Coupling of Multi-Hydrochemical and Statistical Methods for Identifying Apparent Background Levels of Major Components in Shallow Groundwater in Shanghai, China
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Research Idea and Flowchart
3.2. Sampling and Chemical Analysis
3.3. Data Collection and Statistical Analysis Process
3.4. Comprehensive Assessment of the Anomaly Recognition Effect
4. Results and Discussion
4.1. Hydrochemical Characteristics of Groundwater
4.2. Identification of Hydrochemical Groundwater Component Outliers
4.2.1. Single Methods for Outlier Identification
4.2.2. Coupled Methods for Outlier Identification
4.3. Screening of the Optimal Outlier Identification Method
4.4. Background Level Assessment for Major Groundwater Components
4.5. Implications and Prospects of the Outlier Identification Process for Groundwater
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Shi, Z.; Liu, M.; Wang, G.; Liu, F.; Wang, Y. Identifying anthropogenic sources of groundwater contamination by natural background levels and stable isotope application in Pinggu basin, China. J. Hydrol. 2021, 596, 126092. [Google Scholar] [CrossRef]
- Mostaza-Colado, D.; Carreno-Conde, F.; Rasines-Ladero, R.; Iepure, S. Hydrogeochemical characterization of a shallow alluvial aquifer: 1 baseline for groundwater quality assessment and resource management. Sci. Total Environ. 2018, 639, 1110–1125. [Google Scholar] [CrossRef]
- Gejl, R.N.; Rygaard, M.; Henriksen, H.J.; Rasmussen, J.; Bjerg, P.L. Understanding the impacts of groundwater abstraction through long-term trends in water quality. Water Res. 2019, 156, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Tan, B.; Dai, C.; Lou, S.; Tao, A.; Zhong, G. Geochemical characterization and heavy metal migration in a coastal polluted aquifer incorporating tidal effects: Field investigation in Chongming Island, China. Environ. Sci. Pollut. Res. Int. 2015, 22, 20101–20113. [Google Scholar] [CrossRef]
- Makri, P.; Stathopoulou, E.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Skilodimou, H.D.; Bathrellos, G.D.; Antonarakou, A.; Scoullos, M. The Environmental Impact of a Complex Hydrogeological System on Hydrocarbon-Pollutants’ Natural Attenuation: The Case of the Coastal Aquifers in Eleusis, West Attica, Greece. J. Mar. Sci. Eng. 2020, 8, 1018. [Google Scholar] [CrossRef]
- Zhang, X.; He, J.; He, B.; Sun, J. Assessment, formation mechanism, and different source contributions of dissolved salt pollution in the shallow groundwater of Hutuo River alluvial-pluvial fan in the North China Plain. Environ. Sci. Pollut. Res. Int. 2019, 26, 35742–35756. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Kanel, S.R.; Nakarmi, A. Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants. Water Environ. Res. A Res. Publ. Water Environ. Fed. 2020, 92, 1659–1668. [Google Scholar] [CrossRef]
- Martin Del Campo, M.A.; Esteller, M.V.; Exposito, J.L.; Hirata, R. Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environ. Monit. Assess. 2014, 186, 2979–2999. [Google Scholar] [CrossRef]
- Fu, T.; Li, C.; Wang, Z.; Qi, C.; Chen, G.; Fu, Y.; Su, Q.; Xu, X.; Liu, W.; Yu, H. Hydrochemical characteristics and quality assessment of groundwater in Guangxi coastal areas, China. Mar. Pollut. Bull. 2023, 188, 114564. [Google Scholar] [CrossRef]
- Molinari, A.; Guadagnini, L.; Marcaccio, M.; Guadagnini, A. Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy. Sci. Total Environ. 2012, 425, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Hermides, D.; Makri, P.; Kontakiotis, G.; Antonarakou, A. Advances in the Coastal and Submarine Groundwater Processes: Controls and Environmental Impact on the Thriassion Plain and Eleusis Gulf (Attica, Greece). J. Mar. Sci. Eng. 2020, 8, 944. [Google Scholar] [CrossRef]
