Pollution Source Identification for River Chemical Spills by Modular-Bayesian Approach: A Retrospective Study on the ‘Landmark’ Spill Incident in China
Abstract
:1. Introduction
2. Modular-Bayesian Approach for Pollution Source Identification
2.1. General Statement of ISP Problems
2.2. Model-Based Bayesian Inferences
2.2.1. Step 1: Model Building
2.2.2. Step 2: Calculation of the Posterior Distribution—MCMC Sampling
2.2.3. Step 3: Analysis of the Posterior Distribution
2.2.4. Step 4: Inference
2.3. Solute Transport in Rivers (Forward Model)
3. Case Study on the Songhua River Nitrobenzene Spill Incident
3.1. Description of the Songhua River Nitrobenzene spill
3.2. Reconstructed Source Identification Scenario
3.3. Parameters of Forward Model and Bayesian Inference Process
3.4. Inversion Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Camp, J.S.; LeBoeuf, E.J.; Abkowitz, M.D. Application of an enhanced spill management information system to inland waterways. J. Hazard. Mater. 2010, 175, 583–592. [Google Scholar] [CrossRef]
- Xue, P.; Zeng, W. Trends of environmental accidents and impact factors in China. Front. Environ. Sci. Eng. China 2011, 5, 266–276. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, T.Z.; Liu, B.; Lu, F.; Fang, S.R.; You, Z. Analysis of Surface Water Pollution Accidents in China: Characteristics and Lessons for Risk Management. Environ. Manag. 2016, 57, 868–878. [Google Scholar] [CrossRef]
- Ying, A.N.; Sheng-Cai, L.I. Statistics of environmental events in China during the period from January to February in 2013. J. Saf. Environ. 2013, 13, 280–284. [Google Scholar]
- Keller, J. Inverse Problems. Am. Mathmatical Mon. 1976, 83, 107–118. [Google Scholar] [CrossRef]
- Atmadja, J.; Bagtzoglou, A.C. Pollution Source Identification in Heterogeneous Porous Media. Water Resour. Res. 2001, 37, 2113–2125. [Google Scholar] [CrossRef]
- Liu, X.; Yao, Q.; Xue, H.; Zhu, K.; Hu, J. Advance in inverse problems of environmental hydraulics. Adv. Water Sci. 2009, 20, 885–893. [Google Scholar]
- Hamdi, A.; Mahfoudhi, I. Inverse source problem in a one-dimensional evolution linear transport equation with spatially varying coefficients: Application to surface water pollution. Inverse Probl. Sci. Eng. 2013, 21, 1007–1031. [Google Scholar] [CrossRef]
- Ma, D.; Tan, W.; Zhang, Z.; Hu, J. Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm. J. Hazard. Mater. 2017, 325, 239–250. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, P.; Jiang, J.; Guo, L. Contaminant point source identification of rivers chemical spills based on correlation coefficients optimization method. China Environ. Sci. 2011, 31, 1802–1807. [Google Scholar]
- Cheng, W.P.; Jia, Y. Identification of contaminant point source in surface waters based on backward location probability density function method. Adv. Water Resour. 2010, 33, 397–410. [Google Scholar] [CrossRef]
- Boano, F.; Revelli, R.; Ridolfi, L. Source identification in river pollution problems: A geostatistical approach. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Wei, G.; Chi, Z.; Yu, L.; Liu, H.; Zhou, H. Source identification of sudden contamination based on the parameter uncertainty analysis. J. Hydroinform. 2016, 18, 919–927. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Wang, H.; Lei, X.; Zhou, Y. A Bayesian model averaging method for the derivation of reservoir operating rules. J. Hydrol. 2015, 528, 276–285. [Google Scholar] [CrossRef]
- Shao, D.; Yang, H.; Xiao, Y.; Liu, B. Water quality model parameter identification of an open channel in a long distance water transfer project based on finite difference, difference evolution and Monte Carlo. Water Sci. Technol. 2014, 69, 587–594. [Google Scholar] [CrossRef]
- Marshall, L.; Nott, D.; Sharma, A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Hassan, A.E.; Bekhit, H.M.; Chapman, J.B. Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model. Environ. Model. Softw. 2009, 24, 749–763. [Google Scholar] [CrossRef]
- Keats, A.; Yee, E.; Lien, F.-S. Bayesian inference for source determination with applications to complex urban environment. Atmos. Environ. 2007, 41, 465–479. [Google Scholar] [CrossRef]
