Editorial: Hydrodynamics and Water Quality of Rivers and Lakes
1. Overview of Recent Developments in the Field
2. Knowledge Gaps Addressed by This Special Issue
3. How This Special Issue Addresses These Gaps
4. Future Research Directions and Emerging Opportunities
5. Conclusions
Author Contributions
Data Availability Statement
Conflicts of Interest
List of Contributions
- Ámon, G.; Bene, K.; Ray, R. Comparing Depth-Integrated Models to Compute Overland Flow in Steep-Sloped Watersheds. Hydrology 2025, 12, 67. https://doi.org/10.3390/hydrology12040067.
- Batina, A.; Krtalić, A. Integrating Remote Sensing Methods for Monitoring Lake Water Quality: A Comprehensive Review. Hydrology 2024, 11, 92. https://doi.org/10.3390/hydrology11070092.
- Dumitran, G.E.; Preda, E.C.; Vuta, L.I.; Popa, B.; Ispas, R.E. Combining Hydrodynamic Modelling and Solar Potential Assessment to Evaluate the Effects of FPV Systems on Mihăilești Reservoir, Romania. Hydrology 2025, 12, 157. https://doi.org/10.3390/hydrology12060157.
- Elkersh, K.; Atabay, S.; Ali, T.; Yilmaz, A.G.; Mortula, M.M.; Cavalcante, G.H. Analyzing Hydrodynamic Changes in Dubai Creek, UAE: A Pre- and Post-Extension Study. Hydrology 2024, 11, 202. https://doi.org/10.3390/hydrology11120202.
- González-Díaz, R.L.; de Anda, J.; Shear, H.; Padilla-Tovar, L.E.; Lugo-Melchor, O.Y.; Olvera-Vargas, L.A. Assessment of Heavy Metals in Surface Waters of the Santiago–Guadalajara River Basin, Mexico. Hydrology 2025, 12, 37. https://doi.org/10.3390/hydrology12020037.
- Kebedew, M.G.; Tilahun, S.A.; Zimale, F.A.; Belete, M.A.; Wosenie, M.D.; Steenhuis, T.S. Relating Lake Circulation Patterns to Sediment, Nutrient, and Water Hyacinth Distribution in a Shallow Tropical Highland Lake. Hydrology 2023, 10, 181. https://doi.org/10.3390/hydrology10090181.
- Lima, F.J.d.O.; Lopes, F.B.; Cid, D.A.C.; Lima Neto, I.E.; Rocha, R.V.; Estácio, A.B.S.; Araújo, I.C.d.S.; Luna, N.R.d.S.; Pontes, M.C.; Souza, A.C.T.d.; et al. Determination of the Total Phosphorus Decay Coefficient Based on Hydrological Models in an Artificial Reservoir in the Brazilian Semi-Arid Region. Hydrology 2025, 12, 36. https://doi.org/10.3390/hydrology12020036.
- Rusanov, A.G.; Trábert, Z.; Kiss, K.T.; Korponai, J.L.; Kolobov, M.Y.; Bíró, T.; Vadkerti, E.; Ács, É. Intermittency as an Environmental Filter: Diatom Traits and Water Quality Indicators in a Hydrodynamic Context. Hydrology 2025, 12, 213. https://doi.org/10.3390/hydrology12080213.
- Shaheed, R.; Mohammadian, A.; Shaheed, A.M. Numerical Simulation of Turbulent Flow in River Bends and Confluences Using the k-ω SST Turbulence Model and Comparison with Standard and Realizable k-ε Models. Hydrology 2025, 12, 145. https://doi.org/10.3390/hydrology12060145.
- Timis, E.C.; Hangan, H.; Cristea, V.M.; Mihaly, N.B.; Hutchins, M.G. High-Resolution Flow and Phosphorus Forecasting Using ANN Models, Catering for Extremes in the Case of the River Swale (UK). Hydrology 2025, 12, 20. https://doi.org/10.3390/hydrology12020020.
- Wang, H.; Wu, S.; Xu, J.; Zhang, L.; Li, K.; Li, J.; Shu, H.; Chu, J. Study on the Surface Water Chemical Composition and Water Quality Pollution Characteristics of the Shiyang River Basin, China. Hydrology 2025, 12, 132. https://doi.org/10.3390/hydrology12060132.