- Adimalla, N.; Li, P. Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum. Ecol. Risk Assess. Int. J. 2018, 25, 81–103. [Google Scholar] [CrossRef]
- Jannat, J.N.; Khan, M.S.I.; Islam, H.M.T.; Islam, M.S.; Khan, R.; Siddique, M.A.B.; Varol, M.; Tokatli, C.; Pal, S.C.; Islam, A.; et al. Hydro-chemical assessment of fluoride and nitrate in groundwater from east and west coasts of Bangladesh and India. J. Clean. Prod. 2022, 372, 133675. [Google Scholar] [CrossRef]
- Liao, L.; He, J.; Peng, C.; Zhang, Z.; Wang, L. Methodologies in calculating apparent background values of minor components in groundwater: A case study of the Liujiang Basin. Earth Sci. Front. 2018, 25, 267–275. [Google Scholar] [CrossRef]
- Li, T.; Chen, P.; Kong, X.; Sánchez-Aguilera, D. Multiple marginalizations: Understanding rural restructuring around metropolitan development zone—A case study from Pengdu Village, Shanghai. J. Rural. Stud. 2025, 117, 103645. [Google Scholar] [CrossRef]
- Wu, F.; Wang, T. Investigating a probable relationship between the distribution of microplastics and crab burrows in the intertidal zone of Chongming Island, Yangtze Estuary. Sci. Total Environ. 2022, 851, 158187. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-G.; Chen, J.-J.; Xu, Y.-S.; Tong, D.-G.; Cao, W.-W.; Shi, Y.-J. Effects of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai. Eng. Geol. 2021, 282, 105995. [Google Scholar] [CrossRef]
- Zhan, G.; Li, J.; Wang, H.; Wen, X.; Gu, H. Origin and hydrochemical evolution of confined groundwater in Shanghai, China. Front. Earth Sci. 2023, 11, 1117132. [Google Scholar] [CrossRef]
- Cheng, S.; Wen, Y.; Xu, C.; Gao, X. Hydrochemical Characteristics and Impact Mechanism of Shallow Groundwater in Chongming Island, China. Res. Environ. Sci. 2021, 34, 1120–1128. (In Chinese) [Google Scholar]
- Xiao, J.; Xia, C.; Yuan, C.; Shi, G. Spatio-temporal distribution characteristics and mechanisms of chemical composition of shallow groundwater in coastal area of Yangtze River Estuary. Water Resour. Prot. 2022, 38, 181–197. (In Chinese) [Google Scholar]
- Ni, X.; Wu, Y.; Wu, J.; Lu, J.; Wilson, P.C. Scenario analysis for sustainable development of Chongming Island: Water resources sustainability. Sci. Total Environ. 2012, 439, 129–135. [Google Scholar] [CrossRef]
- Peng, W.; Wang, D.; Cai, Y. Assessing Ecological Vulnerability under Climate Change and Anthropogenic Influence in the Yangtze River Estuarine Island-Chongming Island, China. Int. J. Environ. Res. Public Health 2021, 18, 11642. [Google Scholar] [CrossRef]
- Huang, G.X.; Pei, L.X.; Li, L.P.; Liu, C.Y. Natural background levels in groundwater in the Pearl River Delta after the rapid expansion of urbanization: A new pre-selection method. Sci. Total Environ. 2022, 813, 151890. [Google Scholar] [CrossRef]
- Bi, P.; Huang, G.X.; Liu, C.Y.; Li, L.P. Geochemical factors controlling natural background levels of phosphate in various groundwater units in a large-scale urbanized area. J. Hydrol. 2022, 608, 127594. [Google Scholar] [CrossRef]
- Yan, G.L.; Yang, L.G.; Hou, Q.X. Natural background levels and driving factors of aluminum in shallow groundwater of an urbanized delta: Insight from eliminating anthropogenic-impacted groundwaters. Water Environ. Res. 2024, 96, e11076. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Qian, H.; Huo, C.; Chen, J.; Wang, H. Assessing natural background levels in shallow groundwater in a large semiarid drainage Basin. J. Hydrol. 2020, 584, 124638. [Google Scholar] [CrossRef]
- Sellerino, M.; Forte, G.; Ducci, D. Identification of the natural background levels in the Phlaegrean fields groundwater body (Southern Italy). J. Geochem. Explor. 2019, 200, 181–192. [Google Scholar] [CrossRef]