- Zhu, S. Research on the inverse problems of environmental hydraulics based on Bayesian inference. Ph.D. Thesis, Zhejing University, Hangzhou, China, 2008. [Google Scholar]
- Wang, H.; Harrison, K.W. Bayesian Update Method for Contaminant Source Characterization in Water Distribution Systems. J. Water Resour. Plan. Manag. 2013, 139. [Google Scholar] [CrossRef]
- Wu, L. Dilemmas downstream from the Songhua River spill. J. Med Toxicol. 2006, 2, 112–113. [Google Scholar] [CrossRef] [Green Version]
- Scales, J.A.; Tenorio, L. Prior information and uncertainty in inverse problems. Geophysics 2001, 66, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Ntzoufras, I. Bayesian Modeling Using WinBUGS; John Wiley & Sons: Hoboken, NJ, USA, 2009; p. 492. [Google Scholar]
- Bates, B.C.; Campbell, E.P. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour. Res. 2001, 37, 937–947. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Sakia, R.M. The Box-Cox Transformation Technique: A Review. J. R. Stat. Society. Ser. D (Stat.) 1992, 41, 169–178. [Google Scholar] [CrossRef]
- Thyer, M.; Kuczera, G.; Wang, Q.J. Quantifying parameter uncertainty in stochastic models using the Box-Cox transformation. J. Hydrol. 2002, 265, 246–257. [Google Scholar] [CrossRef]
- Wang, Q.J.; Shrestha, D.L.; Robertson, D.E.; Pokhrel, P. A log-sinh transformation for data normalization and variance stabilization. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Chen, X. Mathmatical Statistics; Press of University of Science and Technology of China: Hefei, China, 2009. [Google Scholar]
- Gelman, A. Prior distribution. In Encyclopedia of Environmetrics; El-Shaarawi, A.H., Piegorsch, W.W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2002; Volume 3, pp. 1634–1637. [Google Scholar]
- Zheng, Y.; Keller, A.A. Understanding Parameter Sensitivity and its Management Implications in Watershed-Scale Water Quality Modeling. Water Resour. Res. 2006, 420, 72–88. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Geman, S.; Geman, D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [Google Scholar] [CrossRef]
- Link, W.A.; Barker, R.J. Chapter 4—Calculating Posterior Distributions A2. In Bayesian Inference; Barker, R.J., Ed.; Academic Press: London, UK, 2010; pp. 47–74. [Google Scholar] [CrossRef]
- Haario, H.; Saksman, E.; Tamminen, J. An adaptive Metropolis algorithm. Bernoulli 2001, 7, 223–242. [Google Scholar] [CrossRef]
- Cowles, M.K.; Carlin, B.P. Markov chain Monte Carlo convergence diagnostics: A comparative review. J. Am. Stat. Assoc. 1996, 91, 883–904. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Raftery, A.; Lewis, S. How Many Iterations in the Gibbs Sampler? Oxford University Press: Oxford, UK, 1970; Volume 4. [Google Scholar]
- Fu, W.J.; Fu, H.J.; Skott, K.; Yang, M. Modeling the spill in the Songhua River after the explosion in the petrochemical plant in Jilin. Environ. Sci. Pollut. Res. 2008, 15, 178–181. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, P.; Lung, W.-S.; Guo, L.; Li, M. A GIS-based generic real-time risk assessment framework and decision tools for chemical spills in the river basin. J. Hazard. Mater. 2012, 227, 280–291. [Google Scholar] [CrossRef]
- UNEP. Awareness and Preparedness for Emergencies on a Local Level (APELL). Chinese River Contamination Resulting from a Petrochemical Explosion and Toxic Spill. 2005. Available online: http://www.unep.fr/pc/apell/disasters/china_harbin/info.htm (accessed on 19 August 2019).
- Fischer, H.B.; List, E.J.; Koh, R.C.Y.; Imberger, J.; Brooks, N.H. Chapter 5—Mixing in Rivers. In Mixing in Inland and Coastal Waters; Academic Press: San Diego, CA, USA, 1979; pp. 104–147. [Google Scholar] [CrossRef]
- Zhu, B. Application of unsteady flow principle in the study of pollution in the second songhua river. Water Resour. Hydropower Northeast China 1993, 1993, 44–48. [Google Scholar]
- Alizadeh, M.J.; Kavianpour, M.R.; Danesh, M.; Adolf, J.; Shamshirband, S.; Chau, K.-W. Effect of river flow on the quality of estuarine and coastal waters using machine learning models. Eng. Appl. Comput. Fluid Mech. 2018, 12, 810–823. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.L.; Chau, K.W. Mathematical model of water quality rehabilitation with rainwater utilisation: A case study at Haigang. Int. J. Environ. Pollut. 2006, 28, 534–545. [Google Scholar] [CrossRef]
