Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin
Abstract
:1. Introduction
- (1)
- Is GRACE-derived data applicable to analyze the groundwater variability in the region undergoing drought like CRB?
- (2)
- What are the historic spatiotemporal variations in the groundwater in the CRB?
- (3)
- Can a stochastic ARIMA model coupled with GRACE data forecast future groundwater variability at the selected spatiotemporal scale of the CRB?
2. Study Area
3. Data Sources
3.1. GRACE Data
3.2. Global Land Data Assimilation System (GLDAS)
4. Methodology
4.1. Evaluation of Trend in the Groundwater Data
4.2. ARIMA Model
5. Results and Discussion
5.1. Historical Variations in Groundwater
5.2. ARIMA Model Results
6. Conclusions
- (1)
- GRACE-derived groundwater anomaly being well correlated with in-situ groundwater data established the applicability of GRACE data in analyzing past and future groundwater analysis in the CRB.
- (2)
- The GRACE-derived change in monthly groundwater storage showed strong seasonality. Seasonal differencing was promising while making forecasts with non-stationary groundwater data.
- (3)
- The ACF and PACF plots of differencing data series were beneficial to estimate the tentative order of the ARIMA model.
- (4)
- ARIMA models order obtained based on the evaluation criteria (AIC and BIC) were found skillful. The residual analysis reinforced the idea of selection of the fitted model order.
- (5)
- ARIMA estimates of groundwater storage anomalies fit reasonably well with the observed values as supported by RMSE and NSE skills during the historical training and testing periods.
- (6)
- The ARIMA forecasts indicated the increase in March, April and May groundwater storage within the major number of grids of upper CRB. This can be attributed to the early snowmelts in the region during these months as a result of climate change.
- (7)
- The study showed a probable decline in future groundwater storage in lower CRB for all months. Additionally, the model also predicted the decline in near future groundwater storage within upper CRB for the months except for March, April, and May.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACF | Autocorrelation Function |
AIC | Akaike Information Criterion |
ARIMA | Autoregressive Integrated Moving Average |
CRB | Colorado River Basin |
CWS | Canopy Water Storage |
CWSA | Canopy Water Storage Anomaly |
GLDAS | Global Land Data Assimilation System |
GRACE | Gravity Recovery and Climate Experiment |
GWS | Groundwater Storage |
GWSA | Groundwater Storage Anomalies |
MK | Mann-Kendall |
NSE | Nash-Sutcliffe Efficiency |
PACF | Partial Autocorrelation Function |
SW | Surface Water |
SWA | Surface Water Anomaly |
SWE | Snow Water Equivalent |
SWEA | Snow Water Equivalent Anomaly |
TWS | Terrestrial Water Storage |
TWSA | Terrestrial Water Storage Anomaly |
References
- Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. (Eds.) Climate Change and Water; IPCC Secretariat: Geneva, Switzerland, 2008; p. 210. [Google Scholar]
- Li, F.; Feng, P.; Zhang, W.; Zhang, T. An integrated groundwater management mode based on control indexes of groundwater quantity and level. Water Resour. Manag. 2013, 27, 3273–3292. [Google Scholar] [CrossRef]
- Mirzavand, M.; Ghazavi, R. A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods. Water Resour. Manag. 2015, 29, 1315–1328. [Google Scholar] [CrossRef]
- Rohde, M.M.; Froend, R.; Howard, J. A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater 2017, 55, 293–301. [Google Scholar] [CrossRef]
- Mohanty, S.; Jha, M.K.; Kumar, A.; Sudheer, K.P. Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resour. Manag. 2010, 24, 1845–1865. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Zhang, Z.; Ni, S. Long-term groundwater variations in Northwest India from satellite gravity measurements. Glob. Planet. Chang. 2014, 116, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Abidin, H.Z.; Andreas, H.; Djaja, R.; Darmawan, D.; Gamal, M. Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. Gps. Solutions 2008, 12, 23–32. [Google Scholar] [CrossRef]
- Phien-Wej, N.; Giao, P.; Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 2006, 82, 187–201. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.; van Beek, L.P. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197. [Google Scholar] [CrossRef]
- Prinos, S.T.; Lietz, A.; Irvin, R. Design of A Real-Time Ground-Water Level Monitoring Network and Portrayal of Hydrologic Data in Southern Florida (No. 2001–4275); Geological Survey (US): Reston, WV, USA, 2002.