- Peng, C.; He, J.T.; Wang, M.L.; Zhang, Z.G.; Wang, L. Identifying and assessing human activity impacts on groundwater quality through hydrogeochemical anomalies and NO3−, NH4+, and COD contamination: A case study of the Liujiang River Basin, Hebei Province, P.R. China. Environ. Sci. Pollut. Res. Int. 2018, 25, 3539–3556. [Google Scholar] [CrossRef] [PubMed]
- Guadagnini, L.; Menafoglio, A.; Sanchez-Vila, X.; Guadagnini, A. Probabilistic assessment of spatial heterogeneity of natural background concentrations in large-scale groundwater bodies through Functional Geostatistics. Sci. Total Environ. 2020, 740, 140139. [Google Scholar] [CrossRef]
- Shinwari, F.U.; Liaquat, U.; Khan, M.A.; Kontakiotis, G.; Makri, P.; Lianou, V.; Antonarakou, A. Hydrochemical zonation and depth-based vulnerability of groundwater in Islamabad using GIS and WQI techniques. Front. Water 2025, 7, 1581668. [Google Scholar] [CrossRef]
- Parrone, D.; Ghergo, S.; Preziosi, E. A multi-method approach for the assessment of natural background levels in groundwater. Sci. Total Environ. 2019, 659, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Molinari, A.; Guadagnini, L.; Marcaccio, M.; Guadagnini, A. Geostatistical multimodel approach for the assessment of the spatial distribution of natural background concentrations in large-scale groundwater bodies. Water Res. 2019, 149, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Preziosi, E.; Parrone, D.; Del Bon, A.; Ghergo, S. Natural background level assessment in groundwaters: Probability plot versus pre-selection method. J. Geochem. Explor. 2014, 143, 43–53. [Google Scholar] [CrossRef]
- Efstathiou, C.E. Estimation of type I error probability from experimental Dixon’s “Q” parameter on testing for outliers within small size data sets. Talanta 2006, 69, 1068–1071. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Sui, H.; He, L.; Cao, X.; Li, Y. Evaluation and determination of soil remediation schemes using a modified AHP model and its application in a contaminated coking plant. J. Hazard. Mater. 2018, 353, 300–311. [Google Scholar] [CrossRef]
- He, B.; He, J.; Zeng, Y.; Sun, J.; Peng, C.; Bi, E. Coupling of multi-hydrochemical and statistical methods for identifying apparent background levels of major components and anthropogenic anomalous activities in shallow groundwater of the Liujiang Basin, China. Sci. Total Environ. 2022, 838, 155905. [Google Scholar] [CrossRef]
- Bi, C.; Wang, X.; Jia, J.; Chen, Z. Spatial variation and sources of polycyclic aromatic hydrocarbons influenced by intensive land use in an urbanized river network of East China. Sci. Total Environ. 2018, 627, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.E.; Chen, J.; Leung, H.L. Urbanization, land use, and water quality in Shanghai: 1947–1996. Environ. Int. 2003, 29, 649–659. [Google Scholar] [CrossRef]
- Shi, Q.; Gu, C.-J.; Xiao, C. Multiple scenarios analysis on land use simulation by coupling socioeconomic and ecological sustainability in Shanghai, China. Sustain. Cities Soc. 2023, 95, 104578. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Wang, S.; Zhang, Y.; Du, J.; Liao, L. Using stable isotopes (δ2H and δ18O) and hydrochemistry to understand the genesis and hydrochemical processes of groundwater in Chongming Island, Yangtze Estuary. Environ. Sci. Pollut. Res. Int. 2023, 30, 84300–84313. [Google Scholar] [CrossRef]
- HJ 164-2020; Technical Specifications for Environmental Monitoring of Groundwater. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020.
- DZ/T 0270-2014; Regulation of Groundwater Monitoring Well Construction. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2014.
