Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Log-Pearson Type III Probability Distribution
2.2.2. Conditions of Variable Series
2.2.3. Simple Case of Parameter Estimation
3. Results
3.1. Direct Estimate of the T-Year 1-Day Maximum Specific Discharges
3.2. Direct Estimate of the T-Year 7-Day Minimum Specific Discharges
3.3. Indirect Estimation of the T-Year 1-Day Maximum and 7-Day Minimum Specific Discharges
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, A. Increased drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Zhao, C.; Brissette, F.; Chen, J.; Martel, J.L. Frequency change of future extreme summer meteorological and hydrological droughts over North America. J. Hydrol. 2020, 584, 124316. [Google Scholar] [CrossRef]
- Meresa, H.; Tischbein, B.; Mekonnen, T. Climate change impact on extreme precipitation and peak flood magnitude and frequency: Observations from CMIP6 and hydrological models. Nat. Hazards 2022, 111, 2649–2679. [Google Scholar] [CrossRef]
- Xiong, J.; Yang, Y. Climate Change and Hydrological Extremes. Curr. Clim. Change Rep. 2025, 11, 1. [Google Scholar] [CrossRef]
- Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 2022, 26, 5015–5033. [Google Scholar] [CrossRef]
- Dey, P.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- WFD. Directive 2000/60/EC of the European Parliament and of the Council of the 23 October 2000, Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng (accessed on 28 July 2025).
- Cauncil, T.E. Directive 2007/60/EC on the Assessment and Management of Flood Risks. J. Eur. Union Off. 2007, 288, 27–34. Available online: https://eur-lex.europa.eu/eli/dir/2007/60/oj/eng (accessed on 28 July 2025).
- European Commission (EU COM). Report on the Review of the European Water Scarcity and Droughts Policy. 2012. Available online: https://environment.ec.europa.eu/topics/water/water-scarcity-and-droughts_en (accessed on 28 July 2025).
- European Commission (EU COM). Forging a Climate-Resilient Europe—The New EU Strategy on Adaptation to Climate Change. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0082 (accessed on 28 July 2025).
- Coxon, G.; Freer, J.; Westerberg, I.K.; Wagener, T.; Woods, R.; Smith, P.J. A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resour. Res. 2015, 51, 5531–5546. [Google Scholar] [CrossRef]
- Rogger, M.; Kohl, B.; Pirkl, H.; Viglione, A.; Komma, J.; Kirnbauer, R.; Merz, R.; Blöschl, G. Runoff models and flood frequency statistics for design flood estimation in Austria—Do they tell a consistent story? J. Hydrol. 2012, 456–457, 30–43. [Google Scholar] [CrossRef]
- Šraj, M.; Viglione, A.; Parajka, J.; Blöschl, G. The influence of non-stationarity in extreme hydrological events on flood frequency estimation. J. Hydrol. Hydromech. 2016, 64, 426–437. [Google Scholar] [CrossRef]
- Leščešen, I.; Dolinaj, D. Regional Flood Frequency Analysis of the Pannonian Basin. Water 2019, 11, 193. [Google Scholar] [CrossRef]
- Petrovič, P. Basin-Wide Water Balance in the Danube River Basin. In The Danube and Its Basin—Hydrological Monograph; Follow-up; IH SAS: Bratislava, Slovakia, 2006; Volume VIII. [Google Scholar]
- Pekárová, P.; Miklánek, P. (Eds.) Flood Regime of Rivers in the Danube River Basin; Follow-Up Volume IX of the Regional Co-operation of the Danube Countries in IHP UNESCO; IH SAS: Bratislava, Slovakia, 2019; p. 215+527. ISBN 978-80-89139-45-3. (Print Version); Available online: https://ekniznice.cvtisr.sk/view/uuid:0a69b07b-1ab2-4fc6-b1ff-8b4fee53aa53?page=uuid:368e587c-1980-44d8-abe0-8a90f28b2206 (accessed on 28 July 2025).