- Becker, M.W. Potential for satellite remote sensing of ground water. Groundwater 2006, 44, 306–318. [Google Scholar] [CrossRef]
- Chen, J.; Famigliett, J.S.; Scanlon, B.R.; Rodell, M. Groundwater storage changes: Present status from GRACE observations. Surv. Geophys. 2016, 37, 397–417. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Iqbal, N.; Hossain, F.; Lee, H.; Akhter, G. Satellite gravimetric estimation of groundwater storage variations over Indus Basin in Pakistan. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2016, 9, 3524–3534. [Google Scholar] [CrossRef]
- Nanteza, J.; de Linage, C.R.; Thomas, B.F.; Famiglietti, J.S. Monitoring groundwater storage changes in complex basement aquifers: An evaluation of the GRACE satellites over East Africa. Water Resour. Res. 2016, 52, 9542–9564. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, G. Understanding Interannual Groundwater Variability in North India using GRACE. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2014. [Google Scholar]
- Seo, J.Y.; Lee, S.-I. Integration of GRACE, ground observation, and land-surface models for groundwater storage variations in South Korea. Int. J. Remote Sens. 2016, 37, 5786–5801. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Saha, D.; Velicogna, I.; Famiglietti, J.S. Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. J. Hydrol. 2016, 543, 729–738. [Google Scholar] [CrossRef]
- Katpatal, Y.B.; Rishma, C.; Singh, C.K. Sensitivity of the gravity recovery and climate experiment (GRACE) to the complexity of aquifer systems for monitoring of groundwater. Hydrogeol. J. 2018, 26, 933–943. [Google Scholar] [CrossRef]
- Liesch, T.; Ohmer, M. Comparison of GRACE data and groundwater levels for the assessment of groundwater depletion in Jordan. Hydrogeol. J. 2016, 24, 1547–1563. [Google Scholar] [CrossRef]
- Muskett, R.R.; Romanovsky, V.E. Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environ. Res. Lett. 2009, 4, 045009. [Google Scholar] [CrossRef]
- Strassberg, G.; Scanlon, B.R.; Chambers, D. Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the high plains aquifer, central United States. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Sun, A.Y. Predicting groundwater level changes using GRACE data. Water Resour. Res. 2013, 49, 5900–5912. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kam, J.; Thurner, K. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol. 2009, 374, 171–183. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Pathak, P.; Kalra, A.; Ahmad, S. Temperature and precipitation changes in the Midwestern United States: implications for water management. Int. J. Water Resour. Dev. 2017, 33, 1003–1019. [Google Scholar] [CrossRef]
- Kendall, M. Multivariate Analysis; Charles Griffin b Co. LTD.: London, UK, 1975; p. 210. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Moslemi, K.; Karami, G. Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resour. Manag. 2014, 28, 5433–5446. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Coulibaly, P.; Tsanis, I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309, 229–240. [Google Scholar] [CrossRef]
- Mohanty, S.; Jha, M.K.; Kumar, A.; Sudheer, K.P. Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resour. Manag. 2015, 29, 5521–5532. [Google Scholar] [CrossRef]
- Nourani, V.; Nadiri, A.; Moghaddam, A.; Singh, V. Forecasting Spatiotemproal Water Levels of Tabriz Aquifer. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/164642 (accessed on 17 November 2018).