- Karmegam, U.; Chidambaram, S.; Prasanna, M.V.; Sasidhar, P.; Manikandan, S.; Johnsonbabu, G.; Dheivanayaki, V.; Paramaguru, P.; Manivannan, R.; Srinivasamoorthy, K.; et al. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model. Chin. J. Geochem. 2011, 30, 490–495. [Google Scholar] [CrossRef]
- Ali, S.; Verma, S.; Agarwal, M.B.; Islam, R.; Mehrotra, M.; Deolia, R.K.; Kumar, J.; Singh, S.; Mohammadi, A.A.; Raj, D.; et al. Groundwater quality assessment using water quality index and principal component analysis in the Achnera block, Agra district, Uttar Pradesh, Northern India. Sci. Rep. 2024, 14, 5381. [Google Scholar] [CrossRef]
- Raiber, M.; White, P.A.; Daughney, C.J.; Tschritter, C.; Davidson, P.; Bainbridge, S.E. Three-dimensional geological modelling and multivariate statistical analysis of water chemistry data to analyse and visualise aquifer structure and groundwater composition in the Wairau Plain, Marlborough District, New Zealand. J. Hydrol. 2012, 436–437, 13–34. [Google Scholar] [CrossRef]
- Moreau, M.; Daughney, C. Defining natural baselines for rates of change in New Zealand’s groundwater quality: Dealing with incomplete or disparate datasets, accounting for impacted sites, and merging into state of the-environment reporting. Sci. Total Environ. 2021, 755, 143292. [Google Scholar] [CrossRef]
- Rahman, A.; Tiwari, K.K.; Mondal, N.C. Assessment of hydrochemical backgrounds and threshold values of groundwater in a part of desert area, Rajasthan, India. Environ. Pollut. 2020, 266, 115150. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Chen, H.W.; Li, F.L. Identifying spatial heterogeneity of groundwater and its response to anthropogenic activities. Environ. Sci. Pollut. Res. Int. 2019, 26, 29435–29448. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Sun, J.; Wang, J. Natural background levels of chemical components in groundwater of Hutuo River catchment area, North China Plain. Environ. Forensics 2017, 18, 62–73. [Google Scholar] [CrossRef]
- Amiri, V.; Sohrabi, N.; Lak, R.; Tajbakhsh, G. Estimation of natural background levels of heavy metals and major variables in groundwater to ensure the sustainable supply of safe drinking water in Fereidan, Iran. Environ. Dev. Sustain. 2023, 26, 19807–19832. [Google Scholar] [CrossRef]
- He, M.; Sakurai, K.; Wang, G.; Chen, Z.; Shu, Y.; Xu, J. Physico-chemical characteristics of the soils developed from alluvial deposits on Chongming Island in Shanghai, China. Soil Sci. Plant Nutr. 2003, 49, 223–229. [Google Scholar] [CrossRef][Green Version]
- Shi, Y. Ancient river bed distribution and its effect on construction in land area of Shanghai. J. Eng. Geol. 2011, 19, 277–283. (In Chinese) [Google Scholar]







| Major Ions | Hydrochemical Unit | Whole Area | |