- Pekárová, P.; Bajtek, Z.; Pekár, J.; Výleta, R.; Bonacci, O.; Miklánek, P.; Belz, J.; Gorbachova, L. Monthly stream temperatures along the Danube River: Statistical analysis and predictive modelling with incremental climate change scenarios. J. Hydrol. Hydromech. 2023, 71, 382–398. [Google Scholar] [CrossRef]
- Brázdil, R.; Kundzewicz, Z.W.; Benito, G. Historical hydrology for studying flood risk in Europe. Hydrol. Sci. J. 2006, 51, 739–764. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resour. Res. 2008, 44, W08432. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. Flood frequency hydrology: 2. Combining data evidence. Water Resour. Res. 2008, 44, W08433. [Google Scholar] [CrossRef]
- Lugeri, N.; Kundzewicz, Z.W.; Genovese, E.; Hochrainer, S.; Radziejewski, M. River flood risk and adaptation in Europe—Assessment of the present status. Mitig. Adapt. Strateg. Glob. Change 2010, 15, 621–639. [Google Scholar] [CrossRef]
- Elleder, L.; Herget, J.; Roggenkamp, T.; Nießen, A. Historic floods in the city of Prague—A reconstruction of peak discharges for 1481–1825 based on documentary sources. Hydrol. Res. 2013, 44, 202–214. [Google Scholar] [CrossRef]
- Pekárová, P.; Halmová, D.; Bačová Mitková, V.; Miklánek, P.; Pekár, J.; Skoda, P. Historic flood marks and flood frequency analysis of the Danube River at Bratislava, Slovakia. J. Hydrol. Hydromech. 2013, 61, 326. [Google Scholar] [CrossRef]
- Kjeldsen, T.R.; Macdonald, N.; Lang, M.; Mediero, L.; Albuquerque, T.; Bogdanowicz, E.; Brazdil, R.; Castellarin, A.; David, V.; Fleig, A.; et al. Documentary evidence of past floods in Europe and their utility in flood frequency estimation. J. Hydrol. 2014, 517, 963–973. [Google Scholar] [CrossRef]
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in flood losses in Europe over the past 150 years. Nat. Commun. 2018, 9, 1985. [Google Scholar] [CrossRef]
- Cammalleri, C.; Vogt, J.; Salamon, P. Development of an operational low-flow index for hydrological drought monitoring over Europe. Hydrol. Sci. J. 2017, 62, 346–358. [Google Scholar] [CrossRef]
- Kay, A.L.; Griffin, A.; Rudd, A.C.; Chapman, R.M.; Bell, V.A.; Arnell, N.W. Climate change effects on indicators of high and low river flow across Great Britain. Adv. Water Resour. 2021, 151, 103909. [Google Scholar] [CrossRef]
- Tomaszewski, E.; Kubiak-Wójcicka, K. Low-flows in Polish rivers. In Management of Water Resources in Poland; Springer: Cham, Switzerland, 2021; pp. 205–228. [Google Scholar] [CrossRef]
- Tsakiris, G.; Nalbantis, I.; Cavadias, G. Regionalization of low flows based on canonical correlation analysis. Adv. Water Resour. 2011, 34, 865–872. [Google Scholar] [CrossRef]
- Gottschalk, L.; Yu, K.X.; Leblois, E.; Xiong, L. Statistics of low flow: Theoretical derivation of the distribution of minimum streamflow series. J. Hydrol. 2013, 481, 204–219. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Q.; Yao, R.; Singh, V.P.; Song, C. Low flow regimes of the Tarim River Basin, China: Probabilistic behaviour, causes and implications. Water 2018, 10, 470. [Google Scholar] [CrossRef]
- Bhatti, S.J.; Kroll, C.N.; Vogel, R.M. Revisiting the probability distribution of low streamflow series in the United States. J. Hydrol. Eng. 2019, 24, 04019043. [Google Scholar] [CrossRef]
- Langat, P.K.; Kumar, L.; Koech, R. Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow. Water 2019, 11, 734. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, S.U. Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method. Hydrol. Process. Int. J. 2008, 22, 1949–1964. [Google Scholar] [CrossRef]
- Whitfield, P.H.; Kraaijenbrink, P.D.; Shook, K.R.; Pomeroy, J.W. The spatial extent of hydrological and landscape changes across the mountains and prairies of Canada in the Mackenzie and Nelson River basins based on data from a warm-season time window. Hydrol. Earth Syst. Sci. 2021, 25, 2513–2541. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Change 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Arismendi, I.; Johnson, S.L.; Dunham, J.B.; Haggerty, R.O.Y. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America. Freshw. Biol. 2013, 58, 880–894. [Google Scholar] [CrossRef]