- Wu, J.; Hu, B.X.; Zhang, D.; Shirley, C. A three-dimensional numerical method of moments for groundwater flow and solute transport in a nonstationary conductivity field. Adv. Water Resour. 2003, 26, 1149–1169. [Google Scholar] [CrossRef]
- Castellano-Méndez, M.; González-Manteiga, W.; Febrero-Bande, M.; Prada-Sánchez, J.M.; Lozano-Calderón, R. Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box–Jenkins and neural networks methods. J. Hydrol. 2004, 296, 38–58. [Google Scholar] [CrossRef]
- Abdullahi, M.; Toriman, M.E.; Gasim, M.B.; Garba, I. Trends analysis of groundwater: using non-parametric methods in Terengganu Malaysia. J. Earth Sci. Clim. Chang. 2015, 6, 2. [Google Scholar]
- Gibrilla, A.; Anornu, G.; Adomako, D. Trend analysis and ARIMA modelling of recent groundwater levels in the White Volta River basin of Ghana. Groundw. Sustain Dev. 2018, 6, 150–163. [Google Scholar] [CrossRef]
- Mack, T.J.; Chornack, M.P.; Taher, M.R. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan. Environ. Sys. Decisions 2013, 33, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Lu, W.; Long, Y.; Li, P. Application and comparison of two prediction models for groundwater levels: A case study in Western Jilin Province, China. J. Arid Environ. 2009, 73, 487–492. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden Day Inc.: San Francisco, CA, USA, 1976. [Google Scholar]
- Gharde, K.D.; Kothari, M.; Mahale, D.M. Developed seasonal ARIMA model to forecast streamflow for Savitri Basin in Konkan Region of Maharshtra on daily basis. J. Indian Soc. Coastal Agric. Res. 2016, 34, 110–119. [Google Scholar]
- Myronidis, D.; Ioannou, K.; Fotakis, D.; Dörflinger, G. Streamflow and hydrological drought trend analysis and forecasting in Cyprus. Water Resour. Manag. 2018, 32, 1759–1776. [Google Scholar] [CrossRef]
- Yu, Z.; Lei, G.; Jiang, Z.; Liu, F. ARIMA modelling and forecasting of water level in the middle reach of the Yangtze River. In Proceedings of the 4th International Conference on Transportation Information and Safety (ICTIS), Banff, Canada, 8–10 August 2017. [Google Scholar]
- Valipour, M. Long-term runoff study using SARIMA and ARIMA models in the United States. Meterol. Appl. 2015, 22, 592–598. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, B.N. Application of ARIMA model for river discharges analysis. J. Nepal Phys. Soc. 2017, 4, 27–32. [Google Scholar] [CrossRef]
- Katimon, A.; Shahid, S.; Mohsenipour, M. Modeling water quality and hydrological variables using ARIMA: A case study of Johor River, Malaysia. Sustain. Water Resour. Manag. 2018, 4, 991–998. [Google Scholar] [CrossRef]
- Bin Shaari, M.A.; Samsudin, R.; Bin Shabri Ilman, A. Comparison of drought forecasting using ARIMA and empirical wavelet transform-ARIMA. In Proceedings of International Conference of Reliable Information and Communication Technology; Springe: Cham, Switzerland, 2018; pp. 449–458. [Google Scholar]
- Jerla, C.; Prairie, J.; Adams, P. Colorado River Basin Water Supply and Demand Study: Study Report. Available online: https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Study%20Report/StudyReport_FINAL_Dec2012.pdf (accessed on 3 November 2018).
- Scanlon, B.R.; Zhang, Z.; Reedy, R.C.; Pool, D.R.; Save, H.; Long, D.; Chen, J.; Wolock, D.M.; Conway, B.D.; Winester, D. Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resour. Res. 2015, 51, 9891–9903. [Google Scholar] [CrossRef]
- Castle, S.L.; Thomas, B.F.; Reager, J.T.; Rodell, M.; Swenson, S.C.; Famiglietti, J.S. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett. 2014, 41, 5904–5911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castle, S.; Thomas, B.; Reager, J.T.; Swenson, S.C.; Famiglietti, J.S. Quantifying Changes in Accessible Water in the Colorado River Basin. In Proceedings of the AGU Fall 2013 Meeting, San Francisco, CA, USA, 9–13 December 2013. [Google Scholar]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Ramillien, G.; Famiglietti, J.S.; Wahr, J. Detection of continental hydrology and glaciology signals from GRACE: A review. Surv. Geophys. 2008, 29, 361–374. [Google Scholar] [CrossRef]
- Schmidt, R.; Flechtner, F.; Meyer, U.; Neumayer, K.-H.; Dahle, C.; König, R.; Kusche, J. Hydrological signals observed by the GRACE satellites. Surv. Geophys. 2008, 29, 319–334. [Google Scholar] [CrossRef]
- Swenson, S. GRACE Monthly Land Water Mass Grids NETCDF Release 5.0. Ver. 5.0. PO. DAAC, CA, USA. Available online: ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/ (accessed on 10 August 2018).