References
- Ji, Z.G. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Mishra, A.; Alnahit, A.; Campbell, B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. J. Hydrol. 2021, 596, 125707. [Google Scholar] [CrossRef]
- Van Vliet, M.T.; Thorslund, J.; Strokal, M.; Hofstra, N.; Flörke, M.; Ehalt Macedo, H.; Nkwasa, A.; Tang, T.; Kaushal, S.S.; Kumar, R.; et al. Global river water quality under climate change and hydroclimatic extremes. Nat. Rev. Earth Environ. 2023, 4, 687–702. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, J.; Zhang, Z.; Tian, Z. Assessment and a review of research on surface water quality modeling. Ecol. Model. 2022, 466, 109888. [Google Scholar] [CrossRef]
- De Goede, E.D. Historical overview of 2D and 3D hydrodynamic modelling of shallow water flows in the Netherlands. Ocean Dyn. 2020, 70, 521–539. [Google Scholar] [CrossRef]
- Ishikawa, M.; Gonzalez, W.; Golyjeswski, O.; Sales, G.; Rigotti, J.A.; Bleninger, T.; Mannich, M.; Lorke, A. Effects of dimensionality on the performance of hydrodynamic models. Geosci. Model Dev. Discuss. 2021, 15, 2197–2220. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ye, F.; Stanev, E.V.; Grashorn, S. Seamless cross-scale modeling with SCHISM. Ocean Model. 2016, 102, 64–81. [Google Scholar] [CrossRef]
- Chung, E.G.; Bombardelli, F.A.; Schladow, S.G. Modeling linkages between sediment resuspension and water quality in a shallow, eutrophic, wind-exposed lake. Ecol. Model. 2009, 220, 1251–1265. [Google Scholar] [CrossRef]
- Drago, M.; Cescon, B.; Iovenitti, L. A three-dimensional numerical model for eutrophication and pollutant transport. Ecol. Model. 2001, 145, 17–34. [Google Scholar] [CrossRef]
- Man, X.; Lei, C.; Carey, C.C.; Little, J.C. Relative performance of 1-D versus 3-D hydrodynamic, water-quality models for predicting water temperature and oxygen in a shallow, eutrophic, managed reservoir. Water 2021, 13, 88. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, X. A computationally efficient and fully coupled model for sediment-borne contaminant transport. Environ. Fluid Mech. 2025, 25, 2. [Google Scholar] [CrossRef]
- Park, K.; Kuo, A.Y.; Neilson, B.J. A numerical model study of hypoxia in the tidal Rappahannock River of Chesapeake Bay. Estuar. Coast. Shelf Sci. 1996, 42, 563–581. [Google Scholar] [CrossRef]
- Vinçon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001. [Google Scholar] [CrossRef] [PubMed]
- Burt, T.P.; Howden, N.J.K.; Worrall, F. On the importance of very long-term water quality records. Wiley Interdiscip. Rev. Water 2014, 1, 41–48. [Google Scholar] [CrossRef]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Kernan, M.; Battarbee, R.W.; Moss, B.R. (Eds.) Climate Change Impacts on Freshwater Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Khan, A.U.; Wang, P.; Jiang, J.; Shi, B. Long-term trends and probability distributions of river water quality variables and their relationships with climate elasticity characteristics. Environ. Monit. Assess. 2018, 190, 648. [Google Scholar] [CrossRef]
- Lutz, S.R.; Mallucci, S.; Diamantini, E.; Majone, B.; Bellin, A.; Merz, R. Hydroclimatic and water quality trends across three Mediterranean river basins. Sci. Total Environ. 2016, 571, 1392–1406. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Zhi, W.; Appling, A.P.; Golden, H.E.; Podgorski, J.; Li, L. Deep learning for water quality. Nat. Water 2024, 2, 228–241. [Google Scholar] [CrossRef]