- Leprieur, F.; Hickey, M.A.; Arbuckle, C.J.; Closs, G.P.; Brosse, S.; Townsend, C.R. Hydrological disturbance benefits a native fish at the expense of an exotic fish. J. Appl. Ecol. 2006, 43, 930–939. [Google Scholar] [CrossRef]
- Assefa, K.; Moges, M. Low Flow Trends and Frequency Analysis in the Blue Nile Basin, Ethiopia. J. Water Resour. Prot. 2018, 10, 182–203. [Google Scholar] [CrossRef]
- Rottler, E.; Francke, T.; Bürger, G.; Bronstert, A. Long-term changes in Central European River discharge for 1869–2016: Impact of changing snow covers, reservoir constructions and an intensified hydrological cycle. Hydrol. Earth Syst. Sci. 2020, 24, 1721–1740. [Google Scholar] [CrossRef]
- Oki, T.; Valeo, C.; Heal, K. (Eds.) Hydrology 2020: An Integrating Science to Meet World Water Challenges; IAHS Press: Oxfordshire, UK, 2006; Volume 300, p. 190. [Google Scholar]
- Poórová, J.; Melová, K.; Lovásová, Ľ.; Blaškovičová, L. The impact of manipulation on selected water reservoirs on flow with regard to the dry season. In Proceedings of the Water Reservoirs Conference, Brno, Czech Republic, 3–4 October 2017; pp. 169–177. Available online: https://www.shmu.sk/sk/?page=2272 (accessed on 28 July 2025).
- Rončák, P.; Hlavčová, K.; Kohnová, S.; Szolgay, J. Impacts of Future Climate Change on Runoff in Selected Catchments of Slovakia. In Climate Change Adaptation in Eastern Europe; Climate Change Management; Leal Filho, W., Trbic, G., Filipovic, D., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Hlavčová, K.; Rončak, P.; Maliarikova, M.; Latkova, T.; Korbelova, L. Changes in hydrological regime under changed climate and forest conditions in mountainous basins in Slovakia. In EGU General Assembly Conference Abstracts; European Geosciences Union: Munich, Germany, 2016; p. EPSC2016-11995. [Google Scholar]
- Halmová, D.; Pekárová, P.; Bačová Mitková, V. Long-term trend changes of monthly and extreme discharges for different time periods. Acta Hydrol. Slovaca 2019, 20, 122–130. [Google Scholar] [CrossRef]
- Sabová, Z.; Kohnová, S. On future changes in the long-term seasonal discharges in selected basins of Slovakia. Acta Hydrol. Slovaca 2023, 24, 73–81. [Google Scholar] [CrossRef]
- Poórová, J.; Jeneiová, K.; Blaškovičová, L.; Danáčcová, Z.; Kotríková, K.; Melová, K.; Paľušová, Z. Effects of the time period length on the determination of long-term mean annual discharge. Hydrology 2023, 10, 88. [Google Scholar] [CrossRef]
- Váš, P.; Bartok, J.; Gaál, L.; Jurašek, M.; Melo, M.; Gera, M. Frequency shifts in thunderstorm patterns as key precursors to flash flood events. J. Hydrol. Hydromech. 2025, 73, 73–83. [Google Scholar] [CrossRef]
- Sleziak, P.; Danko, M.; Jančo, M.; Holko, L.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Parajka, J. Accuracy of ASCAT-DIREX Soil Moisture Mapping in a Small Alpine Catchment. Water 2025, 17, 49. [Google Scholar] [CrossRef]
- Bačová Mitková, V.; Pekárová, P.; Halmová, D.; Miklánek, P.; Leščešen, I. Long-term analysis of changes in seasonal and maximum discharges of Slovak rivers in the period 1931–2020. J. Hydrol. Hydromech. 2024, 72, 486–498. [Google Scholar] [CrossRef]
- Blaškovičová, L.; Jeneiová, K.; Kotríková, K.; Lovásová, Ľ.; Melová, K.; Liová, S. Challenges in selecting the new reference period for long-term hydrological characteristics in Slovakia. Acta Hydrol. Slovaca 2023, 24, 232–241. [Google Scholar] [CrossRef]
- Blaškovičová, L.; Melová, K.; Liová, S.; Podolinská, J.; Síčová, B.; Grohoľ, M. The drought characteristics and their changes in selected water-gauging stations in Slovakia in the period 2001–2020 compared to the reference period 1961–2000. Acta Hydrol. Slovaca 2022, 23, 10–20. [Google Scholar] [CrossRef]
- OTN ŽP SR 3112-1:03; Surface Water and Subsurface Water Quantity. Hydrological Data of Surface Waters. Quantification of Flood Regime. Part 1: Determination of T-Year Discharges and T-Year Discharge Waves on Larger Streams. Ministry of the Environment: Bratislava, Slovakia, 2003.