- Wiese, D. GRACE monthly global water mass grids NETCDF RELEASE 5.0. Ver. 5.0, PO. DAAC, CA, USA. 2015. Available online: https://doi. org/10.5067/TEMSC-OCL05 (accessed on 1 June 2017).
- Liu, R.; Zou, R.; Li, J.; Zhang, C.; Zhao, B.; Zhang, Y. Vertical displacements driven by groundwater storage changes in the north China plain detected by GPS observations. Remote Sens. 2018, 10, 259. [Google Scholar] [CrossRef]
- Moritz, S.; Bartz-Beielstein, T. ImputeTS: Time series missing value imputation in R. The R J. 2017, 9, 207–218. [Google Scholar] [CrossRef]
- Ediger, V.Ş.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Sakumura, C.; Bettadpur, S.; Bruinsma, S. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett. 2014, 41, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Oleson, K.W. The common land model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Koster, R.D.; Suarez, M.J. Energy and water balance calculations in the Mosaic LSM. NOAA, Goddard Space Flight Center, Laboratory for Atmospheres, Data Assimilation Office: Laboratory for Hydrospheric Processes. Available online: https://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf (accessed on 5 October 2018).
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Bowerman, B.; O’Connell, R. Forecasting and Time Series: An Applied Approach; Duxbury Press: Belmont, CA, USA, 1993. [Google Scholar]
- Sullivan, A.; White, D.D.; Hanemann, M. Designing collaborative governance: Insights from the drought contingency planning process for the lower Colorado River basin. Environ. Sci. Policy 2019, 91, 39–49. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; Otexts: Melbourne, Australia, 2013. [Google Scholar]
- Tillman, F.D.; Gangopadhyay, S.; Pruitt, T. Changes in groundwater recharge under projected climate in the upper Colorado River basin. Geophys. Res. Lett. 2016, 43, 6968–6974. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, B.M.W.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2006, 50, 885–900. [Google Scholar] [CrossRef]
Model | AIC | BIC |
---|---|---|
ARIMA (1,0,1) (1,1,0)12 | 321.65 | 332.23 |
ARIMA (1,0,1) (1,1,1)12 | 311.13 | 324.25 |
ARIMA (0,0,1) (0,1,1)12 | 452.36 | 460.35 |
ARIMA (0,0,1) (0,1,0)12 | 459.58 | 464.95 |
ARIMA (0,0,2) (0,1,0)12 | 352.74 | 365.87 |
ARIMA (1,0,2) (1,1,0)12 | 322.2 | 335.32 |
ARIMA (2,0,1) (1,1,0)12 | 312.43 | 328.07 |
ARIMA (2,0,1) (1,1,1)12 | 315.28 | 330.91 |
ARIMA (1,0,2) (2,1,0) 12 | 313.82 | 329.45 |
ARIMA (1,0,2) (1,1,1)12 | 311.86 | 327.49 |
ARIMA (2,0,2) (2,1,2)12 | 317.13 | 340.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahaman, M.M.; Thakur, B.; Kalra, A.; Ahmad, S. Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin. Hydrology 2019, 6, 19. https://doi.org/10.3390/hydrology6010019
Rahaman MM, Thakur B, Kalra A, Ahmad S. Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin. Hydrology. 2019; 6(1):19. https://doi.org/10.3390/hydrology6010019
Chicago/Turabian StyleRahaman, Md Mafuzur, Balbhadra Thakur, Ajay Kalra, and Sajjad Ahmad. 2019. "Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin" Hydrology 6, no. 1: 19. https://doi.org/10.3390/hydrology6010019
APA StyleRahaman, M. M., Thakur, B., Kalra, A., & Ahmad, S. (2019). Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin. Hydrology, 6(1), 19. https://doi.org/10.3390/hydrology6010019