- Aly, A.M.; Khaled, F. Optimizing Pier Design to Mitigate Scour: A Comprehensive Review and Large Eddy Simulation Study. J. Appl. Fluid Mech. 2023, 16, 1296–1315. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Peng, Z.; Yu, Q.; Yang, Y.; Li, J. Optimization of Combined Scour Protection for Bridge Piers Using Computational Fluid Dynamics. Water 2025, 17, 2742. [Google Scholar] [CrossRef]
- Bezak, N.; Lebar, K.; Bai, Y.; Rusjan, S. Using Machine Learning to Predict Suspended Sediment Transport under Climate Change. Water Resour. Manag. 2025, 39, 3311–3326. [Google Scholar] [CrossRef]
- Magnier, J.; Fribourg-Blanc, B.; Lemann, T.; Witing, F.; Critchley, W.; Volk, M. Natural/Small Water Retetion Measures: Their Contribution to Ecosystem-Based Concepts. Sustainability 2024, 16, 1308. [Google Scholar] [CrossRef]
- Louarn, A.; Meur-Ferec, C.; Hervé-Fournereau, N. The concept of ‘nature-based solutions’ applied to urban coastal risks: A bibliometric and content analysis review. Ocean. Coast. Manag. 2025, 261, 107530. [Google Scholar] [CrossRef]
- Santos, E. Nature-Based Solutions for Water Management in Europe: What Works, What Does Not, and What’s Next? Water 2025, 17, 2193. [Google Scholar] [CrossRef]
- Luo, H.; Nong, X.; Xia, H.; Liu, H.; Zhong, L.; Feng, Y.; Zhou, W.; Lu, Y. Integrating Water Quality Index (WQI) and Multivariate Statistics for Regional Surface Water Quality Evaluation: Key Parameter Identification and Human Health Risk Assessment. Water 2024, 16, 3412. [Google Scholar] [CrossRef]
- Irewale, A.T.; Dimkpa, C.O.; Elemike, E.E.; Oguzie, E.E. Water hyacinth: Prospects for biochar-based, nano-enabled biofertilizer development. Heliyon 2024, 10, e36966. [Google Scholar] [CrossRef]
- Ramirez, A.; Pérez, S.; Flórez, E.; Acelas, N. Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer. J. Environ. Chem. Eng. 2021, 9, 104776. [Google Scholar] [CrossRef]
- Lim, S.; Choi, J. An AI-Driven Multi-Layer Perceptron Model for Early Detection of Lake Eutrophication. J. Stud. Res. 2025, 14, 1. [Google Scholar] [CrossRef]
- Kumar, P.J.S.; Augustine, C.M. Entropy-weighted water quality index (EWQI) modeling of groundwater quality and spatial mapping in Uppar Odai Sub-Basin, South India. Model. Earth Syst. Environ. 2022, 87, 911–924. [Google Scholar] [CrossRef]
- Das, A. A comprehensive analysis, hydrogeochemical characterization and processes controlling surface water quality: Entropy-based WQI, geospatial assessment, PIS, NPI, and multivariate approaches in Mahanadi basin, Odisha (India). Water-Energy Nexus 2025, 8, 300–325. [Google Scholar] [CrossRef]
- Ilgen, K.; Goulart, C.B.; Hilgert, S.; Schindler, D.; van de Weyer, K.; de Carvalho Bueno, R.; Bleninger, T.; Lastrico, R.; Gfüllner, L.; Graef, A.; et al. Hydrological and ecological effects of floating photovoltaic systems: A model comparison considering mussel, periphyton, and macrophyte growth. Knowl. Manag. Aquat. Ecosyst. 2025, 426, 11. [Google Scholar] [CrossRef]
- Exley, G.; Page, T.; Olsson, F.; Thackeray, S.J.; Chipps, M.J.; Armstrong, A.; Folkard, A.M. Modelling of the potential of floating photovoltaics for mitigating climate change impacts on reservoirs. Knowl. Manag. Aquat. Ecosyst. 2025, 426, 26. [Google Scholar] [CrossRef]