- OTN ŽP SR 3113-1:04; Surface Water Quantity. Part 1 Determination of Low Water Content in Water Measuring Stations. Ministry of the Environment: Bratislava, Slovakia, 2007; 10p. (In Slovak)
- Pilon, P.J.; Adamowski, K. Asymptotic variance of flood quantile in log Pearson type III distribution with historical information. J. Hydrol. 1993, 143, 481–503. [Google Scholar] [CrossRef]
- Cheng, K.S.; Chiang, J.L.; Hsu, C.W. Simulation of probability distributions commonly used in hydrological frequency analysis. Hydrol. Process 2007, 21, 51–60. [Google Scholar] [CrossRef]
- Griffis, V.W.; Stedinger, J.R. Log-Pearson type 3 distribution and its application in flood frequency analysis, III—Sample skew and weighted skew estimators. J. Hydrol. 2009, 14, 121–130. [Google Scholar] [CrossRef]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood frequency analysis of river swat using Log Pearson type 3, Generalized Extreme Value, Normal, and Gumbel Max distribution methods. Arab. J. Geosci. 2018, 11, 216. [Google Scholar] [CrossRef]
- Tian, D.; Wang, L. BLP3-SP: A Bayesian Log-Pearson type III model with spatial priors for reducing uncertainty in flood frequency analyses. Water 2022, 14, 909. [Google Scholar] [CrossRef]
- IACWD. Guidelines for Determining Flood Flow Frequency, Bulletin 17-B; Technical report; Interagency Committee on Water Data, Hydrology Subcommittee: Reston, VA, USA, 1982; 194p. [Google Scholar]
- Stedinger, J.R.; Griffis, V.W. Flood Frequency Analysis in the United States: Time to Update. J. Hydrol. Eng. 2008, 13, 199–204. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Theory of the Strength of Materials. In Ingeniörs Vetenskaps Akademiens Handlingar; Royal Swedish Institute for Engineering Research: Stockholm, Sweden, 1939; No. 151. [Google Scholar]
- Cunnane, C. Unbiased plotting positions—A review. J. Hydrol. 1978, 37, 205–222. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Vogel, R.M.; Foufoula-Georgiou, E. Frequency analysis of extreme events. In Handbook of Hydrology, Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; Chapter 18. [Google Scholar]
- Obodovskyi, O.; Lukianets, O.; Konovalenko, O.; Mykhaylenko, V. Mapping the Mean Annual River Runoff in the UkrainianCarpathian Region. EREM J. Environ. Res. Eng. Manag. 2020, 76, 22–33. [Google Scholar] [CrossRef]
- Pekárová, P.; Halmová, D.; Bačová Mitková, V.; Poórová, J.; Blaškovičová, L.; Pekár, J.; Leščešen, I.; Bajtek, Z. Temporal variability of average and low flows in Slovak rivers: A 90-year perspective. J. Hydrol. Reg. Stud. 2025, 60, 102560. [Google Scholar] [CrossRef]
