Skill Transfer from Meteorological to Runoff Forecasts in Glacierized Catchments
Abstract
:1. Introduction
2. Methods
2.1. General Methodological Workflow
2.2. Generation of Synthetic Meteorological Time Series
2.2.1. Reference Meteorological Time Series
2.2.2. Synthetic Meteorological Forecasts
2.3. Runoff Forecasts Generation
2.4. Skill Scores
3. Results and Discussion
3.1. Dependence on Lead Time
3.2. Skill Transfer between Meteorological and Runoff Forecasts
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Chandramowli, S.N.; Felder, F.A. Impact of climate change on electricity systems and markets—A review of models and forecasts. Sustain. Energy Technol. Assess. 2014, 5, 62–74. [Google Scholar] [CrossRef]
- Panu, U.S.; Sharma, T.C. Challenges in drought research: some perspectives and future directions. Hydrol. Sci. J. 2002, 47, S19–S30. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Knutson, C.L. Drought management planning: Conditions for success. Opt. Mediterr. Ser. A 2008, 80, 141–148. [Google Scholar]
- Zappa, M.; Rotach, M.W.; Arpagaus, M.; Dorninger, M.; Hegg, C.; Montani, A.; Ranzi, R.; Ament, F.; Germann, U.; Grossi, G.; et al. MAP D-PHASE: Real-time demonstration of hydrological ensemble prediction systems. Atmos. Sci. Lett. 2008, 9, 80–87. [Google Scholar] [CrossRef]
- Liechti, K.; Zappa, M.; Fundel, F.; Germann, U. Probabilistic evaluation of ensemble discharge nowcasts in two nested Alpine basins prone to flash floods: Evaluation of Ensemble Discharge Nowcast In Two Nested Alpine Basins. Hydrol. Proc. 2013, 27, 5–17. [Google Scholar] [CrossRef]
- Hidalgo-Muñoz, J.M.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Argüeso, D.; Esteban-Parra, M.J. Long-range seasonal streamflow forecasting over the Iberian Peninsula using large-scale atmospheric and oceanic information. Water Resour. Res. 2015, 51, 3543–3567. [Google Scholar] [CrossRef]
- Wood, A.W.; Lettenmaier, D.P. An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Shukla, S.; Sheffield, J.; Wood, E.F.; Lettenmaier, D.P. On the sources of global land surface hydrologic predictability. Hydrol. Earth Syst. Sci. 2013, 17, 2781–2796. [Google Scholar] [CrossRef]
- Crochemore, L.; Ramos, M.H.; Pappenberger, F. Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts. Hydrol. Earth Syst. Sci. 2016, 20, 3601–3618. [Google Scholar] [CrossRef]
- Hay, L.E.; Clark, M.P.; Wilby, R.L.; Gutowski, W.J., Jr.; Leavesley, G.H.; Pan, Z.; Arritt, R.W.; Takle, E.S. Use of regional climate model output for hydrologic simulations. J. Hydrometeorol. 2002, 3, 571–590. [Google Scholar] [CrossRef]
- Clark, M.P.; Hay, L.E. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. J. Hydrometeorol. 2004, 5, 15–32. [Google Scholar] [CrossRef]
- Olsson, J.; Lindström, G. Evaluation and calibration of operational hydrological ensemble forecasts in Sweden. J. Hydrol. 2008, 350, 14–24. [Google Scholar] [CrossRef]
- Yossef, N.C.; Winsemius, H.; Weerts, A.; van Beek, R.; Bierkens, M.F.P. Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing: Skill of a Global Seasonal Streamflow Forecasting System. Water Resour. Res. 2013, 49, 4687–4699. [Google Scholar] [CrossRef]
- Meehl, G.A.; Goddard, L.; Murphy, J.; Stouffer, R.J.; Boer, G.; Danabasoglu, G.; Dixon, K.; Giorgetta, M.A.; Greene, A.M.; Hawkins, E.; et al. Decadal Prediction: Can It Be Skillful? Bull. Am. Meteorol. Soc. 2009, 90, 1467–1485. [Google Scholar] [CrossRef]
- Cane, M.A. Climate science: Decadal predictions in demand. Nat. Geosci. 2010, 3, 231–232. [Google Scholar] [CrossRef]
- Solomon, S. (Ed.) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bavay, M.; Grünewald, T.; Lehning, M. Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Adv. Water Resour. 2013, 55, 4–16. [Google Scholar] [CrossRef]
- Marty, C.; Schlögl, S.; Bavay, M.; Lehning, M. How much can we save? Impact of different emission scenarios on future snow cover in the Alps. Cryosphere 2017, 11, 517–529. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 2015, 3, 54. [Google Scholar] [CrossRef]
- Hock, R.; Jansson, P.; Braun, L.N. Modelling the response of mountain glacier discharge to climate warming. In Global Change and Mountain Regions; Springer: Berlin/Heidelberg, Germany, 2005; pp. 243–252. [Google Scholar]
- Stahl, K.; Moore, R.D.; Shea, J.M.; Hutchinson, D.; Cannon, A.J. Coupled modelling of glacier and streamflow response to future climate scenarios: Modeling of glacier and streamflow. Water Resour. Res. 2008, 44, 1–13. [Google Scholar] [CrossRef]