- Mentzafou, A.; Dimitriou, E.; Karaouzas, I.; Zogaris, S. Impact Assessment of Floating Photovoltaic Systems on the Water Quality of Kremasta Lake, Greece. Hydrology 2025, 12, 92. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y.; Lian, Q.; Yin, H.; Peng, J.; Sheng, M.; Wang, Y. Enhancing Real-Time Prediction of Effluent Water Quality of Wastewater Treatment Plant Based on Improved Feedforward Neural Network Coupled with Optimization Algorithm. Water 2022, 14, 1053. [Google Scholar] [CrossRef]
- Peksa, J.; Perekrest, A.; Vadurin, K.; Mamchur, D. A Quantum-Hybrid Framework for Urban Environmental Forecasting Integrating Advanced AI and Geospatial Simulation. Sensors 2025, 25, 7422. [Google Scholar] [CrossRef]
- Sun, J.; Di Nunno, F.; Sojka, M.; Ptak, M.; Luo, Y.; Xu, R.; Xu, J.; Luo, Y.; Zhu, S.; Granata, F. Prediction of daily river water temperatures using an optimized model based on NARX networks. Ecol. Indic. 2024, 161, 111978. [Google Scholar] [CrossRef]
- Aribarg, T.; Yongsiriwit, K.; Chaisiriprasert, P.; Patchsuwan, N.; Supharatid, S. Toward Sustainable Water Resource Management Using a DWT-NARX Model for Reservoir Inflow and Discharge Forecasting in the Chao Phraya River Basin, Thailand. Sustainability 2025, 17, 10091. [Google Scholar] [CrossRef]
- Sahu, G.; Mangukiya, N.K.; Sharma, A. Does MC-LSTM model improve the reliability of streamflow prediction in human-influenced watersheds? J. Hydrol. 2026, 665, 134711. [Google Scholar] [CrossRef]
- Chen, R.; Wang, D.; Mei, Y.; Lin, Y.; Lin, Z.; Zhang, Z.; Zhuang, S.; Zhu, J.; Kam, J.; Wu, Y.; et al. A knowledge-guided LSTM reservoir outflow model and its application to streamflow simulation in reservoir-regulated basins. J. Hydrol. 2025, 658, 133164. [Google Scholar] [CrossRef]
- Shaheed, H.; Zawawi, M.H.; Hayder, G. The Development of a River Quality Prediction Model That Is Based on the Water Quality Index via Machine Learning: A Review. Processes 2025, 13, 810. [Google Scholar] [CrossRef]
- Journiac, L.; Jabot, F.; Jacquet, C.; Künne, A.; Messager, M.L.; Mimeau, M.; Datry, T.; Bonada, N.; Munoz, F.; Chamandrier, L. Exploring the spatio-temporal dynamics of disturbed metacommunities: A mechanistic modeling approach to species resistance and resilience strategies in drying river networks. Ecol. Model. 2025, 506, 111136. [Google Scholar] [CrossRef]
- Farizo, B.A.; Sevilla-Callejo, M.; Soliño, M.; Vicente-Serrano, S.M.; López-Moreno, J.I.; Lázaro-Alquézar, A.; Murphy, C.; Grainger, S.; Conradt, T.; Jin, H.; et al. Valuing drought impact mitigation on ecosystem services in a Mediterranean country. J. Arid Environ. 2024, 225, 105277. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Lei, X.; Wu, J.; Long, Y.; Chen, L.; Wang, M.; Zhao, W. PANet: A physics and action informed network for water level prediction in canal systems. J. Hydrol. 2026, 664, 134485. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dumitran, G.E.; Vuta, L.I.; Timis, E.C.; He, M. Editorial: Hydrodynamics and Water Quality of Rivers and Lakes. Hydrology 2026, 13, 70. https://doi.org/10.3390/hydrology13020070
Dumitran GE, Vuta LI, Timis EC, He M. Editorial: Hydrodynamics and Water Quality of Rivers and Lakes. Hydrology. 2026; 13(2):70. https://doi.org/10.3390/hydrology13020070
Chicago/Turabian StyleDumitran, Gabriela Elena, Liana Ioana Vuta, Elisabeta Cristina Timis, and Minxue He. 2026. "Editorial: Hydrodynamics and Water Quality of Rivers and Lakes" Hydrology 13, no. 2: 70. https://doi.org/10.3390/hydrology13020070
APA StyleDumitran, G. E., Vuta, L. I., Timis, E. C., & He, M. (2026). Editorial: Hydrodynamics and Water Quality of Rivers and Lakes. Hydrology, 13(2), 70. https://doi.org/10.3390/hydrology13020070