|---|---|---|---|
| Qingpu Unit | Chongming Unit | ||
| ORP (mV) | −48.92 ± 21.75 | −117.57 ± 34.73 | −84.69 ± 45.13 |
| pH | 7.32 ± 0.18 | 7.46 ± 0.22 | 7.39 ± 0.22 |
| Eh (mS/m) | 1199.79 ± 406.02 | 2107.73 ± 2396.33 | 1672.94 ± 1799.89 |
| TDS (mg/L) | 778.27 ± 249.49 | 1576.68 ± 1629.04 | 1184.02 ± 1232.46 |
| NO3− (mg/L) | 1.15 ± 1.77 | 0.56 ± 0.98 | 0.85 ± 1.44 |
| Cl− (mg/L) | 128.73 ± 83.65 | 567.54 ± 1117.55 | 357.41 ± 833.27 |
| SO42− (mg/L) | 86.16 ± 54.49 | 173.79 ± 848.66 | 131.83 ± 611.34 |
| HCO3− (mg/L) | 568.61 ± 179.2 | 668.2 ± 184.44 | 620.51 ± 187.47 |
| CO32− (mg/L) | 0 ± 0 | 8.24 ± 21.14 | 4.3 ± 15.72 |
| K+ (mg/L) | 7.29 ± 5.99 | 21.39 ± 22.9 | 14.64 ± 18.35 |
| Na+ (mg/L) | 143.23 ± 59.48 | 420.44 ± 661.68 | 287.69 ± 496.27 |
| Ca2+ (mg/L) | 42.24 ± 19.13 | 42.24 ± 24.11 | 42.24 ± 21.71 |
| Mg2+ (mg/L) | 44.47 ± 18.92 | 81.97 ± 84.14 | 64.01 ± 64.54 |
| Single Method | Hydrochemical Units | Total Samples | Outlier Samples | Contribution of Anomalous Indicators (CAI) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| K+ | Na+ | Ca2+ | Mg2+ | HCO3− | CO32− | Cl− | SO42− | TDS | pH | NO3− | ||||
| Hydro | Chongming unit | 31 | 13 | 0.62 * | 0.62 * | 0.92 * | 0.92 * | 0.54 | 0.00 | 0.62 * | 0.92 * | 0.00 | 0.00 | 0.00 |
| Qingpu unit | 30 | 3 | 0.00 | 0.00 | 1.00 * | 1.00 * | 0.00 | 0.00 | 0.00 | 1.00 * | 0.00 | 0.00 | 0.00 | |
| HCA | Chongming unit | 31 | 12 | 0.33 | 0.17 | 0.08 | 0.17 | 0.17 | 0.25 | 0.17 | 0.08 | 0.17 | 0.17 | 0.08 |
| Qingpu unit | 30 | 6 | 0.50 | 0.00 | 0.50 | 0.33 | 0.00 | 0.00 | 0.33 | 0.17 | 0.50 | 0.00 | 0.17 | |
| Grubbs | Chongming unit | 31 | 5 | 0.00 | 0.40 | 0.00 | 0.40 | 0.00 | 0.00 | 0.60 * | 0.60 * | 0.40 | 0.00 | 0.20 |
| Qingpu unit | 30 | 2 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | |
| Single Method | Hydrochemical Units | Total Samples | Outlier Samples | Contribution of Anomalous Indicators (CAI) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| K+ | Na+ | Ca2+ | Mg2+ | HCO3− | CO32− | Cl− | SO42− | TDS | pH | NO3− | ||||
| Hydro-HCA | Chongming unit | 31 | 21 | 0.43 | 0.52 | 0.62 | 0.52 | 0.33 | 0.14 | 0.43 | 0.62 * | 0.00 | 0.05 | 0.00 |
| Qingpu unit | 30 | 8 | 0.63 * | 0.25 | 0.13 | 0.25 | 0.00 | 0.00 | 0.25 | 0.13 | 0.13 | 0.00 | 0.13 | |
| Grubbs-Hydro | Chongming unit | 31 | 14 | 0.36 | 0.50 | 0.64 * | 0.79 * | 0.43 | 0.00 | 0.57 | 0.79 * | 0.14 | 0.00 | 0.07 |
| Qingpu unit | 30 | 4 | 0.50 | 0.50 | 0.00 | 0.25 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.25 | |
| HCA-Hydro | Chongming unit | 31 | 17 | 0.41 | 0.29 | 0.35 | 0.41 | 0.35 | 0.18 | 0.29 | 0.29 | 0.12 | 0.12 | 0.06 |
| Qingpu unit | 30 | 6 | 0.50 | 0.00 | 0.50 | 0.33 | 0.00 | 0.00 | 0.33 | 0.17 | 0.50 | 0.00 | 0.17 | |