- Ragettli, S.; Pellicciotti, F.; Bordoy, R.; Immerzeel, W.W. Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change: Sources of uncertainty in glaciohydrological modeling. Water Resour. Res. 2013, 49, 6048–6066. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, N. Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. J. Hydrol. 1997, 193, 316–350. [Google Scholar] [CrossRef]
- Huss, M.; Farinotti, D.; Bauder, A.; Funk, M. Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol. Proc. 2008, 22, 3888–3902. [Google Scholar] [CrossRef]
- Weber, M.; Braun, L.; Mauser, W.; Prasch, M. Contribution of rain, snow-and icemelt in the Upper Danube discharge today and in the future. Geogr. Fis. Din. Quat. 2010, 33, 221–230. [Google Scholar]
- Farinotti, D.; Usselmann, S.; Huss, M.; Bauder, A.; Funk, M. Runoff evolution in the Swiss Alps: Projections for selected high-alpine catchments based on ENSEMBLES scenarios. Hydrol. Proc. 2012, 26, 1909–1924. [Google Scholar] [CrossRef]
- Farinotti, D. On the effect of short-term climate variability on mountain glaciers: Insights from a case study. J. Glaciol. 2013, 59, 992–1006. [Google Scholar] [CrossRef]
- Huss, M.; Jouvet, G.; Farinotti, D.; Bauder, A. Future high-mountain hydrology: A new parameterization of glacier retreat. Hydrol. Earth Syst. Sci. 2010, 14, 815–829. [Google Scholar] [CrossRef]
- Seibert, J.; Vis, M.J.P. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar] [CrossRef] [Green Version]
- Seibert, J.; Vis, M.J.P.; Kohn, I.; Weiler, M.; Stahl, K. Technical note: Representing glacier geometry changes in a semi-distributed hydrological model. Hydrol. Earth Syst. Sci. 2018, 22, 2211–2224. [Google Scholar] [CrossRef]
- Seibert, J. HBV light. In User’s Manual; Uppsala University: Uppsala, Sweden, 1996. [Google Scholar]
- Meehl, G.A.; Goddard, L.; Boer, G.; Burgman, R.; Branstator, G.; Cassou, C.; Corti, S.; Danabasoglu, G.; Doblas-Reyes, F.; Hawkins, E. Decadal climate prediction: an update from the trenches. Bull. Am. Meteorol. Soc. 2014, 95, 243–267. [Google Scholar] [CrossRef]
- Scaife, A.A.; Athanassiadou, M.; Andrews, M.; Arribas, A.; Baldwin, M.; Dunstone, N.; Knight, J.; MacLachlan, C.; Manzini, E.; Müller, W.A.; et al. Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett. 2014, 41, 1752–1758. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Yang, X.; Vecchi, G.A.; Gudgel, R.G.; Delworth, T.L.; Rosati, A.; Stern, W.F.; Wittenberg, A.T.; Krishnamurthy, L.; Zhang, S.; et al. Improved Seasonal Prediction of Temperature and Precipitation over Land in a High-Resolution GFDL Climate Model. J. Clim. 2015, 28, 2044–2062. [Google Scholar] [CrossRef]
Parameter | Forecast | ||
---|---|---|---|
Temperature | Precipitation | ||
variability (relative) | |||
a | trend | (C) | (%) |
b | bias | (C) | (%) |
c | oscillation amplitude | (C) | (%) |
mean of the noise term | 0 | 1 | |
noise level at | 0 | 0 | |
noise level at |
Scenario | Catchment A | Catchment B | ||
---|---|---|---|---|
glac. (%) | (km) | glac. (%) | (km) | |
Scenario 1 | 61.02 | 0.43 | 53.56 | 1.29 |
Scenario 2 | 49.70 | 0.29 | 49.56 | 0.99 |
Scenario 3 | 32.38 | 0.17 | 36.03 | 0.58 |
Scenario 4 | 15.63 | 0.06 | 24.19 | 0.36 |
Scenario 5 | 0.00 | 0.00 | 0.00 | 0.00 |
Catchment A | Catchment B | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | NSE | RMSE | NSE | |||||||||
Scenario 1 | 0.69 | 0.71 | 0.75 | 0.26 | 0.28 | 0.73 | 0.75 | 0.72 | 0.73 | 0.14 | 0.15 | 0.68 |
Scenario 2 | 0.60 | 0.62 | 0.69 | 0.33 | 0.34 | 0.67 | 0.75 | 0.70 | 0.74 | 0.10 | 0.10 | 0.68 |
Scenario 3 | 0.50 | 0.52 | 0.64 | 0.40 | 0.42 | 0.62 | 0.66 | 0.59 | 0.72 | 0.17 | 0.18 | 0.65 |
Scenario 4 | 0.38 | 0.39 | 0.58 | 0.46 | 0.48 | 0.57 | 0.56 | 0.50 | 0.68 | 0.19 | 0.20 | 0.60 |
Scenario 5 | 0.26 | 0.25 | 0.58 | 0.54 | 0.55 | 0.55 | 0.43 | 0.36 | 0.58 | 0.25 | 0.23 | 0.50 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gindraux, S.; Farinotti, D. Skill Transfer from Meteorological to Runoff Forecasts in Glacierized Catchments. Hydrology 2018, 5, 26. https://doi.org/10.3390/hydrology5020026
Gindraux S, Farinotti D. Skill Transfer from Meteorological to Runoff Forecasts in Glacierized Catchments. Hydrology. 2018; 5(2):26. https://doi.org/10.3390/hydrology5020026
Chicago/Turabian StyleGindraux, Saskia, and Daniel Farinotti. 2018. "Skill Transfer from Meteorological to Runoff Forecasts in Glacierized Catchments" Hydrology 5, no. 2: 26. https://doi.org/10.3390/hydrology5020026
APA StyleGindraux, S., & Farinotti, D. (2018). Skill Transfer from Meteorological to Runoff Forecasts in Glacierized Catchments. Hydrology, 5(2), 26. https://doi.org/10.3390/hydrology5020026