Data | SNWA [47] |
6 | Tourist Population Data in Las Vegas | Las Vegas Convention and Visitors Authority (LVCVA) [63] |
7 | No. of Houses Data in Clark County | Clark County Comprehensive Planning Department (CCCPD) |
8 | Turf Area in LVV | SNWA [46] |
9 | Swimming Pool Area in LVV and Conservation by Pool Covers | Sovocol and Morgan [64], SNWA [47] |
10 | Golf Course Area in LVV | Clark County Nevada (CCN) [65] |
11 | Price Elasticity of Demand in LVV | SNWA [47] |
12 | Groundwater Supply Data | SNWA [16] |
13 | Return Flow Credits Data | SNWA [16] |
14 | Flow Data for Virgin River and Little Colorado River | USBR [66] |
15 | Guidelines for Curtailment to Lower Basin States | USDOI [53] |
WCRP CMIP3 Climate Model ID | A1b | A2 | B1 | |||
---|---|---|---|---|---|---|
Simulated Future Mean Lake Mead Elevation (m) | Change from the Observed Historical Mean Lake Mead Elevation (%) | Simulated Future Mean Lake Mead Elevation (m) | Change from the Observed Historical Mean Lake Mead Elevation (%) | Simulated Future Mean Lake Mead Elevation (m) | Change from the Observed Historical Mean Lake Mead Elevation (%) | |
BCCR-BCM2.0 | 337.20 | −4.70 | 308.43 | −12.8 | 354.27 | 0.20 |
CGCM3.1 (T47) | 367.92 | 4.00 | 344.12 | −2.70 | 354.42 | 0.20 |
CNRM-CM3 | 288.46 | −18.4 | 360.09 | 1.80 | 340.22 | −3.80 |
CSIRO-Mk3.0 | 356.10 | 0.70 | 362.77 | 2.60 | 368.84 | 4.30 |
GFDL-CM2.0 | 295.23 | −16.5 | 316.44 | −10.5 | 341.19 | −3.50 |
GFDL-CM2.1 | 282.49 | −20.1 | 303.76 | −14.1 | 299.86 | −15.2 |
GISS-ER | 276.67 | −21.8 | 372.98 | 5.50 | 297.61 | −15.8 |
INM-CM3.0 | 276.67 | −21.8 | 372.56 | 5.30 | 367.86 | 4.00 |
IPSL-CM4 | 373.14 | 5.50 | 370.00 | 4.60 | 353.96 | 0.10 |
MIROC3.2 | 290.02 | −18.0 | 332.63 | −6.00 | 281.39 | −20.4 |
ECHO-G | 292.85 | −17.2 | 328.21 | −7.20 | 359.85 | 1.70 |
ECHAM5/MPI-OM | 282.24 | −20.2 | 297.58 | −15.9 | 326.20 | −7.80 |
MRI-CGCM2.3.2 | 373.26 | 5.50 | 373.50 | 5.60 | 363.53 | 2.80 |
CCSM3 | 291.39 | −17.6 | 281.33 | −20.5 | 319.92 | −9.50 |
PCM | 372.19 | 5.20 | 370.12 | 4.70 | 368.44 | 4.20 |
UKMO-HadCM3 | 299.07 | −15.4 | 294.99 | −16.6 | 362.96 | 2.60 |
WCRP CMIP5 Climate Model ID | Representative Concentration Pathways (RCPs) | |||||||
---|---|---|---|---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | |||||
Simulated Mean Elevation (m) | % Change | Simulated Mean Elevation (m) | % Change | Simulated Mean Elevation (m) | % Change | Simulated Mean Elevation (m) | % Change | |
ACCESS1-0 | - | - | 288.52 | −18.4 | - | - | 288.01 | −18.6 |
BCC-CSM1-1 | 276.67 | −21.8 | 370.70 | 4.8 | 276.67 | −21.8 | 363.50 | 2.8 |