- Sleziak, P.; Výleta, R.; Hlavčová, K.; Danáčová, M.; Aleksić, M.; Szolgay, J.; Kohnová, S. A hydrological modelling approach for assessing the impacts of climate change on runoff regimes in Slovakia. Water 2021, 13, 3358. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Stahl, K.; Hisdal, H.; Hannaford, J.; Tallaksen, L.M.; Van Lanen, H.A.J.; Sauquet, E.; Jódar, J. Streamflow trends in Europe: Evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. 2010, 14, 2367–2382. [Google Scholar] [CrossRef]
- Hannaford, J. Climate-driven changes in UK river flows: A review of the evidence. Prog. Phys. Geogr. 2015, 39, 29–48. [Google Scholar] [CrossRef]
- Nasr, A.; Bruen, M. Detection of trends in the 7-day sustained low-flow time series of Irish rivers. Hydrol. Sci. J. 2017, 62, 947–959. [Google Scholar] [CrossRef]
- Giuntoli, I.; Renard, B.; Vidal, J.-P.; Bard, A. Low flows in France and their relationship to large-scale climate indices. J. Hydrol. 2013, 482, 105–118. [Google Scholar] [CrossRef]
- Fiala, T.; Taha, B.M.; Ouarda, J.; Hladný, J. Evolution of low flows in the Czech Republic. J. Hydrol. 2010, 393, 206–218. [Google Scholar] [CrossRef]
- Coch, A.; Mediero, L. Trends in low flows in Spain in the period 1949–2009. Hydrol. Sci. J. 2016, 61, 568–584. [Google Scholar] [CrossRef]
- Cigizoglu, H.K.; Bayazit, M.; Önöz, B. Trends in the Maximum, Mean, and Low Flows of Turkish Rivers. J. Hydrometeor. 2005, 6, 280–290. [Google Scholar] [CrossRef]
- Bard, A.; Renard, B.; Lang, M.; Giuntoli, I.; Korck, J.; Koboltschnig, G.; Janža, M.; d’Amico, M.; Volken, D. Trends in the hydrologic regime of Alpine rivers. J. Hydrol. 2015, 529, 1823–1837. [Google Scholar] [CrossRef]
- Leščešen, I.; Gnjato, S.; Vujačić, D.; Petrović, A.M.; Radevski, I. Seasonal variability changes and trends in minimum discharge for Western Balkan rivers. J. Hydrol. Reg. Stud. 2025, 60, 102529. [Google Scholar] [CrossRef]
- Blagojević, B.; Mihailović, V.; Bogojević, A.; Plavšić, J. Detecting Annual and Seasonal Hydrological Change Using Marginal Distributions of Daily Flows. Water 2023, 15, 2919. [Google Scholar] [CrossRef]
- Gorbachova, L.; Khrystiuk, B. Extreme low flow change analysis on the Tysa River within Ukraine. Acta Hydrol. Slovaca 2021, 22, 200–206. [Google Scholar] [CrossRef]
- Mészáros, J.; Miklánek, P.; Pekárová, P. Estimation of the t-year specific discharge using the regionalised skewness coefficient of the log-pearson type III distribution. In Proceedings of the XXVIII Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management, Kyiv, Ukraine, 6–8 November 2019; Ukrainian Hydrometeorological Institute, Department of Hydrological Research: Kyiv, Ukraine, 2019; pp. 73–85, ISBN 978-966-7067-38-0. [Google Scholar]