| Hydro-Grubbs | Chongming unit | 31 | 14 | 0.57 | 0.64 * | 0.86 * | 0.86 * | 0.50 | 0.00 | 0.57 | 0.86 * | 0.00 | 0.00 | 0.00 |
| Qingpu unit | 30 | 4 | 0.00 | 0.00 | 0.75 * | 0.75 * | 0.00 | 0.00 | 0.00 | 1.00 * | 0.00 | 0.00 | 0.00 | |
| Grubbs-HCA | Chongming unit | 31 | 21 | 0.10 | 0.33 | 0.24 | 0.29 | 0.00 | 0.14 | 0.33 | 0.24 | 0.29 | 0.10 | 0.05 |
| Qingpu unit | 30 | 19 | 0.16 | 0.37 | 0.05 | 0.26 | 0.00 | 0.00 | 0.05 | 0.47 | 0.11 | 0.00 | 0.32 | |
| Hydrochemical Unit | Index | Mean | Medium | S.D. | Lower Limit | Upper Limit |
|---|---|---|---|---|---|---|
| Qingpu unit | pH | 7.3 | 7.4 | 0.2 | 7.0 | 7.7 |
| TDS | 730.9 | 685.0 | 202.3 | 449.0 | 1240.0 | |
| Cl– | 106.2 | 93.0 | 58.3 | 26.6 | 212.0 | |
| SO42– | 76.8 | 65.5 | 42.3 | 7.6 | 146.0 | |
| HCO3– | 8.7 | 8.6 | 2.5 | 4.8 | 13.5 | |
| CO32– | 0 | 0 | 0 | 0 | 0 | |
| NO3– | 1.0 | 0.6 | 0.9 | 0.2 | 3.7 | |
| K+ | 6.0 | 5.6 | 4.1 | 0.8 | 18.7 | |
| Na+ | 131.5 | 117.5 | 54.3 | 40.7 | 260.0 | |
| Ca2+ | 36.9 | 36.6 | 12.4 | 12.2 | 64.8 | |
| Mg2+ | 40.1 | 40.2 | 13.7 | 11.4 | 72.8 | |
| Chongming unit | pH | 7.4 | 7.4 | 0.2 | 7.1 | 7.7 |
| TDS | 784.6 | 770.5 | 340.4 | 356.0 | 1520.0 | |
| Cl– | 111.3 | 85.2 | 133.7 | 10.1 | 480.0 | |
| SO42– | 10.8 | 7.5 | 9.0 | 2.4 | 26.7 | |
| HCO3– | 10.3 | 11.1 | 3.0 | 4.7 | 13.9 | |
| CO32– | 0 | 0 | 0 | 0 | 0 | |
| NO3– | 0.4 | 0.4 | 0.1 | 0.2 | 0.5 | |
| K+ | 7.6 | 5.7 | 4.3 | 2.1 | 15.0 | |
| Na+ | 114.4 | 89.3 | 87.6 | 14.2 | 248.0 | |
| Ca2+ | 44.9 | 38.6 | 24.5 | 10.9 | 80.4 | |
| Mg2+ | 44.2 | 50.3 | 18.5 | 16.6 | 71.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Q.; Ji, M.; Zhang, S.; Yang, J.; Lu, H. Coupling of Multi-Hydrochemical and Statistical Methods for Identifying Apparent Background Levels of Major Components in Shallow Groundwater in Shanghai, China. Hydrology 2026, 13, 71. https://doi.org/10.3390/hydrology13020071
Li Q, Ji M, Zhang S, Yang J, Lu H. Coupling of Multi-Hydrochemical and Statistical Methods for Identifying Apparent Background Levels of Major Components in Shallow Groundwater in Shanghai, China. Hydrology. 2026; 13(2):71. https://doi.org/10.3390/hydrology13020071
Chicago/Turabian StyleLi, Qingqing, Min Ji, Shiyang Zhang, Jie Yang, and Hainan Lu. 2026. "Coupling of Multi-Hydrochemical and Statistical Methods for Identifying Apparent Background Levels of Major Components in Shallow Groundwater in Shanghai, China" Hydrology 13, no. 2: 71. https://doi.org/10.3390/hydrology13020071
APA StyleLi, Q., Ji, M., Zhang, S., Yang, J., & Lu, H. (2026). Coupling of Multi-Hydrochemical and Statistical Methods for Identifying Apparent Background Levels of Major Components in Shallow Groundwater in Shanghai, China. Hydrology, 13(2), 71. https://doi.org/10.3390/hydrology13020071