BCC-CSM1-1-M | - | - | 295.14 | −16.5 | - | - | 283.95 | −19.7 |
CanESM2 | 353.81 | 0.0 | 337.41 | −4.6 | - | - | 335.92 | −5.0 |
CCSM4 | 278.98 | −21.1 | 310.32 | −12.3 | 315.50 | −10.8 | 361.83 | 2.3 |
CESM1-BGC | - | - | 319.28 | −9.7 | - | - | 296.39 | −16.2 |
CESM1-CAM5 | 367.44 | 3.9 | 372.34 | 5.3 | 317.36 | −10.3 | 306.48 | −13.3 |
CMCC-CM | - | - | 323.48 | −8.5 | - | - | 281.82 | −20.3 |
CNRM-CM5 | - | - | 371.52 | 5.0 | - | - | 372.40 | 5.3 |
CSIRO-Mk3-6-0 | 308.03 | −12.9 | 290.81 | −17.8 | 295.05 | −16.6 | 290.72 | −17.8 |
FGOALS-g2 | 367.83 | 4.0 | 349.33 | −1.2 | - | - | 345.58 | −2.3 |
FIO-ESM | 284.38 | −19.6 | 359.05 | 1.5 | 326.01 | −7.8 | 295.93 | −16.3 |
GFDL-CM3 | 368.50 | 4.2 | 348.23 | −1.5 | 296.78 | −16.1 | 344.15 | −2.7 |
GFDL-ESM2G | 331.84 | −6.2 | 332.38 | −6.0 | 372.83 | 5.4 | 371.43 | 5.0 |
GFDL-ESM2M | 360.12 | 1.8 | 372.25 | 5.3 | 341.44 | −3.5 | 368.17 | 4.1 |
GISS-E2-H-CC | - | - | - | - | 371.80 | 5.1 | - | - |
GISS-E2-R | - | - | - | - | 372.68 | 5.4 | - | - |
GISS-E2-R-CC | 313.73 | −11.3 | 366.00 | 3.5 | 361.74 | 2.3 | 371.49 | 5.0 |
HadGEM2-AO | 299.71 | −15.3 | 286.54 | −19.0 | 293.71 | −17.0 | 285.81 | −19.2 |
HadGEM2-CC | - | - | 308.88 | −12.7 | - | - | 308.88 | −12.7 |
HadGEM2-ES | 285.05 | −19.4 | 306.38 | −13.4 | 299.59 | −15.3 | 331.38 | −6.3 |
INM-CM4 | - | - | 366.19 | 3.5 | - | - | 359.85 | 1.8 |
IPSL-CM5A-MR | 373.23 | 5.5 | 370.09 | 4.6 | 363.72 | 2.8 | 357.44 | 1.1 |
IPSL-CM5B-LR | - | - | 315.83 | −10.7 | - | - | 362.89 | 2.6 |
MIROC-ESM | 368.99 | 4.3 | 371.46 | 5.0 | 370.36 | 4.7 | 364.24 | 3.0 |
MIROC-ESMCHEM | 352.50 | −0.3 | 292.27 | -17.4 | 367.74 | 4.0 | 347.41 | −1.8 |
MIROC5 | 368.26 | 4.1 | 288.86 | −18.3 | 329.31 | −6.9 | 368.23 | 4.1 |
MPI-ESM-LR | 297.33 | −15.9 | - | - | 277.95 | −21.4 | 315.22 | −10.9 |
MPI-ESM-MR | 371.92 | 5.2 | 347.01 | −1.9 | - | - | 372.53 | 5.3 |
MRI-CGCM3 | 351.92 | −0.5 | 315.89 | −10.7 | - | - | 302.70 | −14.4 |
NorESM1-M | 325.40 | −8.0 | 323.15 | −8.6 | 288.31 | −18.5 | 357.90 | 1.2 |
WCRP CMIP3 Climate Model ID | Reliability | ||
---|---|---|---|
A1b | A2 | B1 | |
BCCR-BCM2.0 | 0.68 | 0.42 | 0.78 |
CGCM3.1 (T47) | 1.00 | 0.68 | 1.00 |
CNRM-CM3 | 0.21 | 0.93 | 0.94 |
CSIRO-Mk3.0 | 1.00 | 1.00 | 1.00 |
GFDL-CM2.0 | 0.25 | 0.47 | 0.79 |
GFDL-CM2.1 | 0.09 | 0.34 | 0.31 |
GISS-ER | 0.04 | 1.00 | 0.09 |
INM-CM3.0 | 0.04 | 1.00 | 1.00 |
IPSL-CM4 | 1.00 | 1.00 | 0.98 |
MIROC3.2 | 0.08 | 0.66 | 0.09 |
ECHO-G | 0.22 | 0.60 | 1.00 |
ECHAM5/ MPI-OM | 0.09 | 0.17 | 0.53 |
MRI-CGCM2.3.2 | 1.00 | 1.00 | 0.86 |
CCSM3 | 0.18 | 0.09 | 0.60 |
PCM | 1.00 | 1.00 | 1.00 |
UKMO-HadCM3 | 0.31 | 0.24 | 1.00 |
Mean | 0.45 | 0.66 | 0.75 |