- Bačová Mitková, V.; Pekárová, P.; Halmová, D.; Miklánek, P. The use of a uniform technique for harmonization and generalization in assessing the flood discharge frequencies of long return period floods in the Danube River Basin. Water 2021, 13, 1337. [Google Scholar] [CrossRef]
ID SK | Gauge Station | River | Period | Area [km2] | Forestry [%] | Valley Length [km] | Qma [m3.s−1] | Rma [mm] | H [m a.s.l] |
---|---|---|---|---|---|---|---|---|---|
5040 | Moravský Svätý Ján | Morava | 1930–2020 | 24,129.3 | 30 | 260.4 | 105.1 | 137 | 146 |
5330 | Východná | Biely Váh | 1930–2020 | 105.64 | 30 | 18.8 | 1.58 | 472 | 730.65 |
5340 | Kráľova Lehota | Boca | 1930–2020 | 116.6 | 80 | 18.3 | 2.01 | 544 | 655.08 |
5400 | Podbanské | Belá | 1930–2020 | 93.49 | 30 | 16 | 3.53 | 1191 | 922.7 |
5550 | Liptovský Mikuláš | Váh | 1930–2020 | 1107.21 | 60 | 58.8 | 20.47 | 583 | 568 |
5740 | Podsuchá | Revúca | 1930–2020 | 217.95 | 60 | 21.9 | 4.82 | 697 | 558.31 |
5790 | Ľubochňa | Ľubochnianka | 1930–2020 | 118.48 | 90 | 24 | 2.37 | 631 | 442.71 |
6130 | Martin | Turiec | 1930–2020 | 827 | 60 | 59.6 | 10.17 | 388 | 389.88 |
6200 | Kysucké Nové Mesto | Kysuca | 1930–2020 | 955.09 | 50 | 57.6 | 16.15 | 533 | 346 |
6300 | Poluvsie | Rajčanka | 1930–2020 | 243.6 | 60 | 12.5 | 3.53 | 457 | 393.03 |
6730 | Nitrianska Streda | Nitra | 1930–2020 | 2093.71 | 50 | 78.7 | 14.49 | 218 | 158.3 |
7045 | Hronec | Čierny Hron | 1930–2020 | 239.41 | 80 | 23.5 | 2.85 | 375 | 480.48 |
7060 | Bystrá | Bystrianka | 1930–2020 | 36.01 | 80 | 12 | 0.92 | 806 | 574.54 |
7065 | Mýto pod Ďumbierom | Štiavnička | 1930–2020 | 47.1 | 80 | 10.9 | 1.05 | 703 | 616.75 |
7070 | Dolná Lehota | Vajskovský potok | 1930–2020 | 53.02 | 70 | 15 | 1.36 | 809 | 495.28 |
7160 | Banská Bystrica | Hron | 1930–2020 | 1766.48 | 60 | 100.5 | 25.78 | 460 | 334 |
7290 | Brehy | Hron | 1930–2020 | 3821.38 | 50 | 181.4 | 46.22 | 381 | 195 |
7440 | Holiša | Ipeľ | 1930–2020 | 685.26 | 30 | 56.1 | 3.03 | 139 | 172 |
7580 | Plášťovce | Krupinica | 1930–2020 | 302.79 | 40 | 54.5 | 1.76 | 183 | 139 |
7600 | Plášťovce | Litava | 1930–2020 | 214.42 | 30 | 43.9 | 1.09 | 160 | 142.02 |
7730 | Štítnik | Štítnik | 1930–2020 | 129.63 | 40 | 18.l | 1.36 | 331 | 284.95 |
7860 | Lehota nad Rimavicou | Rimavica | 1930–2020 | 148.95 | 30 | 29.6 | 1.5 | 318 | 263.65 |
8320 | Chmeľnica | Poprad | 1930–2020 | 1262.41 | 40 | 85.2 | 15.51 | 387 | 507.44 |
8870 | Košické Olšany | Torysa | 1930–2020 | 1298.3 | 30 | 116.4 | 7.73 | 188 | 185.88 |
8970 | Nižný Medzev | Bodva | 1940–2020 | 90.15 | 80 | 13.5 | 0.78 | 273 | 310.24 |
9500 | Hanušovce | Topľa | 1930–2020 | 1050.05 | 50 | 84.6 | 8.04 | 241 | 160.4 |