- Chau, K.W.; Jiang, Y.W. Three-dimensional pollutant transport model for the Pearl River Estuary. Water Res. 2002, 36, 2029–2039. [Google Scholar] [CrossRef]
- Olyaie, E.; Banejad, H.; Chau, K.-W.; Melesse, A.M. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environ. Monit. Assess. 2015, 187, 189. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chau, K.W. A Hybrid Double Feedforward Neural Network for Suspended Sediment Load Estimation. Water Resour. Manag. 2016, 30, 2179–2194. [Google Scholar] [CrossRef]
- Shamshirband, S.; Jafari Nodoushan, E.; Adolf, J.E.; Abdul Manaf, A.; Mosavi, A.; Chau, K.-W. Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech. 2019, 13, 91–101. [Google Scholar] [CrossRef]
Parameter | Value | Units | Reference | Notes |
---|---|---|---|---|
Ms | ~92 | tons | [33], UNEP Report [35] | Nitrobenzene |
xs | −75 | km | UNEP Report [35] | #10 north outlet pipeline of the Jilin Petrochemical Plant |
ts | −58 | h | UNEP Report [35] | 14:00, 13 November 2005 |
U | 3.6 | km/h | assumed by historical hydrology statistics [44] | 1.00 m/s |
Dx | 0.18 | km2/h | typical value; Fisher formula | 500 m2/s |
A | 1.6 × 10−3 | km2 | measured on GIS map | 400 × 4 m |
K | 0.001325 | h−1 | as estimated in [33] | 0.0318 day−1 |
Parameters | Symbol | Run 1 | Run 2 | |
---|---|---|---|---|
Error | Homoscedastic, uncorrelated | adopt this assumption | ||
Heteroscedastic, uncorrelated | λ1, λ2 | λ1 = 0; λ2 = 0.35 | ||
AM | Number of iterations | nIter | 100,000 | same |
Initial source parameter values (Ms, Xs, Ts, σ2) | S0 | [60, −50, −40, 105] | [80, −80, −48, 40] | |
Proposal scaling factor | sd | 0.3 | 0.25 | |
Epsilon | ε | 1 × 10−16 | same | |
First i0 iterations for fixed covariance C0 | i0 | 0.05 × nIter | same | |
Initial variation of parameters (Ms, Xs, Ts, σ2) | varParm | [400, 400, 200, 1 × 108] | [400, 400, 200, 100] | |
Initial covariance matrix | B0 | 0.5 × varParm × I3 (I3 is a unit matrix) | same | |
Parameter constriction | const. | Ms:[20, 200] Xs:[−200, 5] Ts:[−72, −24] | same |
Real Values | Mean | SD | Skewness | P0.025 | P0.5 | P0.975 | Bayes Interval * | |
---|---|---|---|---|---|---|---|---|
Likelihood Function Defined by Equation (11), Homoscedastic # (Run 1) | ||||||||
Ms (ton) | 92 | 67.2 | 37.8 | 0.776 | 21.5 | 58.0 | 152 | [20, 122] |
Xs (km) | −75 | −80.9 | 45.9 | 0.346 | −147 | −86.4 | 8.38 | [−150, −14] |
Ts (h) | −58 | −48.2 | 12.9 | 0.146 | −68.6 | −49.0 | −25.3 | [−68, −28] |
σ2 (mg2/L2) | 1.95 × 105 | 8.9 × 104 | 3.016 | 9.30 × 104 | 1.76 × 105 | 3.98 × 105 | [8.28 × 104, 2.99 × 105] | |
Likelihood Function Defined by Equation (12), Heteroscedastic (Run 2) | ||||||||
Ms (ton) | 92 | 114 | 51.2 | −0.081 | 25.7 | 116 | 196 | [42.0, 200] |
Xs (km) | −75 | −69.3 | 48.6.0 | 0.488 | −142 | −76.4 | 33.7 | [−147, 3.5] |
Ts (h) | −58 | −51.4 | 13.0 | 0.307 | −71.0 | −52.9 | −26.2 | [−72.0, −32.3] |
σ2 (mg2/L2) | 0.2 | 11.1 | 1.475 | 15.2 | 28.1 | 57.4 | [14.0, 45.6] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Chen, Y.; Wang, B. Pollution Source Identification for River Chemical Spills by Modular-Bayesian Approach: A Retrospective Study on the ‘Landmark’ Spill Incident in China. Hydrology 2019, 6, 74. https://doi.org/10.3390/hydrology6030074
Jiang J, Chen Y, Wang B. Pollution Source Identification for River Chemical Spills by Modular-Bayesian Approach: A Retrospective Study on the ‘Landmark’ Spill Incident in China. Hydrology. 2019; 6(3):74. https://doi.org/10.3390/hydrology6030074
Chicago/Turabian StyleJiang, Jiping, Yasong Chen, and Baoyu Wang. 2019. "Pollution Source Identification for River Chemical Spills by Modular-Bayesian Approach: A Retrospective Study on the ‘Landmark’ Spill Incident in China" Hydrology 6, no. 3: 74. https://doi.org/10.3390/hydrology6030074
APA StyleJiang, J., Chen, Y., & Wang, B. (2019). Pollution Source Identification for River Chemical Spills by Modular-Bayesian Approach: A Retrospective Study on the ‘Landmark’ Spill Incident in China. Hydrology, 6(3), 74. https://doi.org/10.3390/hydrology6030074