WCRP CMIP5 Climate Model ID | Reliability | |||
---|---|---|---|---|
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 | |
ACCESS1-0 | - | 0.20 | - | 0.18 |
BCC-CSM1-1 | - | 0.25 | - | 0.10 |
BCC-CSM1-1-M | 0.04 | 1.00 | 0.04 | 1.00 |
CanESM2 | 0.70 | 0.70 | - | 0.82 |
CCSM4 | 0.07 | 0.35 | 0.55 | 0.94 |
CESM1-BGC | - | 0.46 | - | 0.28 |
CESM1-CAM5 | 1.00 | 1.00 | 0.34 | 0.28 |
CMCC-CM | - | 0.70 | - | 0.11 |
CNRM-CM5 | - | 1.00 | - | 1.00 |
CSIRO-Mk3-6-0 | 0.45 | 0.22 | 0.11 | 0.20 |
FGOALS-g2 | 1.00 | - | 0.90 | 0.91 |
FIO-ESM | 0.14 | 0.93 | 0.35 | 0.18 |
GFDL-CM3 | 1.00 | 0.73 | 0.20 | 0.74 |
GFDL-ESM2G | 0.55 | 0.67 | 1.00 | 1.00 |
GFDL-ESM2M | 1.00 | 1.00 | 0.70 | 1.00 |
GISS-E2-H-CC | - | 1.00 | - | - |
GISS-E2-R | 0.33 | 1.00 | 1.00 | 1.00 |
GISS-E2-R-CC | - | 1.00 | - | - |
HadGEM2-AO | 0.14 | 0.17 | 0.28 | 0.16 |
HadGEM2-CC | - | 0.22 | - | 0.22 |
HadGEM2-ES | 0.17 | 0.38 | 0.33 | 0.65 |
INM-CM4 | - | 1.00 | - | 0.95 |
IPSL-CM5A-MR | 1.00 | 1.00 | 1.00 | 0.89 |
IPSL-CM5B-LR | - | 0.36 | - | 1.00 |
MIROC-ESM | 1.00 | 1.00 | 1.00 | 1.00 |
MIROC-ESMCHEM | 0.96 | 0.24 | 1.00 | 0.98 |
MIROC5 | 1.00 | 0.17 | 0.63 | 1.00 |
MPI-ESM-LR | 0.17 | 0.06 | - | 0.38 |
MPI-ESM-MR | 1.00 | 0.89 | - | 1.00 |
MRI-CGCM3 | 1.00 | 0.48 | - | 0.31 |
NorESM1-M | 0.49 | 0.51 | 0.20 | 0.89 |
Mean | 0.63 | 0.62 | 0.57 | 0.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, N.; Tamaddun, K.; Parajuli, R.; Kalra, A.; Maheshwari, P.; Mastino, L.; Velotta, M. Future Changes in Water Supply and Demand for Las Vegas Valley: A System Dynamic Approach based on CMIP3 and CMIP5 Climate Projections. Hydrology 2020, 7, 16. https://doi.org/10.3390/hydrology7010016
Joshi N, Tamaddun K, Parajuli R, Kalra A, Maheshwari P, Mastino L, Velotta M. Future Changes in Water Supply and Demand for Las Vegas Valley: A System Dynamic Approach based on CMIP3 and CMIP5 Climate Projections. Hydrology. 2020; 7(1):16. https://doi.org/10.3390/hydrology7010016
Chicago/Turabian StyleJoshi, Neekita, Kazi Tamaddun, Ranjan Parajuli, Ajay Kalra, Pankaj Maheshwari, Lorenzo Mastino, and Marco Velotta. 2020. "Future Changes in Water Supply and Demand for Las Vegas Valley: A System Dynamic Approach based on CMIP3 and CMIP5 Climate Projections" Hydrology 7, no. 1: 16. https://doi.org/10.3390/hydrology7010016
APA StyleJoshi, N., Tamaddun, K., Parajuli, R., Kalra, A., Maheshwari, P., Mastino, L., & Velotta, M. (2020). Future Changes in Water Supply and Demand for Las Vegas Valley: A System Dynamic Approach based on CMIP3 and CMIP5 Climate Projections. Hydrology, 7(1), 16. https://doi.org/10.3390/hydrology7010016