ID SK | Period | q1dmax,50 | q1dmax,100 | q1dmax,500 | q1dmax,50 WS | q1dmax,50 SA | q1dmax,100 WS | q1dmax,100 SA | q1dmax 500 WS | q1dmax,500 SA |
---|---|---|---|---|---|---|---|---|---|---|
5040 | 1930–2020 | 57 | 66 | 89 | 55 | 43 | 64 | 51 | 85 | 73 |
5330 | 1930–2020 | 277 | 323 | 445 | 237 | 259 | 286 | 302 | 432 | 409 |
5340 | 1930–2020 | 294 | 335 | 434 | 254 | 256 | 288 | 293 | 367 | 381 |
5400 | 1930–2020 | 706 | 827 | 1152 | 266 | 715 | 287 | 842 | 327 | 1186 |
5550 | 1930–2020 | 235 | 265 | 339 | 163 | 231 | 185 | 263 | 240 | 343 |
5740 | 1930–2020 | 316 | 361 | 478 | 290 | 257 | 335 | 289 | 450 | 362 |
5790 | 1930–2020 | 236 | 272 | 400 | 214 | 169 | 259 | 189 | 396 | 237 |
6130 | 1930–2020 | 249 | 310 | 502 | 185 | 180 | 217 | 238 | 305 | 439 |
6200 | 1930–2020 | 474 | 534 | 686 | 343 | 434 | 375 | 491 | 447 | 623 |
6300 | 1930–2020 | 346 | 398 | 528 | 277 | 324 | 319 | 392 | 424 | 578 |
6730 | 1930–2020 | 142 | 161 | 203 | 127 | 132 | 143 | 177 | 179 | 325 |
7045 | 1930–2020 | 310 | 383 | 600 | 214 | 264 | 248 | 358 | 333 | 698 |
7060 | 1930–2020 | 320 | 370 | 497 | 211 | 304 | 234 | 363 | 287 | 494 |
7065 | 1930–2020 | 352 | 439 | 721 | 217 | 347 | 239 | 450 | 289 | 797 |
7070 | 1930–2020 | 291 | 333 | 442 | 261 | 267 | 309 | 301 | 444 | 383 |
7160 | 1930–2020 | 215 | 256 | 375 | 152 | 190 | 167 | 240 | 199 | 399 |
7290 | 1930–2020 | 207 | 237 | 313 | 171 | 177 | 188 | 216 | 225 | 326 |
7440 | 1930–2020 | 159 | 179 | 219 | 160 | 129 | 186 | 174 | 244 | 323 |
7580 | 1930–2020 | 277 | 313 | 393 | 250 | 235 | 279 | 312 | 341 | 548 |
7600 | 1930–2020 | 300 | 350 | 470 | 250 | 276 | 281 | 380 | 343 | 719 |
7730 | 1930–2020 | 272 | 334 | 513 | 221 | 235 | 266 | 304 | 382 | 521 |
7860 | 1930–2020 | 398 | 500 | 800 | 337 | 299 | 423 | 441 | 669 | 1033 |
8320 | 1930–2020 | 330 | 388 | 538 | 150 | 364 | 171 | 445 | 226 | 674 |
8870 | 1930–2020 | 201 | 238 | 339 | 129 | 214 | 148 | 263 | 193 | 394 |
8970 | 1940–2020 | 335 | 428 | 716 | 261 | 304 | 332 | 433 | 540 | 932 |
9500 | 1930–2020 | 251 | 296 | 417 | 204 | 213 | 235 | 252 | 315 | 346 |
average | 290 | 342 | 485 | 215 | 262 | 249 | 325 | 334 | 521 |
ID SK | Period | q7dmin,20 | q7dmin,50 | q7dmin,100 | q7dmin,20 WS | q7dmin,20 SA | q7dmin,50 WS | q7dmin,50 SA | q7dmin,100 WS | q7dmin,100 SA |
---|---|---|---|---|---|---|---|---|---|---|
5040 | 1930–2020 | 0.60 | 0.51 | 0.46 | 0.89 | 0.60 | 0.75 | 0.51 | 0.67 | 0.46 |
5330 | 1930–2020 | 3.66 | 3.22 | 2.95 | 3.72 | 4.50 | 3.25 | 3.94 | 2.96 | 3.60 |
5340 | 1930–2020 | 2.69 | 2.35 | 2.15 | 2.73 | 3.35 | 2.41 | 2.86 | 2.22 | 2.57 |
5400 | 1930–2020 | 5.30 | 4.71 | 4.35 | 5.26 | 10.01 | 4.67 | 8.49 | 4.32 | 7.56 |
5550 | 1930–2020 | 4.42 | 4.13 | 3.95 | 4.48 | 5.54 | 4.20 | 5.13 | 4.04 | 4.89 |
5740 | 1930–2020 | 4.08 | 3.31 | 2.84 | 4.25 | 5.11 | 3.33 | 4.44 | 2.78 | 4.03 |
5790 | 1930–2020 | 4.65 | 3.76 | 3.21 | 5.12 | 5.48 | 4.22 | 4.41 | 3.67 | 3.76 |
6130 | 1930–2020 | 3.22 | 2.98 | 2.84 | 3.44 | 3.37 | 3.16 | 3.06 | 2.99 | 2.87 |
6200 | 1930–2020 | 1.18 | 1.01 | 0.92 | 1.47 | 1.22 | 1.15 | 1.04 | 0.98 | 0.94 |
6300 | 1930–2020 | 1.69 | 1.47 | 1.35 | 2.22 | 1.73 | 1.93 | 1.48 | 1.76 | 1.34 |
6730 | 1930–2020 | 1.18 | 1.05 | 0.97 | 1.40 | 1.22 | 1.13 | 1.08 | 0.97 | 0.99 |
7045 | 1930–2020 | 1.87 | 1.72 | 1.63 | 2.21 | 1.88 | 2.01 | 1.70 | 1.91 | 1.59 |
7060 | 1930–2020 | 3.87 | 3.51 | 3.31 | 3.87 | 4.72 | 3.51 | 3.81 | 3.31 | 3.30 |
7065 | 1930–2020 | 4.47 | 4.28 | 4.19 | 4.55 | 4.96 | 4.27 | 4.59 | 4.12 | 4.40 |
7070 | 1930–2020 | 5.60 | 5.21 | 4.98 | 5.77 | 6.79 | 5.20 | 6.34 | 4.85 | 6.09 |
7160 | 1930–2020 | 3.30 | 3.09 | 2.96 | 3.42 | 3.57 | 3.11 | 3.35 | 2.92 | 3.23 |
7290 | 1930–2020 | 2.37 | 2.19 | 2.08 | 2.67 | 2.43 | 2.43 | 2.24 | 2.30 | 2.13 |
7440 | 1930–2020 | 0.12 */ 0.18 ** | 0.07 */ 0.13 ** | 0.04 */ 0.11 ** | 0.36 | 0.11 | 0.25 | 0.06 | 0.20 | 0.04 |
7580 | 1930–2020 | 0.14 | 0.10 | 0.08 | 0.33 | 0.17 | 0.25 | 0.12 | 0.21 | 0.10 |
7600 | 1930–2020 | 0.09 | 0.07 | 0.06 | 0.29 | 0.09 | 0.21 | 0.07 | 0.17 | 0.06 |
7730 | 1930–2020 | 0.99 | 0.73 | 0.59 | 1.60 | 1.00 | 1.29 | 0.71 | 1.12 | 0.56 |
7860 | 1930–2020 | 0.65 | 0.43 | 0.31 | 1.11 | 0.67 | 0.82 | 0.43 | 0.66 | 0.31 |
8320 | 1930–2020 | 2.28 | 2.07 | 1.93 | 2.33 | 2.92 | 2.12 | 2.64 | 2.00 | 2.47 |
8870 | 1930–2020 | 0.66 | 0.54 | 0.48 | 0.81 | 0.69 | 0.69 | 0.56 | 0.63 | 0.48 |
8970 | 1940–2020 | 0.51 | 0.40 | 0.34 | 0.79 | 0.51 | 0.68 | 0.40 | 0.62 | 0.34 |
9500 | 1930–2020 | 0.87 | 0.78 | 0.73 | 1.05 | 0.90 | 0.92 | 0.79 | 0.84 | 0.73 |
average | 2.33 | 2.07 | 1.91 | 2.54 | 2.83 | 2.23 | 2.47 | 2.05 | 2.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pekárová, P.; Bačová Mitková, V.; Halmová, D. Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment. Hydrology 2025, 12, 199. https://doi.org/10.3390/hydrology12080199
Pekárová P, Bačová Mitková V, Halmová D. Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment. Hydrology. 2025; 12(8):199. https://doi.org/10.3390/hydrology12080199
Chicago/Turabian StylePekárová, Pavla, Veronika Bačová Mitková, and Dana Halmová. 2025. "Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment" Hydrology 12, no. 8: 199. https://doi.org/10.3390/hydrology12080199
APA StylePekárová, P., Bačová Mitková, V., & Halmová, D. (2025). Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment. Hydrology, 12(8), 199. https://doi.org/10.3390/hydrology12080199